首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Control of Pyrimidine Biosynthesis in Pseudomonas aeruginosa   总被引:29,自引:17,他引:12       下载免费PDF全文
The pathway of pyrimidine biosynthesis in Pseudomonas aeruginosa has been shown to be the same as in other bacteria. Twenty-seven mutants requiring uracil for growth were isolated and the mutant lesions were identified. Mutants lacking either dihydroorotic acid dehydrogenase, orotidine monophosphate pyrophosphorylase, orotidine monophosphate decarboxylase, or aspartic transcarbamylase were isolated; none lacking dihydroorotase were found. By using transduction and conjugation, four genes affecting pyrimidine biosynthetic enzymes have been identified and shown to be unlinked to each other. The linkage of pyrB to met-28 and ilv-2 was shown by contransduction. Repression by uracil alone or by broth could not be demonstrated for any enzymes of this pathway, in contrast to the situation in Escherichia coli and Serratia marcescens. In addition, derepression of these enzymes could not be demonstrated. A low level of feedback inhibition of aspartic transcarbamylase was found to occur. It is suggested that the control of such constitutive biosynthetic enzymes in P. aeruginosa may be related to the comprehensive metabolic activities of this organism.  相似文献   

2.
The inhibition of two-dimensional growth in the gametophytesof Asplenium nidus induced by purine and pyrimidine analoguesand the reversal of inhibition by natural purine and pyrimidinebases and their derivatives have been studied. Adenine and guanineand their ribosides and ribotides were more effective than cytosine,uracil, thymine, and their derivatives in preventing the inhibitiondue to 8-azaadenine and 8-azaguanine. Likewise, the inhibitoryeffects of 2-thiocytosine, 2-thiouracil,6-azauracil, and 5-fluorouracilwere overcome by the pyrimidines and their derivatives, butnot usually by the purines.Combinations of two purine analoguesor two pyrimidine analogues or one purine analogue and one pyrimidineanalogue inhibited growth more effectively than single compounds.The combined inhibitions were maximally reversed when both naturalbases or their derivatives were added to the medium. It is concludedthat there is a requirement for both purines and pyrimidinesof ribonucleic acid in the induction of two-dimensional growthin the gametophytes of Asplenium nidus.  相似文献   

3.
4.
The purpose of this study was to determine the mechanism by which inosine activates pyrimidine salvage in CNS. The levels of cerebral inosine, hypoxanthine, uridine, uracil, ribose 1-phosphate and inorganic phosphate were determined, to evaluate the Gibbs free energy changes (deltaG) of the reactions catalyzed by purine nucleoside phosphorylase and uridine phosphorylase, respectively. A deltaG value of 0.59 kcal/mol for the combined reaction inosine+uracil <==> uridine+hypoxanthine was obtained, suggesting that at least in anoxic brain the system may readily respond to metabolite fluctuations. If purine nucleoside phosphorolysis and uridine phosphorolysis are coupled to uridine phosphorylation, catalyzed by uridine kinase, whose activity is relatively high in brain, the three enzyme activities will constitute a pyrimidine salvage pathway in which ribose 1-phosphate plays a pivotal role. CTP, presumably the last product of the pathway, and, to a lesser extent, UTP, exert inhibition on rat brain uridine nucleotides salvage synthesis, most likely at the level of the kinase reaction. On the contrary ATP and GTP are specific phosphate donors.  相似文献   

5.
In the testis, nucleosides and nucleobases are important substrates of the salvage pathway for nucleotide biosynthesis, and one of the roles of Sertoli cells is to provide nutrients and metabolic precursors to spermatogenic cells located within the blood-testis barrier (BTB). We have already shown that concentrative and equilibrative nucleoside transporters are expressed and are functional in primary-cultured rat Sertoli cells as a BTB model, but little is known about nucleobase transport at the BTB or about the genes encoding specific nucleobase transporters in mammalian cells. In the present study, we examined the uptake of purine ([3H]guanine) and pyrimidine ([3H]uracil) nucleobases by primary-cultured rat Sertoli cells. The uptake of both nucleobases was time and concentration dependent. Kinetic analysis showed the involvement of three different transport systems in guanine uptake. In contrast, uracil uptake was mediated by a single Na+-dependent high-affinity transport system. Guanine uptake was inhibited by other purine nucleobases but not by pyrimidine nucleobases, whereas uracil uptake was inhibited only by pyrimidine nucleobases. In conclusion, it was suggested that there might be purine- or pyrimidine-selective nucleobase transporters in rat Sertoli cells.  相似文献   

