首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
The function of the NCgl1221-encoded protein of Corynebacterium glutamicum was analyzed using Bacillus subtilis as host because a method for preparing the giant provacuole required for electrophysiological studies has been established. Expression of NCgl1221 in a strain deficient in mscL and ykuT, both of which encode mechanosensitive channels, resulted in an 8.9-fold higher cell survival rate upon osmotic downshock than the control. Electrophysiological investigation showed that the giant provacuole prepared from this strain, expressing NCgl1221, exhibited significantly higher pressure-dependent conductance than the control. These findings show that the NCgl1221-encoded protein functions as a mechanosensitive channel.  相似文献   

3.
When Corynebacterium glutamicum is grown with a sufficient nitrogen supply, urea crosses the cytoplasmic membrane by passive diffusion. A permeability coefficient for urea diffusion of 9 × 10–7 cm s–1 was determined. Under conditions of nitrogen starvation, an energy-dependent urea uptake system was synthesized. Carrier-mediated urea transport was catalyzed by a secondary transport system linked with proton motive force. With a K m for urea of 9 μM, the affinity of this uptake system was much higher than the affinity of urease towards its substrate (K m approximately 55 mM urea). The maximum uptake velocity depended on the expression level and was relatively low [2–3.5 nmol min–1 (mg dry wt.)–1]. Received: 11 August 1997 / Accepted: 2 December 1997  相似文献   

4.
C Cordes  B M?ckel  L Eggeling  H Sahm 《Gene》1992,112(1):113-116
Corynebacterium glutamicum is an industrially important bacterium for the manufacture of amino acids. We constructed genomic libraries of this Gram+ bacterium and screened for clones carrying isoleucine biosynthesis genes (ilv) by complementation of Escherichia coli mutants. Clones complementing ilvA, ilvB, and ilvC were isolated. As based on the functional analysis of the corresponding plasmids in C. glutamicum, the DNA fragments isolated encode threonine dehydratase, acetohydroxy acid synthase, and isomeroreductase, catalyzing three subsequent reactions in Ile synthesis. Subcloning and transposon mutagenesis revealed that ilvB and ilvC reside on a 7-kb chromosomal fragment and that these genes are transcribed in the same direction. A shuttle vector was constructed to allow exonuclease treatment and assay subsets of plasmids for gene expression in the original C. glutamicum background. These constructs and their enzyme activity determinations revealed that despite close linkage ilvC is expressed independently from ilvB. Using Southern blots, a 15-kb fragment of chromosomal DNA carrying the ilvBC cluster was characterized. This fragment does not contain ilvA, demonstrating the entirely different organization of the isoleucine biosynthesis genes in C. glutamicum from that in enterobacteria.  相似文献   

5.
In order to characterize the cell-division mechanism of coryneform bacteria, we tried to isolate cell-division mutants from Corynebacterium glutamicum after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis, such as Escherichia coli fts mutants, which form long filaments at the restrictive temperatures. At the non-permissive temperature, most of the mutants formed club-shaped or dumbbell-shaped, elongated rod cells, but no filament formers were isolated. Then we examined the effects of cell division inhibitors on this organism. Cephalexin and sparfloxacin, which are the inhibitors of septation and DNA synthesis respectively, and are known to cause cell filamentation in E. coli, did not cause filamentation in C. glutamicum but induced morphological changes that were similar to those observed with the temperature-sensitive ts mutants of C.␣glutamicum. These results suggest that C. glutamicum has a unique regulation mechanism, that is, the inhibition of cell division leads to cessation of cell elongation. Received: 5 February 1998 / Received revision: 6 April 1998 / Accepted: 27 April 1998  相似文献   

6.
Here, we report the engineering of the industrially relevant Corynebacterium glutamicum for putrescine production. C. glutamicum grew well in the presence of up to 500 mM of putrescine. A reduction of the growth rate by 34% and of biomass formation by 39% was observed at 750 mM of putrescine. C. glutamicum was enabled to produce putrescine by heterologous expression of genes encoding enzymes of the arginine- and ornithine decarboxylase pathways from Escherichia coli. The results showed that the putrescine yield by recombinant C. glutamicum strains provided with the arginine-decarboxylase pathway was 40 times lower than the yield by strains provided with the ornithine decarboxylase pathway. The highest production efficiency was reached by overexpression of speC, encoding the ornithine decarboxylase from E. coli, in combination with chromosomal deletion of genes encoding the arginine repressor ArgR and the ornithine carbamoyltransferase ArgF. In shake-flask batch cultures this strain produced putrescine up to 6 g/L with a space time yield of 0.1 g/L/h. The overall product yield was about 24 mol% (0.12 g/g of glucose).  相似文献   

