首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysozymes are ancient and important components of the innate immune system of animals that hydrolyze peptidoglycan, the major bacterial cell wall polymer. Bacteria engaging in commensal or pathogenic interactions with an animal host have evolved various strategies to evade this bactericidal enzyme, one recently proposed strategy being the production of lysozyme inhibitors. We here report the discovery of a novel family of bacterial lysozyme inhibitors with widespread homologs in gram-negative bacteria. First, a lysozyme inhibitor was isolated by affinity chromatography from a periplasmic extract of Salmonella Enteritidis, identified by mass spectrometry and correspondingly designated as PliC (periplasmic lysozyme inhibitor of c-type lysozyme). A pliC knock-out mutant no longer produced lysozyme inhibitory activity and showed increased lysozyme sensitivity in the presence of the outer membrane permeabilizing protein lactoferrin. PliC lacks similarity with the previously described Escherichia coli lysozyme inhibitor Ivy, but is related to a group of proteins with a common conserved COG3895 domain, some of them predicted to be lipoproteins. No function has yet been assigned to these proteins, although they are widely spread among the Proteobacteria. We demonstrate that at least two representatives of this group, MliC (membrane bound lysozyme inhibitor of c-type lysozyme) of E. coli and Pseudomonas aeruginosa, also possess lysozyme inhibitory activity and confer increased lysozyme tolerance upon expression in E. coli. Interestingly, mliC of Salmonella Typhi was picked up earlier in a screen for genes induced during residence in macrophages, and knockout of mliC was shown to reduce macrophage survival of S. Typhi. Based on these observations, we suggest that the COG3895 domain is a common feature of a novel and widespread family of bacterial lysozyme inhibitors in gram-negative bacteria that may function as colonization or virulence factors in bacteria interacting with an animal host.  相似文献   

2.
The mode of reaction of benzylpenicillin with two proteins was studied, with particular reference to the allergenicity of penicillin. These reactions, with pig insulin, and with hen's-egg-white lysozyme, were carried out in neutral solution at 37 degrees C. High concentrations of penicillin are needed to label the proteins, owing to concurrent hydrolysis of penicillin. Evidence has been obtained that the penicillin-reactive sites on the insulin molecule are the alpha-amino group at the N-terminus of the A chain and the epsilon-amino group of the lysine residue; whereas a site of reaction with lysozyme appears to be the epsilon-amino group of lysine-116.  相似文献   

3.
The production of lysozyme inhibitors, competitively binding to the lysozyme active site, is a bacterial strategy to prevent the lytic activity of host lysozymes. Therefore, suppression of the lysozyme–inhibitor interaction is an interesting new approach for drug development since restoration of the bacterial lysozyme sensitivity will support bacterial clearance from the infected sites. Using molecular modelling techniques the interaction of the Salmonella PliC inhibitor with c-type lysozyme was studied and a protein–protein interaction based pharmacophore model was created. This model was used as a query to identify molecules, with potential affinity for the target, and subsequently, these molecules were filtered using molecular docking. The retained molecules were validated as suppressors of lysozyme inhibitory proteins using in vitro experiments revealing four active molecules.  相似文献   

4.
The spin label method was used to observe the nature of the fast motions of side chains in protein monocrystals. The EPR spectra of spin-labeled lysozyme monocrystals (with different orientations of the tetragonal protein crystal in relation to the direction of the magnetic field) were interpreted using the method of molecular dynamics (MD). Within the proposed simple model, MD calculations of the spin label motion trajectories are performed in a reasonable real time. The model regards the protein molecule as frozen as a whole and the spin-labeled amino acid residue as unfrozen. To calculate the trajectories in vacuum, a model of spin-labeled lysozyme was assembled, and the parameters of the force fields were specified for atoms of the protein molecule, including the spin label. The calculations show that the protein environment sterically limits the area of the possible angular reorientations for the NO reporter group of the nitroxide (within the spin label), and this, in turn, affects the shape of the EPR spectrum. However, it turned out that the spread in the positions of the reporter group in the angle space strictly adheres to the Gaussian distribution. Using the coordinates of the spin label atoms obtained by the MD method within a selected time range and considering the distribution of the spin label states over the ensemble of spin-labeled macromolecules in a crystal, the EPR spectra of spin-labeled lysozyme monocrystals were simulated. The resultant theoretical EPR spectra appeared to be similar to experimental ones.  相似文献   

