首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Epiphytic lichens can contribute significantly to ecosystem nutrient input because they efficiently accumulate atmospheric mineral nutrients and, in the case of cyanolichens, also fix nitrogen. The rate at which carbon and other nutrients gained by lichens enters the ecosystem is determined by lichen litter decomposability and by invertebrate consumption of lichen litter. In turn, these processes are driven by the secondary compounds present in senesced lichens. Therefore, we explored how lichen palatability and concentrations of secondary compounds change with tissue senescence for Lobaria pulmonaria, a green-algal lichen with cyanobacterial cephalodia, and Lobaria scrobiculata, a cyanobacterial lichen. During senescence both lichens lost 38–48 % of their stictic acid chemosyndrome, while m-scrobiculin and usnic acid in L. scrobiculata remained unchanged. Snails preferred senesced rather than fresh L. pulmonaria, while senesced L. scrobiculata were avoided. This provides evidence that species with labile secondary compounds will have higher turnover rates, through consumption and decomposition, than those producing more stable secondary compounds.  相似文献   

2.
The relative impact of lichen photobiont and mycobiont was evaluated by submitting nine lichen species with: (i) different photobiont types; (ii) different lichen growth forms; and (iii) different nutrients, pH, humidity preferences; to a range of Cu concentrations (μM) supplied in repeated cycles to simulate the natural process of uptake under field conditions. The physiological performance of the photosystem II photochemical reactions was measured using Fv/Fm and the metabolic activity of the mycobiont was evaluated using ergosterol and intracellular K-loss as indicators. Lichens with higher cation exchange capacity showed higher intracellular Cu uptake and their ecology seemed to be associated with low-nutrient environments. Thus the wall and external matrix, mainly characteristic of the mycobiont partner, cannot be ignored as the first site of interaction of metals with lichens. No common intracellular Cu concentration threshold was found for the physiological impacts observed in the different species. Most physiological effects of Cu uptake in sensitive lichens occurred for intracellular Cu below 200 μg/g dw whereas more tolerant species were able to cope with intracellular Cu at least 3 times higher. Cyanobacterial lichens showed to be more sensitive to Cu uptake than green-algal lichens. Within the Trebouxia lichens, different species showed different sensitivities to Cu uptake, suggesting that the mycobiont may change the microenvironment close to the photobiont partner providing different degrees of protection. Despite the fact that the photobiont is the productive partner, the metabolic activity of the mycobiont of lichen species adapted to environments rich in nutrients, showed to be more sensitive to Cu uptake than the photochemical performance of the photobiont.  相似文献   

3.
Lichens, which are symbioses of a fungus and one or two photoautotrophs, frequently tolerate extreme environmental conditions. This makes them valuable model systems in astrobiological research to fathom the limits and limitations of eukaryotic symbioses. Various studies demonstrated the high resistance of selected extremotolerant lichens towards extreme, non-terrestrial abiotic factors including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. This study focusses on the diverse set of secondary lichen compounds (SLCs) that act as photo- and UVR-protective substances. Five lichen species used in present-day astrobiological research were compared: Buellia frigida, Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, and Pleopsidium chlorophanum. Detailed investigation of secondary substances including photosynthetic pigments was performed for whole lichen thalli but also for axenically cultivated mycobionts and photobionts by methods of UV/VIS-spectrophotometry and two types of high performance liquid chromatography (HPLC). Additionally, a set of chemical tests is presented to confirm the formation of melanic compounds in lichen and mycobiont samples. All investigated lichens reveal various sets of SLCs, except C. gyrosa where only melanin was putatively identified. Such studies will help to assess the contribution of SLCs on lichen extremotolerance, to understand the adaptation of lichens to prevalent abiotic stressors of the respective habitat, and to form a basis for interpreting recent and future astrobiological experiments. As most of the identified SLCs demonstrated a high capacity in absorbing UVR, they may also explain the high resistance of lichens towards non-terrestrial UVR.  相似文献   