6.
Pyrimidine Biosynthesis in Lactobacillus leichmannii   总被引:5,自引:1,他引:4       下载免费PDF全文
Tracer studies of pyrimidine biosynthesis in Lactobacillus leichmannii (ATCC 7830) indicated that, while aspartate is utilized in the usual manner, the guanido carbon of arginine, rather than carbon dioxide, is utilized as a pyrimidine precursor. The guanido carbon of arginine also contributes, to some extent, to the carbon dioxide pool utilized for purine biosynthesis. The enzyme of the first reaction leading from arginine to pyrimidines, arginine deiminase, was investigated in crude bacterial extracts. It was inhibited by thymidylic acid and purine ribonucleotides, and to a lesser extent by purine deoxynucleotides and deoxycytidylic acid. Under the assay conditions employed, a number of nucleotides had no effect on the enzyme activity of the aspartate transcarbamylase of L. leichmannii. Growth of the cells in media containing uracil, compared to growth in media without uracil, resulted in a four- to fivefold decrease in the concentrations of aspartate transcar-bamylase and dihydroorotase and a twofold increase in the concentration of arginine deiminase, as estimated from specific enzyme activity in crude extracts of the cells. A small increase in specific enzyme activity of ornithine transcarbamylase and carbamate kinase was also observed in extracts obtained from cells grown on uracil. No appreciable change in concentration of any of the five enzymes studied was detected when the cells were grown in media containing thymidine or guanylic acid. A hypothetical scheme which suggests a relationship between the control of purine and pyrimidine biosynthesis in this bacterium and which is consistent with the experimental results obtained is presented.  相似文献   

7.
The control of purine biosynthesis in a yeast mutant deficient for uracil, adenine, and histidine has been studied in vivo. The adenine mutation causes accumulation of aminoimidazole ribotide in the cells. The control curve relating steady-state purine nucleotide level in the cell to rate of synthesis in the de novo purine synthetic pathway has been determined. Control in the cell depends on a feedback mechanism involving end-product inhibition. The transient responses of the purine nucleotide pool to changes in adenine input have been studied. Under certain conditions the pool overshoots when shifting from one steady-state to another. Transient changes in nucleotide levels are followed by inverse changes in the rate of attempted de novo purine synthesis. A study of the transient responses of specific intracellular nucleotides suggests that inosinic acid controls the rate of attempted purine synthesis. The transient response of nucleic acid synthesis rate to changes in nucleotide levels was studied and the implications for regulation of nucleic acid synthesis discussed.  相似文献   

8.
On auxotrophy for pyrimidines of respiration-deficient chick embryo cells   总被引:7,自引:0,他引:7  
Chick embryo cells treated with chloramphenicol are inherently resistant to the growth-inhibitory effect of the drug when cultured in the presence of tryptose phosphate broth. The cells were found to be auxotrophic for pyrimidines and the presence in the broth of compounds of pyrimidine origin is demonstrated by chromatographic procedures and mass spectral analyses. They are in the form of ribonucleosides, ribonucleotides and pyrimidine-containing oligoribonucleotides. To understand the mechanism responsible for pyrimidine auxotrophy, the activity of enzymes involved in the pyrimidine biosynthetic pathway was determined. Measurement of the conversion of dihydroorotic acid to orotic acid in cell-free extracts revealed that chloramphenicol-treated chick embryo cells are deficient in dihydroorotate dehydrogenase activity. The data in vitro are supported by studies on the nutritional requirements of the respiration-deficient cells and by the incorporation in vivo of labelled dihydroorotic acid into the acid-insoluble fraction of the cells. Although the activity of the dehydrogenase in vitro is decreased by 95%, the enzyme is present in chloramphenicol-treated cells and its activity is unmasked by the artificial electron acceptor menadione. A study of the activity of other enzymes of the pyrimidine biosynthetic pathway demonstrated that their activity is comparable to that in control cells. The present results indicate that auxotrophy for pyrimidines results from the inhibition of the flow of electrons along the mitochondrial electron transport chain.  相似文献   

9.
V A Konyshev 《Genetika》1983,19(1):17-25
The correlations between genetic codes of amino acids and pathways of synthesis and catabolism of carbon backbone of amino acids are considered. Codes of amino acids which are synthesized from oxoacids of glycolysis, the Krebs cycle and glyoxalic cycle via transamination without any additional chemical reactions, are initiated with guanine (alanine, glutamic and aspartic acids, glycine). Codons of amino acids which are formed on the branches of glycolysis at the level of compounds with three carbon atoms, begin with uracil (phenylalanine, serine, leucine, tyrosine, cysteine, tryptophan). Codes of amino acids formed from aspartate begin with adenine (methionine, isoleucine, threonine, asparagine, lysine, serine), while those of the amino acids formed from the compounds with five carbon atoms (glutamic acid and phosphoribosyl pyrophosphate) begin with cytosine (arginine, proline, glutamine, histidine). The second letter of codons is linked to catabolic pathways of amino acids: most of amino acids entering glycolysis and the Krebs cycle through even-numbered carbon compounds, have adenine and uracil at the second position of codes (A-U type); most of amino acids entering the glycolysis and the Krebs cycle via odd-numbered carbon compounds, have codons with guanine and cytidine at the second position (G-C type). The usage of purine and pyrimidine as the third letter of weak codones in most of amino acids is linked to the enthropy of amino acid formation. A hypothesis claiming that the linear genetic code was assembled from the purine and pyrimidine derivatives which have acted as participants of primitive control of amino acid synthesis and catabolism, is suggested.  相似文献   