5.
Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.  相似文献   

6.
Abstract

The spin label method was used to observe the nature of the fast motions of side chains in protein monocrystals. The EPR spectra of spin-labeled lysozyme monocrystals (with different orientations of the tetragonal protein crystal in relation to the direction of the magnetic field) were interpreted using the method of molecular dynamics (MD). Within the proposed simple model, MD calculations of the spin label motion trajectories are performed in a reasonable real time. The model regards the protein molecule as frozen as a whole and the spin labeled amino acid residue as unfrozen. To calculate the trajectories in vacuum, a model of spin-labeled lysozyme was assembled, and the parameters of the force fields were specified for atoms of the protein molecule, including the spin label. The calculations show that the protein environment sterically limits the area of the possible angular reorientations for the NO reporter group of the nitroxide (within the spin label), and this, in turn, affects the shape of the EPR spectrum. However, it turned out that the spread in the positions of the reporter group in the angle space strictly adheres to the Gaussian distribution. Using the coordinates of the spin label atoms obtained by the MD method within a selected time range and considering the distribution of the spin label states over the ensemble of spin-labeled macro- molecules in a crystal, the EPR spectra of spin-labeled lysozyme monocrystals were simulated. The resultant theoretical EPR spectra appeared to be similar to experimental ones.  相似文献   

7.
8.
Extracts from both the vitelline envelope (VE) and fertilisation envelopes (FE) of rainbow trout eggs have the ability to exert a bactericidal effect on Gram-positive and -negative bacteria. The effect may be due to the presence of phospholipase D (PLD), lysozyme, proteinase and DNases, as the extracts contain these enzyme activities. The intensity of chorionic PLD and lysozyme activities in the VE extract was maintained in the FE without any alteration in activity even after transformation in the course of the cortical reaction, as components of a fundamental architecture of the envelope. Both extracts also contain different types of proteinase activities. Treatment with VE or FE extract seriously damaged the outer membrane of Gram-negative bacteria and the plasma membrane of Gram-positive and -negative bacteria at the ultrastructural level. Chorionic DNases probably degrade DNA of bacterial cells killed by virtue of the action of PLD and/or lysozyme and contribute to the transmigration of nucleosides and/or nucleotides produced by degrading bacterial DNA after degradation of bacterial components by the actions of the chorionic PLD, lysozyme and proteinase. These results suggest that the bactericidal process manifested by the VE or FE extract may start with the action of PLD and/or lysozyme against bacteria and be completed by subsequent degradation of constitutive proteins and DNA by the action of proteinases and DNases, respectively. Thus the VE and FE are able to protect the egg itself and the embryo, respectively, from bacterial infection in the internal or external environments.  相似文献   

9.
The proteomic response to bacterial infection in a teleost fish (Paralichthys olivaceus) infected with Streptococcus parauberis was analyzed using label-free protein quantitation coupled with LC-MS(E) tandem mass spectrometry. A total of 82 proteins from whole kidney, a major lymphoid organ in this fish, were found to be differentially expressed between healthy and diseased fish analyzed 6, 24, 72 and 120 h post-infection. Among the differentially expressed proteins, those involved in mediating immune responses (e.g., heat shock proteins, cathepsins, goose-type lysozyme and complement components) were most significantly up-regulated by infection. In addition, cell division cycle 48 (CDC48) and calreticulin, which are associated with cellular recovery and glycoprotein synthesis, were up-regulated in the universal protein group, whereas the other proteins in that group were down-regulated. There was continuous activation of expression of immune-associated proteins during infection, but there was also loss of expression of proteins not involved in immune function. We expect that our findings regarding immune response at the protein level would offer new insight into the systemic response to bacterial infection of a major immune organ in teleost fish.  相似文献   

10.
Hu D  Lu HP 《Biophysical journal》2004,87(1):656-661
The T4 lysozyme enzymatic hydrolyzation reaction of bacterial cell walls is an important biological process, and single-molecule enzymatic reaction dynamics have been studied under physiological condition using purified Escherichia coli cell walls as substrates. Here, we report progress toward characterizing the T4 lysozyme enzymatic reaction on a living bacterial cell wall using a combined single-molecule placement and spectroscopy. Placing a dye-labeled single T4 lysozyme molecule on a targeted bacterial cell wall by using a hydrodynamic microinjection approach, we monitored single-molecule rotational motions during binding, attachment to, and dissociation from the cell wall by tracing single-molecule fluorescence intensity time trajectories and polarization. The single-molecule attachment duration of the T4 lysozyme to the cell wall during enzymatic reactions was typically shorter than the photobleaching time under physiological conditions. Applying single-molecule fluorescence polarization measurements to characterize the binding and motions of the T4 lysozyme molecules, we observed that the motions of wild-type and mutant T4 lysozyme proteins are essentially the same whether under an enzymatic reaction or not. The changing of the fluorescence polarization suggests that the motions of the T4 lysozyme are associated with orientational rotations. This observation also suggests that the T4 lysozyme binding-unbinding motions on cell walls involve a complex mechanism beyond a single-step first-order rate process.  相似文献   