4.
Tree crowns typically cover the vast majority of the surface area of trees, but they are rarely considered in diversity surveys of epiphytic bryophytes and lichens, especially in temperate Europe. Usually only stems are sampled. We assessed the number of bryophyte and lichen species on stems and in crowns of 80 solitary sycamore maple trees (Acer pseudoplatanus) at six sites in wooded pastures in the northern Alps. The total number of species detected per tree ranged from 13 to 60 for bryophytes, from 25 to 67 for lichens, and from 42 to 104 for bryophytes and lichens considered together. At the tree level, 29 % of bryophyte and 61 % of lichen species were recorded only in the crown. Considering all sampled trees together, only 4 % of bryophyte, compared to 34 % of lichen species, were never recorded on the stem. Five out of 10 red-listed bryophyte species and 29 out of 39 red-listed lichen species were more frequent in crowns. The species richness detected per tree was unexpectedly high, whereas the proportion of exclusive crown species was similar to studies from forest trees. For bryophytes, in contrast to lichens, sampling several stems can give a good estimation of the species present at a site. However, frequency estimates may be highly biased for lichens and bryophytes if crowns are not considered. Our study demonstrates that tree crowns need to be considered in research on these taxa, especially in biodiversity surveys and in conservation tasks involving lichens and to a lesser degree also bryophytes.  相似文献   

5.
Many lichens can cope with heavy-metal stress, however, the mechanisms of lichen tolerance are still not fully understood. Some lichen secondary metabolites (depsides and depsidones), produced in lichens by the fungal symbiont and accumulated on the outer surface of its hyphae, are supposed to play an important role in the extracellular immoblilization of heavy metals. Lichen photobionts (algal partners in the symbiosis), although surrounded by the mycobiont hyphae, may also accumulate high amounts of trace metals. This can lead to physiological disruptions and morphological damage in algal cells and hence affect the lichen physiological status. We hypothesized that lichen species/specimens living in heavily polluted sites and showing HM tolerance possess a higher content of secondary metabolites than those living in unpolluted sites. Hence, their photobionts can be better protected from the excess of metal ions and need to produce less metal-complexing phytochelatins (PCn) to combat metal toxicity. Specimens of Hypocenomyce scalaris, Cladonia furcata and Lepraria spp. sampled from Zn/Pb-polluted and control sites were compared for the accumulation of Zn/Pb and secondary metabolites, as well as for their production of phytochelatins and glutathione in response to experimental Zn or Pb exposure. Generally, the lichen specimens sampled from the HM-polluted site contained higher amounts of Zn and Pb as well as lichen substances (different depsides and depsidones) than those from the control site. A strong positive correlation was found between the accumulation of secondary metabolites and Zn/Pb accumulation (R2 = 0.98 and 0.63, respectively). For the first time, production of phytochelatins (PC2-3) in response to Zn and Pb (50-200 μM) exposure was found in H. scalaris, L. elobata, L. incana and C. furcata. In both species of Lepraria also cysteine, a substrate for GSH and PCs synthesis was detected. The lichens from the polluted site produced under the same exposure conditions, or in response to higher metal concentrations, lower amounts of PCn than those sampled from the control site. It strongly suggests that less Zn and Pb ions reached the photobiont cells of the lichens containing higher amounts of secondary metabolites (lecanoric, fumarprotocetraric, stictic, constictic acids, antranorin). The results obtained support the putative role of some metabolites in heavy-metal tolerance of the lichens inhabiting metal-polluted habitats.  相似文献   

6.
Abstract: In contrast to green algal lichens, cyanobacterial species of different families, growth forms and habitats proved to be unable to attain positive net CO2 assimilation when the dry thalli were treated with air of high relative humidity; they needed liquid water for the reactivation of their photosynthetic apparatus. Identical behaviour is shown by all of the 47 lichen species with cyanobacterial photobionts, from six different genera, studied so far. This suggests a widely distributed, if not general, characteristic of cyanobacterial lichens. The difference in performance between both groups of photobionts was maintained when the lichen thallus was macerated. Furthermore, cultures of Chroococcidiopsis were unable to make use of water vapour hydration for positive net photosynthesis, and were similar in this respect to some free-living aerophilic cyanohacteria tested earlier. Possible physiological implications as well as ecological consequences for water-relation-dependent habitat selection of green-algal and cyanobacterial lichens are discussed.  相似文献   

