首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrial natriuretic peptide (ANP) and the closely-related peptides BNP and CNP are highly conserved cardiovascular hormones. They bind to single transmembrane-spanning receptors, triggering receptor-intrinsic guanylyl cyclase activity. The "truncated" type-C natriuretic peptide receptor (NPR-C) has long been called a clearance receptor because it lacks the intracellular guanylyl cyclase domain, though data suggest it might negatively couple to adenylyl cyclase via G(i). Here we report the molecular cloning and characterization of the Xenopus laevis type-C natriuretic peptide receptor (XNPR-C). Analysis confirms the presence of a short intracellular C-terminus, as well as a high similarity to fish and mammalian NPR-C. Injection of XNPR-C mRNA into Xenopus oocytes resulted in expression of high affinity [(125)I]ANP binding sites that were competitively and completely displaced by natriuretic analogs and the unrelated neuropeptide vasoactive intestinal peptide (VIP). Measurement of cAMP levels in mRNA-injected oocytes revealed that XNPR-C is negatively coupled to adenylyl cyclase in a pertussis toxin-sensitive manner. When XNPR-C was co-expressed with PAC(1) receptors for pituitary adenylyl cyclase-activating polypeptide (PACAP), VIP and natriuretic peptides counteracted the cAMP induction by PACAP. These results suggest that VIP and natriuretic peptides can potentially modulate the action of PACAP in cells where these receptors are co-expressed.  相似文献   

2.
Natriuretic peptide receptors in the central vasculature of the toad, Bufo marinus, were characterized using autoradiographical, molecular, and physiological techniques. Specific 125I-rat ANP binding sites were present in the carotid and pulmonary arteries, the lateral aorta, the pre- and post-cava, and the jugular vein, and generally occurred in each layer of the blood vessel. The 125I-rat ANP binding was partially displaced by the specific natriuretic peptide receptor C ligand, C-ANF, which indicates the presence of two types of natriuretic peptide receptors in the blood vessels. This was confirmed by a RT-PCR study, which demonstrated that guanylyl cyclase receptor (NPR-GC) and NPR-C mRNAs are expressed in arteries and veins. An in vitro guanylyl cyclase assay showed that frog ANP stimulated the production of cGMP in arterial membrane fractions. Physiological recordings from isolated segments of the carotid and pulmonary arteries and the lateral aorta, which had been pre-constricted with arginine vasotocin, showed that rat ANP, frog ANP and porcine CNP relaxed the vascular smooth muscle with relatively similar potency. Together, the data show that the central vasculature contains two types of natriuretic peptide receptors (NPR-C and NPR-GC) and that the vasculature is a target for ANP and CNP.  相似文献   

3.
Natriuretic peptides exist in the fishes as a family of structurally-related isohormones including atrial natriuretic peptide (ANP), C-type natriuretic peptide (CNP) and ventricular natriuretic peptide (VNP); to date, brain natriuretic peptide (or B-type natriuretic peptide, BNP) has not been definitively identified in the fishes. Based on nucleotide and amino acid sequence similarity, the natriuretic peptide family of isohormones may have evolved from a neuromodulatory, CNP-like brain peptide. The primary sites of synthesis for the circulating hormones are the heart and brain; additional extracardiac and extracranial sites, including the intestine, synthesize and release natriuretic peptides locally for paracrine regulation of various physiological functions. Membrane-bound, guanylyl cyclase-coupled natriuretic peptide receptors (A- and B-types) are generally implicated in mediating natriuretic peptide effects via the production of cyclic GMP as the intracellular messenger. C- and D-type natriuretic peptide receptors lacking the guanylyl cyclase domain may influence target cell function through G(i) protein-coupled inhibition of membrane adenylyl cyclase activity, and they likely also act as clearance receptors for circulating hormone. In the few systems examined using homologous or piscine reagents, differential receptor binding and tissue responsiveness to specific natriuretic peptide isohormones is demonstrated. Similar to their acute physiological effects in mammals, natriuretic peptides are vasorelaxant in all fishes examined. In contrast to mammals, where natriuretic peptides act through natriuresis and diuresis to bring about long-term reductions in blood volume and blood pressure, in fishes the primary action appears to be the extrusion of excess salt at the gills and rectal gland, and the limiting of drinking-coupled salt uptake by the alimentary system. In teleosts, both hypernatremia and hypervolemia are effective stimuli for cardiac secretion of natriuretic peptides; in the elasmobranchs, hypervolemia is the predominant physiological stimulus for secretion. Natriuretic peptides may be seawater-adapting hormones with appropriate target organs including the gills, rectal gland, kidney, and intestine, with each regulated via, predominantly, either A- or B-type (or C- or D-type?) natriuretic peptide receptors. Natriuretic peptides act both directly on ion-transporting cells of osmoregulatory tissues, and indirectly through increased vascular flow to osmoregulatory tissues, through inhibition of drinking, and through effects on other endocrine systems.  相似文献   