11.
Antimicrobial resistance is currently an important public health issue. The need for innovative antimicrobials is therefore growing. The ideal antimicrobial compound should limit antimicrobial resistance. Antimicrobial peptides or proteins such as hen egg white lysozyme are promising molecules that act on bacterial membranes. Hen egg white lysozyme has recently been identified as active on Gram-negative bacteria due to disruption of the outer and cytoplasmic membrane integrity. Furthermore, dry-heating (7 days and 80 °C) improves the membrane activity of lysozyme, resulting in higher antimicrobial activity. These in vivo findings suggest interactions between lysozyme and membrane lipids. This is consistent with the findings of several other authors who have shown lysozyme interaction with bacterial phospholipids such as phosphatidylglycerol and cardiolipin. However, until now, the interaction between lysozyme and bacterial cytoplasmic phospholipids has been in need of clarification. This study proposes the use of monolayer models with a realistic bacterial phospholipid composition in physiological conditions. The lysozyme/phospholipid interactions have been studied by surface pressure measurements, ellipsometry and atomic force microscopy. Native lysozyme has proved able to absorb and insert into a bacterial phospholipid monolayer, resulting in lipid packing reorganization, which in turn has lead to lateral cohesion modifications between phospholipids. Dry-heating of lysozyme has increased insertion capacity and ability to induce lipid packing modifications. These in vitro findings are then consistent with the increased membrane disruption potential of dry heated lysozyme in vivo compared to native lysozyme. Moreover, an eggPC monolayer study suggested that lysozyme/phospholipid interactions are specific to bacterial cytoplasmic membranes.  相似文献   

12.
The roles of Glu(73), which has been proposed to be a catalytic residue of goose type (G-type) lysozyme based on X-ray structural studies, were investigated by means of its replacement with Gln, Asp, and Ala using ostrich egg-white lysozyme (OEL) as a model. No remarkable differences in secondary structure or substrate binding ability were observed between the wild type and Glu(73)-mutated proteins, as evaluated by circular dichroism (CD) spectroscopy and chitin-coated celite chromatography. Substitution of Glu(73) with Gln or Ala abolished the enzymatic activity toward both the bacterial cell substrate and N-acetylglucosamine pentamer, (GlcNAc)(5), while substitution with Asp did not abolish but drastically reduced the activity of OEL. These results demonstrate that the carboxyl group of Glu(73) is directly involved in the catalytic action of G-type lysozyme. Furthermore, the stabilities of all three mutants, which were determined from the thermal and guanidine hydrochloride (GdnHCl) unfolding curves, respectively, were significantly decreased relative to those of the wild type. The results obtained clearly indicate the crucially important roles of Glu(73) in the structural stability as well as in the catalytic activity of G-type lysozyme.  相似文献   

13.
The dynamics of the side groups of amino acid residues and local conformational changes in the lysozyme molecule upon dehydration and rehydration of lysozyme crystals were studied by the methods of spin label, X-ray diffraction, and molecular dynamics. The His15 residue of lysozyme from chicken egg white was modified by spin label, and spin-labeled tetragonal crystals of the protein were grown. The spatial structure of the covalently bound spin label and its immediate surroundings in the lysozyme tetragonal crystal was determined. The conformation of a fragment of the lysozyme molecule with the spin label on His15, optimized by the method of molecular dynamics, closely agreed with X-ray data. It was found by the X-ray diffraction analysis that a decrease in relative humidity to 40% is accompanied by both a decrease in the unit cell volume by 27% and a change in the diffraction field of roentgenograms from 0.23 to 0.60 HM. The dehydration of spin-labeled lysozyme crystals leads to an anomalous widening of EPR peaks without changes in their position. The dehydration in the humidity range studied has a two-stage character. The decrease in humidity to 75% is accompanied by a sharp change in the parameters measured, and on further decrease in humidity to 40% they change insignificantly. The first stage is caused by the removal of the greater part of molecules of bulk water, and the second stage is due to the removal of the remaining bulk water and possible changes in the dynamics of weakly bound water molecules and their position. The simulation of experimental EPR spectra showed that the anomalous broadening of the spectrum upon dehydration is related to an increase in the dispersion of spin label orientations induced by changes in the network of hydrogen bonds generated by water molecules in the vicinity of the spin label and a possible turn (by no more than 5 degrees) of the entire protein molecule. After rehydration, the physical state of the lysozyme crystal did not return to the starting point.  相似文献   