7.
Three long-term studies of lichen growth and colonization have been undertaken at Signy Island, South Orkney Islands, in the maritime Antarctic. Small individual thalli of several crustose species and uncolonized plots on 12 fresh rock surfaces were photographically monitored at intervals of 3–4 years over a period of up to 20 years. The development of Ochrolechia frigida colonies on a regenerating moss bank, recently uncovered by a receding glacier, was similarly monitored. The results indicate that many lichens growing in sites enriched by nitrogenous compounds derived from populations of sea birds, have relatively rapid colonization and growth rates. Mean percentage increase in thallus area can be as high as 15–32% per annum in some nitrophilous saxicolous species (e.g. Acarospora macrocyclos, Xanthoria elegans and species of Buellia and Caloplaca), but as low as 0·4–4% in nitrophobous species (Lecanora physciella, Lecidea sp., Rhizocarpon geographicum). Umbilicaria antarctica and Usnea antarctica also yielded data indicating high growth rates, with colonist plants reaching several centimetres after 20 years. Colonization by mixed assemblages of lichens of new rock surfaces can attain 40→90% cover after 20 years in nutrient-enriched sites, and even 20–25% in non-biotically influenced sites. Colonization by or increase in extant O. frigida on the regenerating moribund moss bank was also quite rapid. It is suggested that the ~exceptionally large thalli of several lichen species and the locally extensive dense lichen fellfield communities in the maritime Antarctic may be much younger than previously supposed.  相似文献   

8.
We investigated how lichen carbon-based secondary compounds (CBSCs) affect abundance of invertebrates in five lichen species growing on the forest floor (Cladonia rangiferina, Cladonia stellaris) or on tree trunks (Evernia prunastri, Hypogymnia physodes, Pseudevernia furfuracea). To do this, CBSCs were removed by rinsing lichen thalli in acetone (which has no adverse effects on the lichens) and the lichens were re-transplanted in their natural habitat. After 4 months there was higher abundance of mites, springtails and spiders in the three epiphytic lichens that had their CBSC concentrations reduced. The increase in predatory spiders following CBSC reduction suggests that the compounds have multitrophic consequences. The acetone treatment reduced the number of nematodes in four of the lichen species. Given that lichens serve as important habitats for a diverse range of invertebrates, increased knowledge of how lichen CBSCs may regulate their abundance helps us to better understand the role that lichens and their defence compounds play in structuring forest food webs.  相似文献   

9.
Rates of extracellular superoxide radical (O2· ?) formation were measured in 34 species of lichens from different taxonomic groupings and contrasting habitats before and after desiccation stress. All 21 species from the suborder Peltigerineae produce O2· ? extracellularly at high rates, even when they are not stressed. In addition, some species show a burst of O2· ? production during rehydration following desiccation. Extracellular production of O2· ? is almost absent in the species from other lichen groups. In general, production of high levels of O2· ? and the existence of an inducible oxidative burst are best developed in species growing in wet microhabitats. Rates of O2· ? production are also positively correlated to previously published indices of lichen metabolic activity. Preliminary studies on the identity of the O2· ? producing enzymes suggest that they do not possess the classical characteristics of those suggested to produce reactive oxygen species in higher plants. Patterns of O2· ? production are discussed in terms of the strategies used by different lichens groups in their defence against pathogenic fungi and bacteria.  相似文献   

10.
Abstract:The influence of environmental variables on epiphytic lichens in Liguria (NW Italy) was examined using two complementary approaches. Firstly, the variability of lichen vegetation in relation to environmental variables was investigated. Secondly, the variability of Lichen Biodiversity (LB) counts, used in biomonitoring studies, was analysed in relation to bioclimatic areas. Geomorphology strongly affects lichen vegetation. The coastal mountain ridge and the Tyrrhenian-Po valley watershed limit the distribution range of three different communities: a Parmelion community with a high frequency of coastal suboceanic species, a Parmelion community rich in oak wood species and the Parmelietum acetabuli association, situated beyond the Po Valley watershed. Substantial differences in the distribution of lichen communities related to a climatic gradient (from humid Mediterranean to dry sub-Mediterranean regions) are not matched by corresponding statistically significant differences in LB counts. More accurate studies are necessary to define homogeneous bioclimatic areas, in which LB values can be compared for biomonitoring purposes.  相似文献   