7.
Abstract Efficient electroporation of Escherichia coli with plasmid DNA isolated from Corynebacterium glutamicum depends on the use of Mcr-deficient E. coli strains. The transformation frequency increased nearly 800-fold when the Mcr-deficient E. coli DH5αMCR was used instead of E. coli DH5α. We used E. coli strains with different mutations in the methyl-specific restriction systems to show that McrBC-deficiency is sufficient to generate this effect. The results imply that C. glutamicum DNA contains methylcytosine in specific sequences recognized by the E. coli McrBC system.  相似文献   

8.
Corynebacterium glutamicum, a Gram-positive soil bacterium belonging to the mycolic acids-containing actinomycetes, is able to use the lignin degradation products ferulate, vanillate, and protocatechuate as sole carbon sources. The gene cluster responsible for vanillate catabolism was identified and characterized. The vanAB genes encoding vanillate demethylase are organized in an operon together with the vanK gene, coding for a transport system most likely responsible for protocatechuate uptake. While gene disruption mutagenesis revealed that vanillate demethylase is indispensable for ferulate and vanillate utilization, a vanK mutation does not lead to a complete growth arrest but to a decreased growth rate on protocatechuate, indicating that one or more additional protocatechuate transporter(s) are present in C. glutamicum.  相似文献   

9.
Corynebacterium glutamicum grows on a variety of carbohydrates and organic acids as single or combined sources of carbon and energy. Here we show the ability of C. glutamicum to grow on ethanol with growth rates up to 0.24 h(-1) and biomass yields up to 0.47 g dry weight (g ethanol)(-1). Mutants of C. glutamicum deficient in phosphotransacetylase (PTA), isocitrate lyase (ICL) and malate synthase (MS) were unable to grow on ethanol, indicating that acetate activation and the glyoxylate cycle are essential for utilization of this substrate. In accordance, the expression profile of ethanol-grown C. glutamicum cells compared to that of glucose-grown cells revealed an increased expression of genes encoding acetate kinase (AK), PTA, ICL and MS. Furthermore, the specific activities of these four enzymes as well as those of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) were found to be high in ethanol-grown and low in glucose-grown cells. Growth of C. glutamicum on a mixture of glucose and ethanol led to a biphasic growth behavior, which was due to the sequential utilization of glucose before ethanol. Accordingly, the specific activities of ADH, ALDH, AK, PTA, ICL and MS in cells grown in medium containing both substrates were as low as in glucose-grown cells in the first growth phase, but increased 5- to 100-fold during the second growth phase. The results indicate that ethanol catabolism in C. glutamicum is subject to carbon source-dependent regulation, i.e., to a carbon catabolite control.  相似文献   

10.
Corynebacterium glutamicum, a Gram-positive bacterium, has been widely used for the industrial production of amino acids, such as glutamate and lysine, for decades. Due to several characteristics – its ability to secrete properly folded and functional target proteins into culture broth, its low levels of endogenous extracellular proteins and its lack of detectable extracellular hydrolytic enzyme activity – C. glutamicum is also a very favorable host cell for the secretory production of heterologous proteins, important enzymes, and pharmaceutical proteins. The target proteins are secreted into the culture medium, which has attractive advantages over the manufacturing process for inclusion of body expression – the simplified downstream purification process. The secretory process of proteins is complicated and energy consuming. There are two major secretory pathways in C. glutamicum, the Sec pathway and the Tat pathway, both have specific signal peptides that mediate the secretion of the target proteins. In the present review, we critically discuss recent progress in the secretory production of heterologous proteins and examine in depth the mechanisms of the protein translocation process in C. glutamicum. Some successful case studies of actual applications of this secretory expression host are also evaluated. Finally, the existing issues and solutions in using C. glutamicum as a host of secretory proteins are specifically addressed.  相似文献   