14.
The culturability of several actinobacteria is controlled by resuscitation-promoting factors (Rpfs). These are proteins containing a c. 70-residue domain that adopts a lysozyme-like fold. The invariant catalytic glutamate residue found in lysozyme and various bacterial lytic transglycosylases is also conserved in the Rpf proteins. Rpf from Micrococcus luteus, the founder member of this protein family, is indeed a muralytic enzyme, as revealed by its activity in zymograms containing M. luteus cell walls and its ability to (i) cause lysis of Escherichia coli when expressed and secreted into the periplasm; (ii) release fluorescent material from fluorescamine-labelled cell walls of M. luteus; and (iii) hydrolyse the artificial lysozyme substrate, 4-methylumbelliferyl-beta-D-N,N',N'-triacetylchitotrioside. Rpf activity was reduced but not completely abolished when the invariant glutamate residue was altered. Moreover, none of the other acidic residues in the Rpf domain was absolutely required for muralytic activity. Replacement of one or both of the cysteine residues that probably form a disulphide bridge within Rpf impaired but did not completely abolish muralytic activity. The muralytic activities of the Rpf mutants were correlated with their abilities to stimulate bacterial culturability and resuscitation, consistent with the view that the biological activity of Rpf results directly or indirectly from its ability to cleave bonds in bacterial peptidoglycan.  相似文献   

15.
16.
Bactericidal properties of aprotinin, a proteinase inhibitor and possibly a defence molecule in bovine species, and of chicken egg white lysozyme, known as muramidase, were investigated. Incubation of various bacteria in the presence of either aprotinin or lysozyme showed that both proteins killed Gram-positive as well as Gram-negative bacteria without addition of complement or EDTA. Denaturation of the two proteins by dithiothreitol did not lead to loss of their bactericidal potency. Electron microscopic examination of Escherichia coli incubated either with lysozyme or aprotinin revealed that the bacterial cytoplasms gradually disintegrated. Both aprotinin and lysozyme were demonstrated within the affected cytoplasm by immunogold labelling. The results suggest that the bactericidal potency of lysozyme is not only due to muramidase activity but also to its cationic and hydrophobic properties. The bactericidal activity of aprotinin is probably also related to both these properties rather than to its activity as proteinase inhibitor.  相似文献   

17.
Martin MN 《Plant physiology》1991,95(2):469-476
The latex of the commercial rubber tree, Hevea brasiliensis, was fractionated by ultracentrifugation as described by G. F. J. Moir ([1959] Nature 184: 1626-1628) into a top layer of rubber particles, a cleared cytoplasm, and a pellet that contains primarily specialized vacuoles known as lutoids. The proteins in each fraction were resolved by two-dimensional gel electrophoresis. Both the pellet fraction and cleared cytoplasm contained large amounts of relatively few proteins, suggesting that laticifers serve a very specialized function in the plant. More than 75% of the total soluble protein in latex was found in the pellet fraction. Twenty-five percent of the protein in the pellet was identified as chitinases/lysozymes, which are capable of degrading the chitin component of fungal cell walls and the peptidoglycan component of bacterial cell walls. Both the chitinase and lysozyme activities were localized exclusively in the pellet or lutoid fraction. The chitinases/lysozymes were resolved into acidic and basic classes of proteins and further purified. An acidic protein (molecular mass 25.5 kD) represented 20% of the chitinase activity in latex; this protein lacked the low level of lysozyme activity that is associated with many plant chitinases. Six basic proteins, having both chitinase and lysozyme activities in various ratios and molecular mass of 27.5 or 26 kD, were resolved. Two of the basic proteins had very high lysozyme specific activities which were comparable to the specific activities reported for animal lysozymes. Like animal lysozymes, but unlike previously characterized plant chitinases/lysozymes, these basic chitinases/lysozymes were also capable of completely lysing or clearing suspensions of bacterial cell walls. These results suggest that laticifers may serve a defensive role in the plant.  相似文献   