11.
The structure of the associated bacterial community of bipartite cyanolichens of the genus Peltigera from three different environmental contexts in the Karukinka Natural Park, Tierra del Fuego, Chile, was assessed. The sampling sites represent different habitat contexts: mature native forest, young native forest and grassland. Recently it has been determined that the bacterial community associated to lichens could be highly structured according to the mycobiont or photobiont identities, to the environmental context and/or to the geographic scale. However, there are some inconsistencies in defining which of these factors would be the most significant on determining the structure of the microbial communities associated with lichens, mainly because most studies compare the bacterial communities between different lichen species and/or with different photobiont types (algae vs. cyanobacteria). In this work bipartite lichens belonging to the same genus (Peltigera) symbiotically associated with cyanobacteria (Nostoc) were analyzed by TRFLP to determine the structure of the bacterial community intimately associated with the lichen thalli and the one present in the substrate where they grow. The results indicate that the bacterial community intimately associated differs from the one of the substrate, being the former more influenced by the environmental context where the lichen grows.  相似文献   

12.
Lichens are symbioses of two organisms, a fungal mycobiont and a photoautotrophic photobiont. In nature, many lichens tolerate extreme environmental conditions and thus became valuable models in astrobiological research to fathom biological resistance towards non-terrestrial conditions; including space exposure, hypervelocity impact simulations as well as space and Martian parameter simulations. All studies demonstrated the high resistance towards non-terrestrial abiotic factors of selected extremotolerant lichens. Besides other adaptations, this study focuses on the morphological and anatomical traits by comparing five lichen species—Circinaria gyrosa, Rhizocarpon geographicum, Xanthoria elegans, Buellia frigida, Pleopsidium chlorophanum—used in present-day astrobiological research. Detailed investigation of thallus organization by microscopy methods allows to study the effect of morphology on lichen resistance and forms a basis for interpreting data of recent and future experiments. All investigated lichens reveal a common heteromerous thallus structure but diverging sets of morphological-anatomical traits, as intra-/extra-thalline mucilage matrices, cortices, algal arrangements, and hyphal strands. In B. frigida, R. geographicum, and X. elegans the combination of pigmented cortex, algal arrangement, and mucilage seems to enhance resistance, while subcortex and algal clustering seem to be crucial in C. gyrosa, as well as pigmented cortices and basal thallus protrusions in P. chlorophanum. Thus, generalizations on morphologically conferred resistance have to be avoided. Such differences might reflect the diverging evolutionary histories and are advantageous by adapting lichens to prevalent abiotic stressors. The peculiar lichen morphology demonstrates its remarkable stake in resisting extreme terrestrial conditions and may explain the high resistance of lichens found in astrobiological research.  相似文献   

13.
There is a need for non-invasive monitoring of temporal and spatial variation in hydration and photosynthetic activity of red-listed poikilohydric autotrophs. Here, we simultaneously recorded kinetics in RGB-colors (photos), reflectance spectra, water content, maximal (FV/FM), and effective quantum yield of PSII (ΦPSII) during desiccation in foliose lichens differing in cortical characteristics and photobionts. The spectral absorbance peaks of chlorophyll a, phycocyanin, and phycoerythrin were clearly displayed at high hydration levels. Brightness and total RGB colors of the lichens strongly increased during desiccation. The normalized difference vegetation index (NDVI) efficiently estimated hydration level and ΦPSII – a proxy for lichen photosynthesis – in all species, including threatened old forest lichens. Color and reflectance indices based on green wavelengths gave good estimates of water content in cephalo- and chlorolichens, but not in cyanolichens with a wider range of photosynthetic pigments. Due to species-specific characteristics, species-wise calibration is essential for non-invasive assessments of lichen functioning.  相似文献   