11.
With the purpose of generating a microbial strain for l-ornithine production in Corynebacterium glutamicum, genes involved in the central carbon metabolism were inactivated so as to modulate the intracellular level of NADPH, and to evaluate their effects on l-ornithine production in C. glutamicum. Upon inactivation of the 6-phosphoglucoisomerase gene (pgi) in a C. glutamicum strain, the concomitant increase in intracellular NADPH concentrations from 2.55 to 5.75?mmol?g?1 (dry cell weight) was accompanied by reduced growth rate and l-ornithine production, suggesting that l-ornithine production is not solely limited by NADPH availability. In contrast, inactivation of the gluconate kinase gene (gntK) led to a 51.8?% increase in intracellular NADPH concentration, which resulted in a 49.9?% increase in l-ornithine production. These results indicate that excess NADPH is not necessarily rate-limiting, but is required for increased l-ornithine production in C. glutamicum.  相似文献   

12.
13.
By complementation analysis of an isoleucine-uptake-deficient Escherichia coli strain, it was shown that a 1.6-kb HindIII-StuI fragment of Corynebacterium glutamicum ATCC 13032, located downstream of the aecD gene, encodes an isoleucine uptake system. Sequence analysis revealed that the complementing fragment carried an open reading frame, termed brnQ, that encodes a protein with sequence similarities to branched-chain amino acid carriers of gram-positive and gram-negative bacteria. The brnQ gene specifies a predominantly hydrophobic protein of 426 amino acid residues with a calculated molecular mass of 44.9 kDa. A topology prediction by neural network computer analysis suggests the existence of 12 hydrophobic segments that most probably form transmembrane α-helices. A C. glutamicum mutant strain harboring a defined deletion of brnQ in the chromosome showed a considerably lower isoleucine uptake rate of 0.04 nmol min–1 mg (dry mass)–1 as compared to the wild-type strain rate of 1.2 nmol min–1 mg (dry mass)–1. Overexpression of brnQ by means of a tac promotor resulted in an elevated uptake rate for isoleucine of 11.3 nmol min–1 mg (dry mass)–1. Evidently, the brnQ gene encodes the only transport system in C. glutamicum directing isoleucine uptake. Received: 16 October 1997 / Accepted: 27 November 1997  相似文献   

14.
Lysine secretion in wild-type Corynebacterium glutamicum was investigated by means of dipeptide feeding during short-term fermentation. It could be shown that important properties of lysine excretion, e. g. dependence on membrane potential and the internal Michaelis constant (K m), are not different for the producing strain DG 52-5 and the wild type. The main difference seems to refer to regulatory properties of the lysine excretion carrier activity. The transport of lysine in the wild type is regulated by the presence and kind of carbon sources. These differences in transport activity are not due to changes in the driving force. A possible distinction between phosphotransferase system (PTS) and non-PTS carbon sources with respect to the observed regulatory phenomena is discussed.  相似文献   

15.
Superoxide dismutase (SOD) of Corynebacterium glutamicum was purified and characterized. The enzyme had a native molecular weight of about 80kDa, whereas a monomer with molecular weight of 24kDa was found on SDS-PAGE suggesting it to be homotetramer. The native SOD activity stained gel revealed a unique cytosolic enzyme. Supplementing growth media with manganese increased the specific activity significantly, while adding iron did not result in significant difference. No growth perturbation was observed with the supplemented media. In vitro metal removal and replacement studies revealed conservation of about 85% of the specific activity by substitution with manganese, while substitution with copper, iron, nickel or zinc did not restore any significant specific activity. Manganese was identified by atomic absorption spectrometer, while no signals corresponding to fixing other metallic elements were detected. Thus, C. glutamicum SOD could be considered a strict (non-cambialistic) manganese superoxide dismutase (MnSOD).  相似文献   

16.
In a manner similar to ubiquitin, the prokaryotic ubiquitin‐like protein (Pup) has been shown to target proteins for degradation via the proteasome in mycobacteria. However, not all actinobacteria possessing the Pup protein also contain a proteasome. In this study, we set out to study pupylation in the proteasome‐lacking non‐pathogenic model organism Corynebacterium glutamicum. A defined pup deletion mutant of C. glutamicum ATCC 13032 grew aerobically as the parent strain in standard glucose minimal medium, indicating that pupylation is dispensable under these conditions. After expression of a Pup derivative carrying an aminoterminal polyhistidine tag in the Δpup mutant and Ni2+‐chelate affinity chromatography, pupylated proteins were isolated. Multidimensional protein identification technology (MudPIT) and MALDI‐TOF‐MS/MS of the elution fraction unraveled 55 proteins being pupylated in C. glutamicum and 66 pupylation sites. Similar to mycobacteria, the majority of pupylated proteins are involved in metabolism or translation. Our results define the first pupylome of an actinobacterial species lacking a proteasome, confirming that other fates besides proteasomal degradation are possible for pupylated proteins.  相似文献   