18.
Lysozyme in the midgut of Manduca sexta during metamorphosis.   总被引:1,自引:0,他引:1  
Low levels of lysozyme were found in the midgut epithelium of the tobacco hornworm, Manduca sexta, during the early part of the fifth larval stadium. This was observed in control insects as well as in bacterially challenged insects. No lysozyme was detected in the gut contents of either group of insects which were actively eating or in the early stages of metamorphosis. However, high levels of lysozyme activity were detected in homogenates of midgut tissue collected from insects later in the stadium. Immunocytochemical studies demonstrated that lysozyme accumulates in large apical vacuoles in regenerative cells of the midgut during the larval-pupal molt. These cells, initially scattered basally throughout the larval midgut epithelium, multiply and form a continuous cell layer underneath the larval midgut cells. At the larval/pupal ecdysis the larval midgut epithelium is sloughed off and the regenerative cells, now forming the single cell layer of the midgut, release the contents of their vacuoles into the midgut lumen. This release results in high lysozyme activity in the lumen of the pupal midgut and is thought to confer protection from bacterial infection. This is the first indication that the lysozyme gene may be developmentally regulated in a specific tissue in the absence of a bacterial infection.  相似文献   

19.
Quantitative electrochemiluminescence (ECL) detection of a model protein, bovine serum albumin (BSA) was achieved via biotin–avidin interaction using an avidin-based sensor and a well-developed ECL system of tris(2,2′-bipyridine) ruthenium(II) derivative as label and tri-n-propylamine (TPA) as coreactant. To detect the protein, avidin was linked to the glassy carbon electrode through passive adsorptions and covalent interaction with carboxylate-terminated carbon nanotubes that was used as binder to immobilize avidin onto the electrode. Then, biotinylated BSA tagged with tris(2,2′-bipyridine) ruthenium(II) label was attached to the prepared avidin surface. After binding of BSA labeled with tris(2,2′-bipyridine) ruthenium(II) derivative to the surface-immobilized avidin through biotin, ECL response was generated when the self-assembled modified electrode was immersed in a TPA-containing electrolyte solution. Such double protein labeling protocol with a biotin label for biorecognition and ruthenium label for ECL detection facilitated the detection of protein compared to the classical double antibody sandwich format. The ECL intensity was linearly proportional to the feed concentration of BSA over two orders of magnitude in the range of 15 nM to 7.5 μM. The detection limit was estimated to be 1.5 nM. Further application to the lysozyme analysis was carried out to validate the present approach for an effective and favorable protocol for the quantitative detection of proteins. The dynamic range of lysozyme was from 0.001 g L−1 to 0.1 g L−1 and the detection limit was 0.1 mg L−1. Electrochemical impedance and cyclic voltammetric measurements along with some necessary control experiments were conducted to characterize the successful formation of self-assembled modified electrodes and to grant the whole detection process.  相似文献   

20.
The incorporation of [methyl-H]thymidine into three macromolecular fractions, designated as DNA, RNA, and protein, by bacteria from Hartbeespoort Dam, South Africa, was measured over 1 year by acid-base hydrolysis procedures. Samples were collected at 10 m, which was at least 5 m beneath the euphotic zone. On four occasions, samples were concurrently collected at the surface. Approximately 80% of the label was incorporated into bacterial DNA in surface samples. At 10 m, total incorporation of label into bacterial macromolecules was correlated to bacterial utilization of glucose (r = 0.913, n = 13, P < 0.001). The labeling of DNA, which ranged between 0 and 78% of total macromolecule incorporation, was inversely related to glucose uptake (r = -0.823), total thymidine incorporation (r = -0.737), and euphotic zone algal production (r = -0.732, n = 13, P < 0.005). With decreased DNA labeling, increasing proportions of label were found in the RNA fraction and proteins. Enzymatic digestion followed by chromatographic separation of macromolecule fragments indicated that DNA and proteins were labeled while RNA was not. The RNA fraction may represent labeled lipids or other macromolecules or both. The data demonstrated a close coupling between phytoplankton production and heterotrophic bacterial activity in this hypertrophic lake but also confirmed the need for the routine extraction and purification of DNA during [methyl-H]thymidine studies of aquatic bacterial production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号