14.
Gauslaa Y 《Oecologia》2005,143(1):94-105
Lichens are well-suited organisms for experimental herbivory studies because their secondary compounds, assumed to deter grazing, can be non-destructively extracted. Thalli of 17 lichen species from various habitats were cut in two equal parts; compounds were extracted from one part by acetone, the other served as a control. These two pieces were offered as a paired choice to the generalist herbivore snail Cepaea hortensis. Control thalli of all lichens were consumed at a low rate regardless of their investments in acetone-extractable lichen compounds; naturally compound-deficient lichen species were not preferred compared to those with high contents. However, for extracted thalli, there was a highly significant positive correlation between rate of consumption and the extracted compound contents. These data imply that herbivore defence has evolved in different directions in different lichens. Studied members of Parmeliaceae, common in oligotrophic habitats, have high contents of carbon-rich acetone-soluble compounds; these lichens became highly palatable to snails subsequent to acetone rinsing. Extracted lichen compounds were applied to pieces of filter paper and fed to snails. Extracts from members of the Parmeliaceae significantly deterred feeding on paper. Such data suggest that generalist herbivores may have shaped evolution in the widespread and highly diverse Parmeliaceae towards high investments in lichen compounds. On the other hand, lichens belonging to the Physciaceae and Teloschistales, common in nutrient-enriched habitats, are deficient in, or have low concentrations of, lichen compounds. Such lichens did not become more palatable after acetone rinsing. The orange anthraquinone compound parietin, restricted to the Teloschistales, and which has previously been found to protect against excess light, did not deter grazing.  相似文献   

15.
《Phytomedicine》2015,22(9):847-855
BackgroundLichens are symbiotic organisms capable of producing unique secondary metabolites, whose pharmacological activities are attracting much interest.PurposeThe present study aimed to investigate the in vitro neuroprotective effects and anticancer potential of methanol extracts of two Parmeliaceae lichens: Cetraria islandica and Vulpicida canadensis. The chemical composition of the two lichens was also determined.MethodsNeuroprotective activity was studied with respect to the antioxidant properties of the extracts; radical scavenging tests (ORAC and DPPH assays) were performed and oxidative stress markers (intracellular ROS production, caspase-3 activity, MDA and glutathione levels) were assessed in a hydrogen peroxide-induced oxidative stress model in astrocytes. Cytotoxic activity was tested against human HepG2 (hepatocellular carcinoma) and MCF-7 (breast adenocarcinoma) cell lines.ResultsCell viability studies identified a single concentration for each extract that was subsequently used to measure oxidative stress markers. Lichen extracts were able to reverse the oxidative damage caused by hydrogen peroxide, thus promoting astrocyte survival. Both lichen extracts also had anticancer activity in the cell lines, with IC50 values of 19.51–181.05 µg/ml. The extracts had a high total phenolic content, and the main constituents identified by HPLC were fumarprotocetraric acid in Cetraria islandica, and usnic, pinastric and vulpinic acids in Vulpicida canadensis. The biological activities of the lichen extracts can be attributed to these secondary metabolites.ConclusionThe lichen species studied are promising sources of natural compounds with neuroprotective activity and cytotoxic potential, and warrant further research.  相似文献   

16.
Lichen epiphytes are applied as excellent environmental indicators worldwide. However, very little is known about epiphytic lichen communities and their response to forest dynamics in subtropical China. This paper proposes the applications of the cover, diversity, and functional traits of epiphytic lichens to assess environmental changes associated with succession in subtropical forests of southwest China. Bole lichens were sampled from 120 plots of eight representative forest types in the Ailao Mountains. Total cover, species richness, diversity and community structure of bole lichens differed significantly among forest types, and the highest cover and diversity occurred in the Populus bonatii secondary forest (PBSF). Sixty-one indicator species were associated with particular forest types and more than 50% occurred in the PBSF. Both cover and diversity of most lichen functional groups varied regularly during forest succession. Lichen pioneer species were not displaced by competitively superior species as succession proceeds and cyanolichens were more prevalent in secondary forests. The results also highlight the importance of habitat variables such as canopy openness, host diversity, forest age, tree size, the size of the largest tree, tree density, and basal area on the lichen community. Consequently, our findings support the notion that epiphytic lichens, in terms of cover, diversity, species composition and functional traits can be used as effective indicators for large-scale and long-term forest monitoring. More importantly, the narrowly lobed foliose group was the best candidate indicator of environmental conditions in this region. The combined application of lichen indicator species and functional groups seemed to be a more reliable and more powerful method for monitoring forest dynamics in subtropical montane ecosystems.  相似文献   