4.
T Sano  R Imura  Y Morishita  Y Matsuda  K Yamada 《Life sciences》1992,51(18):1445-1451
HS-142-1, a novel polysaccharide, of microbial origin had been characterized as a specific antagonist of guanylyl cyclase-linked atrial natriuretic peptide (ANP) receptors (ANP-GC receptor) in bovine adrenal cortex. The effect of HS-142-1 on ANP receptors of rat glomeruli were examined. HS-142-1 blocked rat ANP (r-ANP)-stimulated cGMP production in a concentration-dependent manner, although it caused only slight inhibition in the specific binding of [125I]-rANP to the glomeruli where only a small portion of the binding sites are coupled to guanylyl cyclase. HS-142-1 recognized the 135K ANP receptor which is thought to be ANP-GC receptors but did not recognized 60K receptor, guanylyl cyclase-free type from affinity cross-linking studies with glomerular membranes. These results indicate that HS-142-1 is a specific antagonist for the ANP-GC receptor in rat glomeruli, and that it will be a powerful tool for understanding the physiological roles of ANP in renal responses.  相似文献   

5.
Natriuretic peptide receptor-C signaling and regulation   总被引:10,自引:0,他引:10  
Anand-Srivastava MB 《Peptides》2005,26(6):1044-1059
The natriuretic peptides (NP) are a family of three polypeptide hormones termed atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). ANP regulates a variety of physiological parameters by interacting with its receptors present on the plasma membrane. These are of three subtypes NPR-A, NPR-B, and NPR-C. NPR-A and NPR-B are guanylyl cyclase receptors, whereas NPR-C is non-guanylyl cyclase receptor and is coupled to adenylyl cyclase inhibition or phospholipase C activation through inhibitory guanine nucleotide regulatory protein (Gi). ANP, BNP, CNP, as well as C-ANP(4-23), a ring deleted peptide that specifically interacts with NPR-C receptor inhibit adenylyl cyclase activity through Gi protein. Unlike other G-protein-coupled receptors, NPR-C receptors have a single transmembrane domain and a short cytoplasmic domain of 37 amino acids, which has a structural specificity like those of other single transmembrane domain receptors. A 37 amino acid cytoplasmic peptide is sufficient to inhibit adenylyl cyclase activity with an apparent Ki similar to that of ANP(99-126) or C-ANP(4-23). In addition, C-ANP(4-23) also stimulates phosphatidyl inositol (PI) turnover in vascular smooth muscle cells (VSMC) which is attenuated by dbcAMP and cAMP-stimulatory agonists, suggesting that NPR-C receptor-mediated inhibition of adenylyl cyclase and resultant decreased levels of cAMP may be responsible for NPR-C-mediated stimulation of PI turnover. Furthermore, the activation of NPR-C receptor by C-ANP(4-23) and CNP inhibits the mitogen-activated protein kinase activity stimulated by endothelin-3, platelet-derived growth factor, phorbol-12 myristate 13-acetate, suggesting that NPR-C receptor might also be coupled to other signal transduction system or that there may be an interaction of the NPR-C receptor and some other signaling pathways. In this review article, NPR-C receptor coupling to different signaling pathways and their regulation will be discussed.  相似文献   