10.
2H-1,3-Oxazine-2,6(3H)-dione inhibits the growth of Escherichiacoli B, the inhibition being complete at a concentration of 10?4M. It may be relieved with uridine, cytidine and partly with uracil. Orotic acid, cytosine, purine bases and purine ribonucleosides show no effect. At a molar ratio of uridine to the inhibitor of 1:2 the inhibition is completely suppressed. 2H-1,3-Oxazine-2,6(3H)-dione is thus a novel inhibitor of the biosynthesis of pyrimidine precursors of nucleic acids.  相似文献   

11.
Leflunomide is an immunomodulatory drug which acts by inhibiting dihydroorotic acid dehydrogenase, the fourth enzyme of pyrimidine biosynthesis. We modified our high-performance liquid chromatography method to demonstrate that the principal metabolite in mitogen-stimulated human T-lymphocytes incubated with leflunomide was not dihydroorotic acid, but carbamoyl aspartate. Identification involved preparation of [14C]carbamoyl aspartate from [14C]aspartic acid and mammalian aspartate transcarbamoylase. Accumulation of carbamoyl aspartate indicates that under these conditions the equilibrium constant for dihydroorotase favours the reverse reaction. This HPLC method, enabling simultaneous separation of the first four intermediates in the de novo pyrimidine pathway may be of use in a variety of experimental situations.  相似文献   

12.
13.
A series of the novel purine and pyrimidine nucleoside analogues were synthesised in which the sugar moiety was replaced by the 4-amino-2-butenyl (2-6 and 10-18) and oxiranyl (8 and 20) spacer. The Z- (2-6) and E-isomers (10-18) of unsaturated acyclic nucleoside analogues were synthesized by condensation of 2- and 6-substituted purine and 5-substituted uracil bases with Z- (1) or E-phthalimide (9) precursors. The oxiranyl nucleoside analogues (8 and 20) were obtained by epoxidation of 1 and 9 with m-chloroperoxybenzoic acid and subsequent coupling with adenine. The new compounds were evaluated for their antiviral and antitumor cell activities. Among the olefinic nucleoside analogues, Z-isomer of adenine containing 4-amino-2-butenyl side chain (6) exhibited the best cytostatic activities, particularly against colon carcinoma (SW 620, IC50 = 26 microM). Its E-isomer 15 did not show any antiproliferative activity against malignant tumor cell lines, except for a slight inhibition of colon carcinoma (SW 620, IC50 = 56.5 microM) cells. In general, Z-isomers showed better cytostatic activities than the corresponding E-isomers. (Z)-4-Amino-2-butenyl-adenine nucleoside analogue 6 showed albeit modest but selective activity against HIV-1 (EC50 = 4.83 microg mL(-1)).  相似文献   

14.
An adenosine-sensitive mutant was isolated from Escherichia coli K12 derivative strain C600. This mutant (designated as PS100) grew slower than parental strain C600in a minimal medium, and its growth was completely inhibited by addition of all kinds of purine bases, nucleosides and nucleotides tested. On the other hand, this growth inhibitory effect of purine derivatives was reversed by co-addition of uridine to the medium. Other pyrimidine derivatives such as uracil, UMP,cytosine, cytidine, CMP and thymidine were also effective for this reversal. The mutant strain, PS100, showed a lower level (7%) of activity for orotate phosphoribosyltransferase than strain C600 did, and accumulated orotic acid in the growth medium. Lysogenization of strain PS100 with λ transducing phage containing the gene for orotate phosphoribosyltransferase (pyrE) resulted in restoration of the activity for orotate phosphoribosyltransferase and removal of growth inhibition by purine derivatives.  相似文献   

15.
16.
Putative two-dimensional coding systems can beconstructed from aqueous solutions of purine andpyrimidine nucleic acid bases evaporated at moderatetemperatures on the surfaces of inorganic solids. Theresultant structures are monolayers which are formedspontaneously by molecular self-assembly and they havebeen observed with molecular resolution by scanningtunnelling microscopy (STM). When formed fromsolutions of a single base, the monolayers of adenineand uracil have crystalline characteristics and theSTM images can be interpreted in terms of thegeometrical placement of planar arranged moleculesthat interact laterally by intermolecular hydrogenbonding. When formed from solutions containing amixture of adenine and uracil, the monolayers haveaperiodic structures. Small crystalline domainswithin these monolayers can be interpreted in terms ofthe single phase configurations of the molecules andthe remaining aperiodic structures can presumably beinterpreted, geometrically, in terms of the 21theoretically possible adenine-adenine, uracil-uraciland adenine-uracil hydrogen bonding interactions. Wepropose that combinatorial arrangements of planararranged purine and pyrimidine bases could provide thenecessary complexity to act as a primitive geneticmechanism and may have relevance to the origin of life.  相似文献   