17.
The serA gene of Corynebacterium glutamicum coding for 3-phosphoglycerate dehydrogenase (PGDH) was isolated and functionally characterized. It encodes a polypeptide of 530 aminoacyl residues (aa), which is substantially longer than the corresponding Escherichia coli polypeptide of 410 aa. The difference is largely due to an additional stretch of aa in the carboxy- (C)-terminal part of the polypeptide. Overexpression of serA in C. glutamicum results in a 16-fold increase in specific PGDH activity to 2.1 U/mg protein, with activity being inhibited by high concentrations of L-serine. A set of muteins that were progressively truncated at the C-terminal end was constructed. When overexpressed, mutein SerADelta197 showed a specific PGDH dehydrogenase activity of 1.3 U/mg protein, with the activity no longer being sensitive to L-serine. Gel filtration experiments showed that wild type PGDH is a homotetramer, whereas mutein SerADelta197 constitutes a dimer. Thus, the specific regulatory features of C. glutamicum PGDH are due to the C-terminal part of the polypeptide, which can be deleted with almost no effect on the catalytic activity of the enzyme.  相似文献   

18.
Polyauxotrophic mutants of Corynebacterium glutamicum which have additional requirements to L-phenylalanine were derived from L-tyrosine producing strains of phenylalanine auxotrophs, C. glutamicum KY 9189 and C. glutamicum KY 10233, and screened for L-tyrosine production. The increase of L-tyrosine production was noted in many auxotrophic mutants derived from both strains. Especially some double auxotrophs which require phenylalanine and purine, phenylalanine and histidine, or phenylalanine and cysteine produced significantly higher amounts of L-tyrosine compared to the parents, A phenylalanine and purine double auxotrophic strain LM–96 produced L-tyrosine at a concentration of 15.1 mg per ml in the medium containing 20% sucrose. L-Tyrosine production by the strain decreased at high concentrations of L-phenylalanine.  相似文献   

19.
Metabolic analysis of glutamate production by Corynebacterium glutamicum   总被引:1,自引:0,他引:1  
The dynamic behavior of the metabolism of Corynebacterium glutamicum during L-glutamic acid fermentation, was evaluated by quantitative analysis of the evolution of intracellular metabolites and key enzyme concentrations. Glutamate production was induced by an increase of the temperature and a final concentration of 80 g/l was attained. During the production phase, various other compounds, notably lactate, trehalose, and DHA were secreted to the medium. Intracellular metabolites analysis showed important variations of glycolytic intermediates and NADH, NAD coenzymes levels throughout the production phase. Two phenomena occur during the production phase which potentially provoke a decrease in the glutamate yield: Both the intracellular concentrations of glycolytic intermediates and the NADH/NAD ratio increase significantly during the period in which the overall metabolic rates decline. This correlates with the decrease in glutamate yield due in part to the production of lactate and also to the period of the fermentation in which growth no longer occurred.  相似文献   

20.
G.M. MALIN AND G.I. BOURD. 1991. The transport system for glucose and its non-metabolizable analogue methyl-α-D-glucoside (MG) has been described in Corynebacterium glutamicum. The initial product of the transport reaction was shown to be a phosphate ester of MG (MGP). Free MG appeared inside the cells as a result of MGP dephosphorylation. The bacteria transported MG with an apparent Km of 0.08 ± 0.017 mmol/l and Vmax of 21 ± 2.3 nmol/(min × mg dry wt). Toluenized cells and crude cell extracts catalysed phosphoenolpyruvate (PEP)-dependent phosphorylation of MG and glucose. Both the membrane and the cytoplasmic fractions of bacterial extracts were required for phosphotransferase reaction. Most of the spontaneous mutants resistant to 2-deoxyglucose (DG), xylitol and 5-thioglucose were defective both in transport and in PEP-dependent phosphorylation of MG. Some strains were defective only in glucose utilization and some were also unable to grow on a number of other sugars. The phosphotransferase activity in extracts from mutant cells was restored by the addition of either membrane or cytoplasmic fraction from wild type bacteria. It was concluded that Corynebacterium glutamicum accumulated glucose and MG by means of a PEP-dependent phosphotransferase system (PTS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号