6.
Guanylyl cyclase is a heat-stable enterotoxin receptor.   总被引:50,自引:0,他引:50  
S Schulz  C K Green  P S Yuen  D L Garbers 《Cell》1990,63(5):941-948
Plasma membrane forms of guanylyl cyclase have been shown to function as natriuretic peptide receptors. We describe a new clone (GC-C) encoding a guanylyl cyclase receptor for heat-stable enterotoxin. GC-C encodes a protein containing an extracellular amino acid sequence divergent from that of previously cloned guanylyl cyclases; however, the protein retains the intracellular protein kinase-like and cyclase catalytic domains. Expression of GC-C in COS-7 cells results in high guanylyl cyclase activity. In addition, heat-stable enterotoxin from E. coli, but not natriuretic peptides, causes marked elevations of cyclic GMP and is specifically bound by cells transfected with GC-C. The enterotoxin fails to elevate cyclic GMP in nontransfected cells or in cells transfected with the natriuretic peptide/guanylyl cyclase receptors. These results show that a heat-stable enterotoxin receptor responsible for acute diarrhea is a plasma membrane form of guanylyl cyclase.  相似文献   

7.
Atrial (ANP) and brain (BNP) natriuretic peptides are hormones of myocardial cell origin. These hormones bind to the natriuretic peptide A receptor (NPRA) throughout the body, stimulating cGMP production and playing a key role in blood pressure control. Because NPRA receptors are present on cardiomyocytes, we hypothesized that natriuretic peptides may have direct autocrine or paracrine effects on cardiomyocytes or adjacent cardiac cells. Because both natriuretic peptides and NPRA gene expression are upregulated in states of pressure overload, we speculated that the effects of the natriuretic peptides on cardiac structure and function would be most apparent after pressure overload. To attenuate cardiomyocyte NPRA activity, transgenic mice with cardiac specific expression of a dominant-negative (DN-NPRA) mutation (HCAT D 893A) in the NPRA receptor were created. Cardiac structure and function were assessed (avertin anesthesia) in the absence and presence of pressure overload produced by suprarenal aortic banding. In the absence of pressure overload, basal and BNP-stimulated guanylyl cyclase activity assessed in cardiac membrane fractions was reduced. However, systolic blood pressure, myocardial cGMP, log plasma ANP levels, and ventricular structure and function were similar in wild-type (WT-NPRA) and DN-NPRA mice. In the presence of pressure overload, myocardial cGMP levels were reduced, and ventricular hypertrophy, fibrosis, filling pressures, and mortality were increased in DN-NPRA compared with WT-NPRA mice. In addition to their hormonal effects, endogenous natriuretic peptides exert physiologically relevant autocrine and paracrine effects via cardiomyocyte NPRA receptors to modulate cardiac hypertrophy and fibrosis in response to pressure overload.  相似文献   

8.
Human fat cell lipolysis was considered until recently to be an exclusive cAMP/protein-kinase A (PKA)-regulated metabolic pathway under the control of catecholamines and insulin. Moreover, exercise-induced lipid mobilization in humans was considered to mainly depend on catecholamine action and interplay between fat cell beta- and alpha2-adrenergic receptors controlling adenylyl cyclase activity and cAMP production. We have recently demonstrated that natriuretic peptides stimulate lipolysis and contribute to the regulation of lipid mobilization in humans. Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) stimulate lipolysis in human isolated fat cells. Activation of the adipocyte plasma membrane type A guanylyl cyclase receptor (NPR-A), increase in intracellular guanosine 3',5'-cyclic monophosphate (cyclic GMP) levels and activation of hormone-sensitive lipase mediate the action of ANP. ANP does not modulate cAMP production and PKA activity. Increment of cGMP induces the phosphorylation of hormone-sensitive lipase and perilipin A via the activation of a cGMP dependent protein kinase-I (cGK-I). Plasma concentrations of glycerol and non-esterified fatty acids are increased by i.v. infusion of ANP in humans. Physiological relevance of the ANP-dependent pathway was demonstrated in young subjects performing physical exercise. ANP plays a role in conjunction with catecholamines in the control of exercise-induced lipid mobilization. This pathway becomes of major importance when subjects are submitted to chronic treatment with a beta-blocker. Oral beta-adrenoceptor blockade suppresses the beta-adrenergic component of catecholamine action in fat cells and potentiates exercise-induced ANP release by the heart. These findings may have several implications whenever natriuretic peptide secretion is altered such as in subjects with left ventricular dysfunction, congestive heart failure and obesity.  相似文献   