17.
18.
BackgroundHeavy metals that pass through the plasmalemma are expected to influence on lichen metabolic processes; however, lichens may tolerate high concentrations of metals by sequestrating them extracellularly. Heavy metal accumulation level fundamentally determine the success of lichens in the colonisation of polluted sites; however, the proportions between extra- and intracellular metal concentrations in lichen thalli are still poorly recognized. In this study metal accumulation patterns of selected toxic trace elements, i.e. Pb, Cd, and micronutrients, i.e. Zn, Cu and Ni, in Cladonia cariosa thalli were recognised in relation to extra- and intracellular fractions.MethodsThe intracellular and total concentrations of Zn, Pb, Cd, Cu and Ni in lichen thalli collected from eleven variously polluted sites were determined by means of atomic absorption spectrometry. Additionally, organic carbon and total nitrogen contents as well as pH of soil substrate were measured.ResultsThe accumulation patterns differed between studied metal elements; the major part of Zn, Pb and Cd loads was accumulated extracellularly, whereas Cu and Ni accumulation was mostly intracellular. Like toxic trace elements, Zn was accumulated mainly extracellularly at high polluted sites. The non-linear models most reliably reflect relationships between intracellular and extracellular metal contents in C. cariosa thalli. The intracellular contents of Zn, Pb, Cd and Cu increased slower at higher than at lower extracellular concentrations. Moreover, at higher total concentrations of elements in the thalli, their extracellular proportions were markedly increased.ConclusionThe results suggest that in the face of extreme Zn-enrichment, lichens demonstrate the ability to accumulate the excess of Zn outside the cells. Therefore, it can be concluded that metal accumulation depend not only on the element but also on its abundance in the environment and direct availability for lichens. The studied species showed a defence against excessive intracellular accumulation when a given element is in excess. Such capability may facilitate the colonization of extremely polluted sites by certain pioneer lichens.  相似文献   

19.
Field data from a saxicolous lichen community in Shenandoah National Park, Virginia, suggested that the slug Pallifera varia grazed more frequently on certain lichen species than would be expected if it fed randomly. Two hypotheses might explain this grazing pattern. The preference hypothesis, that slugs select lichens of highest quality, was tested by measuring the concentration of essential elements in lichens eliciting high and low preference by slugs. Lichens with the highest element contents were assumed to be of the highest quality to herbivores. The avoidance hypothesis, that preference by slugs actually results from the rejection of unpalatable species, was tested by offering slugs choices of baited filter-paper disks impregnated with secondary products of the lichen species in question. Results suggested that preferred lichens had significantly lower concentrations of N, P, and Ca, and that avoided lichens produced secondary products that effectively inhibited Pallifera grazing activity. These results suggested that the avoidance hypothesis was the better explanation for nonrandom Pallifera grazing patterns. Furthermore, they suggested that lichens with the highest concentrations of essential elements are most likely to produce defense compounds, an observation that supports predictions to explain patterns of chemical defense in vascular plants.  相似文献   

20.
The sensitivity ofHypogymnia physodes,Lobaria pulmonariaandPeltigera aphthosaH. physodesto six photosystem II herbicides and to DBMIB was tested in the laboratory by chlorophyll flouresence and oxygen-exchange measurements. in addition, experiments with freshly isolated photobiont cells fromH. physodesandL. pulmonariawere performed. Generally, the lichens were most sensitive to the urea herbicides diuron and isoproturon, whereas the triazines atrazine, terbuthylazine, and simazine and the triazinone metamitron wre less inhibitory. Among the three lichen species invesigated,H. physodeswas the most sensitive to the urea herbicides. For the other agents, no signifiant differences between lichen species could be found. The highest pI50values obtained from dose response curves were around 6.5 for isolated photobionts, but most values for lichen thalli were in the range 5-6. Thus, there is no particular sensitivity of green algal lichen photobionts to photosytem II herbicides as compared to other algae, higher plant chloroplasts or protoplasts. In nature, we observed recovery from (damaging) treatment with 10−5mol diuron 1−1forH. physodeswithin weeks. Therefore, damage to lichens fromt he use of photosystem-II herbicides in agriculture is probably only of very local occurence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号