17.
The pathogenic protozoan parasite Leishmania donovani is capable of both de novo pyrimidine biosynthesis and salvage of pyrimidines from the host milieu. Genetic analysis has authenticated L. donovani uracil phosphoribosyltransferase (LdUPRT), an enzyme not found in mammalian cells, as the focal enzyme of pyrimidine salvage because all exogenous pyrimidines that can satisfy the requirement of the parasite for pyrimidine nucleotides are funneled to uracil and then phosphoribosylated to UMP in the parasite by LdUPRT. To characterize this unique parasite enzyme, LdUPRT was expressed in Escherichia coli, and the recombinant enzyme was purified to homogeneity. Kinetic analysis revealed apparent Km values of 20 and 99 μm for the natural substrates uracil and phosphoribosylpyrophosphate, respectively, as well as apparent Km values 6 and 7 μm for the pyrimidine analogs 5-fluorouracil and 4-thiouracil, respectively. Size exclusion chromatography revealed the native LdUPRT to be tetrameric and retained partial structure and activity in high concentrations of urea. L. donovani mutants deficient in de novo pyrimidine biosynthesis, which require functional LdUPRT for growth, are hypersensitive to high concentrations of uracil, 5-fluorouracil, and 4-thiouracil in the growth medium. This hypersensitivity can be explained by the observation that LdUPRT is substrate-inhibited by uracil and 4-thiouracil, but 5-fluorouracil toxicity transpires via an alternative mechanism. This substrate inhibition of LdUPRT provides a protective mechanism for the parasite by facilitating purine and pyrimidine nucleotide pool balance and by sparing phosphoribosylpyrophosphate for consumption by the nutritionally indispensable purine salvage process.  相似文献   

18.
The pH-dependency of photo-oxidation of the physiological purine and pyrimidine bases and some of their derivatives was studied, with hematoporphyrin as sensitizer. At high pH these bases (adenine, guanine, uracil, thymine and cytosine) were photo-oxidizable. In the physiological pH range only guanine, and to a much less extent thymine, were sensitive to photo-oxidation. At physiological pH values a slow photo-oxidation of RNA and DNA took place. The photo-oxidation of nuclei acids was strongly augmented by perturbation of their structure in 8 M urea. In model experiments photodynamic cross-linking of tryptophan and cysteine to DNA was demonstrated. No covalent binding of purine or pyrimidine bases to DNA was observed. In similar model experiments covalent photodynamic coupling of guanosine and guanosine-monophosphate to proteins could be shown, whereas no coupling of the other bases occured. These studies confirm the preferential photo-oxidation of guanine in nucleic acids and demonstrate the possible photodynamic cross-linking of proteins to the guanine moiety in other molecules.  相似文献   

19.
Whole cells and isolated membranes of the marine bacterium MB22 converted nucleotides present in the external medium rapidly into nucleosides and then into bases. Nucleosides and purine bases formed were taken up by distinct transport systems. We found a high-affinity common transport system for adenine, guanine, and hypoxanthine, with a Km of 40 nM. This system was inhibited noncompetitively by purine nucleosides. In addition, two transport systems for nucleosides were present: one for guanosine with a Km of 0.8 microM and another one for inosine and adenosine with a Km of 1.4 microM. The nucleoside transport systems exhibited both mixed and noncompetitive inhibition by different nucleosides other than those translocated; purine and pyrimidine bases had no effect. The transport of nucleosides and purine bases was inhibited by dinitrophenol or azide, thus suggesting that transport is energy dependent. Inside the cell all of the substrates were converted mainly into guanosine, xanthine, and uric acid, but also anabolic products, such as nucleotides and nucleic acids, could be found.  相似文献   

20.
An automated screening system for purine and pyrimidine metabolism disorders using high-performance liquid chromatography (HPLC) with column switching is described. The system consists of a reversed-phase column, a cation-exchange column, a column switch, four sets of ultraviolet absorbance detectors, a microcomputer and other conventional equipment. As this system permits the simultaneous determination of urinary orotic acid, uracil, dihydrouracil, pseudouridine, xanthine, 2,8-dihydroxyadenine and succinyladenosine, it offers a useful method for the detection of orotic aciduria, dihydropyrimidine dehydrogenase deficiency, diphydropyrimidinuria, xanthinuria, adenine phosphoribosyltransferase deficiency and adenylosuccinase deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号