9.
The natriuretic peptide receptor-A (NPR-A) is composed of an extracellular ligand-binding domain, a transmembrane-spanning domain, a kinase homology domain (KHD) and a guanylyl cyclase domain. Because the presence of ATP or adenylylimidodiphosphate reduces atrial natriuretic peptide (ANP) binding and is required for maximal guanylyl cyclase activity, a direct interaction of ATP with the receptor KHD domain is plausible. Therefore, we investigated whether ATP interacts directly with a binding site on the receptor by analyzing the binding of a photoaffinity analog of ATP to membranes from human embryonic kidney 293 cells expressing the NPR-A receptor lacking the guanylyl cyclase moiety (DeltaGC). We demonstrate that this receptor (NPR-A-DeltaGC) can be directly labeled by 8-azido-3'-biotinyl-ATP and that labeling is highly increased following ANP treatment. The mutant receptor DeltaKC, which does not contain the KHD, is not labeled. Photoaffinity labeling of the NPR-A-DeltaGC is reduced by 50% in the presence of 550 microm ATP, and competition curve fitting studies indicate a Hill slope of 2.2, suggestive of cooperative binding. This approach demonstrates directly that the interaction of ANP with its receptor modulates the binding of ATP to the KHD, probably through a conformational change in the KHD. In turn, this conformational change is essential for maximal activity. In addition, the ATP analog, 8-azido-adenylylimidodiphosphate, inhibits guanylyl cyclase activity but increases ANP binding to the extracellular domain. These results suggest that the KHD regulates ANP binding and guanylyl cyclase activity independently.  相似文献   

10.
Natriuretic peptides belong to a family of small proteins that play a major role in modulation of natriuresis, diuresis and vasodilatation. They counteract the activity of renin-angiotensin-aldosterone system. They are also involved in the regulation of homeostasis, fat metabolism and long bone growth. Natriuretic peptides family in mammals consists of three main members: atrial natriuretic peptide (ANP) - secreted by the atrial myocardium; brain natriuretic peptide (BNP)--secreted mainly by the ventricular myocardium, and C-type natriuretic peptide (CNP)--produced and released by endothelial cells. Secretion of these peptides is stimulated by atrial and ventricular distension, increased blood pressure, hypoxia or renal dysfunction. Natriuretic peptides play their roles via interactions with NPR-A and NPR-B receptors which are transmembrane guanylyl cyclases. Their local concentrations, regulated by internalization and degradation, are mediated by the NPR-C receptor and by neutral endopeptidase. The paper presents the current knowledge of structure and biological function of natriuretic peptides.  相似文献   

11.
Atrial natriuretic peptide (ANP) is the first described member of the natriuretic peptide hormone family. ANP elicits natriuretic, diuretic, vasorelaxant and antiproliferative effects, important factors in the control of blood pressure homeostasis. One of the principal loci involved in the regulatory action of ANP is the guanylyl cyclase-linked ANP-receptor which has been designated as NPRA, also referred to as GC-A, whose ANP-binding efficiency and guanylyl cyclase activity vary remarkably in different target tissues. However, the cellular and molecular basis of these activities and the functional expression and regulation of NPRA are not well understood. The mature form of receptor resides in the plasma membrane and consists of an extracellular ligand-binding domain, a single transmembrane-spanning region, and intracellular protein kinase-like homology and guanylyl cyclase catalytic domains. In this review, emphasis has been placed on the interaction of ANP with NPRA, the ligand-mediated endocytosis, trafficking, and subcellular distribution of ligand-receptor complexes from cell surface to the intracellular compartments. Furthermore, it is implicated that after internalization, the ANP/NPRA complexes dissociate into the subcellular compartments and a population of receptor recycles back to the plasma membrane. This is an interesting area of research in the natriuretic peptide receptor field because there is currently debate over whether ANP/NPRA complexes internalize at all or whether cell utilizes some other mechanisms to release ANP from the bound receptor molecules. Indeed, controversy exist since it has been previously reported by default that among the three natriuretic peptide receptors only NPRC internalizes with bound ligand. Hence, from a thematic standpoint it is clearly evident that there is a current need to review this subject and provide a consensus forum that establishes the cellular trafficking, sequestration and processing of ANP/NPRA complexes in intact cells. Towards this aim the cellular life-cycle of NPRA will be described in the context of ANP-binding, internalization, metabolic processing, and/or inactivation, down-regulation, and degradation of ligand-receptor complexes in model cell systems.  相似文献   

12.
Kim SM  Kim SY  Kim SH  Cho KW  Kim SZ 《Peptides》2012,33(1):59-66
Dendroaspis natriuretic peptide (DNP) is one of four members of the natriuretic peptide family sharing functional and structural properties. The purpose of the present study was to elucidate the physiological role of DNP on renal functions and its cellular mechanism in the rabbit kidney. DNP (5 μg/kg/min) infused intravenously increased urine volume and urinary excretion of electrolytes. These renal actions induced by DNP were more pronounced than those caused by atrial natriuretic peptide (ANP). We compared profiles of (125)I-ANP and (125)I-DNP by reverse-phase HPLC during incubation in rabbit plasma at 37°C for 1, 2, and 4h. While (125)I-ANP was quickly degraded within 1h, (125)I-DNP was still stable in plasma for 4h. DNP induced the greatest cyclic guanosine monophosphate (cGMP) production in the glomeruli in a dose-dependent manner, when compared to other renal structures including cortical tubules, outer medullary tubules, and inner medullary tubules. Affinity cross-linking analysis revealed NPR-A is selective receptor for DNP in glomeruli. Forskolin, a stimulator of adenylyl cyclase, significantly decreased cGMP production in the renal glomeruli but not in the renal medulla. In summary, DNP is a more effective activator of renal functions than ANP, possibly because of the degradation resistance of DNP against the endogenous peptidases in plasma or tissues. These findings suggest that DNP plays a pivotal role as a renal regulating peptide via specific natriuretic peptide receptors with a guanylyl cyclase domain.  相似文献   

13.
G J Trachte 《Life sciences》2001,69(24):2833-2844
Natriuretic peptides are produced in cardiovascular, renal and neural tissues and are believed to reduce arterial blood pressure by augmenting sodium and water loss in the urine. Another potential antihypertensive action of these peptides involves a suppression of adrenergic neurotransmission. Atrial, brain and C-type natriuretic peptides suppress sympathetic neurotransmission but no data are available on neuromodulatory actions of urodilatin. This study investigates the hypothesis that urodilatin and brain natriuretic peptide inhibit sympathetic neurotransmission by elevating guanylyl cyclase activity. Both brain natriuretic peptide and urodilatin suppressed force generation in response to electrical stimulation of the vas deferens. Brain natriuretic peptide accelerated the production of cyclic guanosine monophosphate equipotently with its effects on neurotransmission. However, urodilatin failed to increase guanylyl cyclase activity, thus dissociating its effects on neurotransmission from guanylyl cyclase stimulation. None of the natriuretic peptides altered contractile effects of either adenosine triphosphate or norepinephrine, the two putative neurotransmitters secreted from adrenergic nerves in the vas deferens. These data are consistent with the following conclusions: 1) all of the known endogenous natriuretic peptides suppress adrenergic neurotransmission; 2) guanylyl cyclase activation is not required for the inhibition of sympathetic neurotransmission by natriuretic peptides; and 3) inhibitory effects of the natriuretic peptides on neurotransmission result from a suppression of neurotransmitter exocytosis. The novel findings of this study include both the suppression of sympathetic neurotransmission by urodilatin and its biological activity in the absence of guanylyl cyclase activation.  相似文献   

14.
《Life sciences》1993,52(17):PL153-PL157
HS-142-1, a novel non-peptide antagonist for natriuretic peptide, exerts antagonistic actions almost equally on two similar guanylate cyclase-linked natriuretic peptide receptors (GC-A and GC-B), but has little or no effect on the binding of natriuretic peptides to a membrane protein, the so-called “clearance receptor”, which binds all natriuretic peptides. The third mammalian form of membrane bound guanylate cyclases (GC-C) was identified not as a natriuretic peptide receptor, but as a receptor for heat-stable enterotoxins (STa). In this study, we examined effects of HS-142-1 on GC-C (STaR) in T84 cells and showed that HS-142-1 exerts neither agonistic nor antagonistic activity for GC-C, indicating that HS-142-1 is not a common antagonist for a family of membrane bound guanylate cyclase receptors, but a specific antagonist for the guanylate cyclase-linked natriuretic peptide receptors.  相似文献   

15.
Heat-stable enterotoxin (STa) produced by Escherichia coli induces intestinal secretion in mammals by binding to the brush border membrane of the small intestine and activating guanylyl cyclase. We report here the cloning and expression of a cDNA encoding the human receptor for STa. The receptor contains both an extracellular ligand binding site and a cytoplasmic guanylyl cyclase catalytic domain, making it a member of the same receptor family as the natriuretic peptide receptors. Stable mammalian cell lines over-expressing the STa receptor specifically bind 125I-STa (Kd approximately 1.0 nM) and respond to STa by dramatically increasing (approximately 50-fold) cellular cGMP levels. Sequence comparisons between the human and the rat STa receptors show less conservation in the extracellular domain than similar comparisons of natriuretic peptide receptors. This divergence may indicate important species differences in ligand-receptor interaction.  相似文献   

16.
17.
The natriuretic peptide system is a complex family of peptides and receptors that is primarily linked to the maintenance of osmotic and cardiovascular homeostasis. A natriuretic peptide system is present in each vertebrate class but there are varying degrees of complexity in the system. In agnathans and chondrichthyians, only one natriuretic peptide has been identified, while new data has revealed that multiple types of natriuretic peptides are present in bony fish. However, it seems in tetrapods that there has been a reduction in the number of natriuretic peptide genes, such that only three natriuretic peptides are present in mammals. The peptides act via a family of guanylyl cyclase receptors to generate the second messenger cGMP, which mediates a range of physiological effects at key targets such as the gills, kidney and the cardiovascular system. This review summarises the current knowledge of the natriuretic peptide system in non-mammalian vertebrates and discusses the physiological actions of the peptides.Abbreviations ANP atrial natriuretic peptide - AVT arginine vasotocin - BNP brain natriuretic peptide - cDNA complementary deoxyribonucleic acid - CNP C-type natriuretic peptide - cAMP adenosine 3, 5 cyclic monophosphate - cGMP guanosine 3, 5 cyclic monophosphate - GC guanylyl cyclase - GFR glomerular filtration rate - mRNA messenger ribonucleic acid - NPR natriuretic peptide receptor - NPs natriuretic peptides - sCP salmon cardiac peptide - VIP vasoactive intestinal peptide - VNP ventricular natriuretic peptide Communicated by I.D. Hume  相似文献   

18.
C-type natriuretic peptide and guanylyl cyclase B receptor   总被引:8,自引:0,他引:8  
Schulz S 《Peptides》2005,26(6):1024-1034
Guanylyl cyclases (GC) are widely distributed enzymes that signal via the production of the second messenger cGMP. The particulate guanylyl cyclases share a similar topology: an extracellular ligand binding domain and intracellular regulatory kinase-homology and cyclase catalytic domains. The natriuretic peptide receptors GC-A and -B mediate the effects of a family of peptides, atrial, B- and C-type natriuretic peptide (ANP, BNP and CNP, respectively), with natriuretic, diuretic and vasorelaxant properties. ANP and BNP, through the activation of GC-A, act as endocrine hormones to regulate blood pressure and volume, and inhibit cardiac hypertrophy. CNP, on the other hand, acts in an autocrine/paracrine fashion to induce vasorelaxation and vascular remodeling, and to regulate bone growth through its cognate receptor GC-B. GC-B, like GC-A, is phosphorylated in the basal state, and undergoes both homologous and heterologous desensitization, reflected by dephosphorylation of specific sites in the kinase-homology domain. This review will examine the structure and function of GC-B, and summarize the physiological processes in which this receptor is thought to participate.  相似文献   

19.
The natriuretic peptide receptors (NPRs) are a family of three cell surface glycoproteins, each with a single transmembrane domain. Two of these receptors, designated NPR-A and NPR-B, are membrane guanylyl cyclases that synthesize cGMP in response to hormone stimulation. The third receptor, NPR-C, has been reported to function in the metabolic clearance of ligand and in guanylyl cyclase-independent signal transduction. We engineered three chimeric proteins consisting of the natriuretic peptide receptor extracellular domains fused to the Fc portion of human IgG-gamma 1. These molecules provide material for detailed studies of the human receptor's extracellular domain structure and interaction with the three human natriuretic peptides, atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and type-C natriuretic peptide (CNP). The homodimeric fusion proteins, designated A-IgG, B-IgG, and C-IgG, were secreted from Chinese hamster ovary cells and purified by protein-A affinity chromatography. We present here the primary characterization of these fusion proteins as represented by the intrinsic hormone affinities measured by saturation binding and competition assays. The dissociation constant of 125I-ANP for A-IgG was 1.6 pM and for C-IgG, 1.2 pM. The dissociation constant of 125I-Y0-CNP (CNP with addition of tyrosine at the amino terminus) for B-IgG was 23 pM. The rank order of potency in competitive binding for A-IgG was ANP greater than BNP much greater than CNP, whereas for B-IgG the ranking was CNP much greater than ANP greater than BNP. For C-IgG, we observed ANP greater than CNP greater than or equal to BNP. These data demonstrate that the receptor-IgG fusion proteins discriminate among the natriuretic peptides in the same manner as the native receptors and provide a basis for future structural studies with these molecules. The purified fusion proteins have a variety of potential applications, one of which we illustrate by a solid phase screening assay in which rabbit sera from a series of synthetic-peptide immunizations were titered for receptor reactivity and selectivity.  相似文献   

20.
The binding of atrial natriuretic peptide and C-type natriuretic peptide (CNP) to the guanylyl cyclase-linked natriuretic peptide receptors A and B (NPR-A and -B), respectively, stimulates increases in intracellular cGMP concentrations. The vasoactive peptides vasopressin, angiotensin II, and endothelin inhibit natriuretic peptide-dependent cGMP elevations by activating protein kinase C (PKC). Recently, we identified six in vivo phosphorylation sites for NPR-A and five sites for NPR-B and demonstrated that the phosphorylation of these sites is required for ligand-dependent receptor activation. Here, we show that phorbol 12-myristate 13-acetate, a direct activator of PKC, causes the dephosphorylation and desensitization of NPR-B. In contrast to the CNP-dependent desensitization process, which results in coordinate dephosphorylation of all five sites in the receptor, phorbol 12-myristate 13-acetate treatment causes the dephosphorylation of only one site, which we have identified as Ser(523). The conversion of this residue to alanine or glutamate did not reduce the amount of mature receptor protein as indicated by detergent-dependent guanylyl cyclase activities or Western blot analysis but completely blocked the ability of PKC to induce the dephosphorylation and desensitization of NPR-B. Thus, in contrast to previous reports suggesting that PKC directly phosphorylates and inhibits guanylyl cyclase-linked natriuretic peptide receptors, we show that PKC-dependent dephosphorylation of NPR-B at Ser(523) provides a possible molecular explanation for how pressor hormones inhibit CNP signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号