首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The acid-induced unfolding of bovine liver glutamate dehydrogenase (GDH) was studied using various spectroscopic methods such as far- and near-UV circular dichroism (CD), intrinsic and 1-anilino naphthalene-8-sulphonate (ANS) extrinsic fluorescence spectroscopy, light scattering and fluorescence quenching in 20 mM mixed buffer at various pHs. CD spectra show that at pH 3.5, GDH retains its secondary structure substantially, whereas its tertiary structure content is reduced considerably. Intrinsic fluorescence of GDH and ANS binding suggest that, at pH 3.5, the hydrophobic surface of enzyme is more exposed in comparison to the native form. Acrylamide quenching indicates more exposure of tryptophan residues of enzyme at pH 3.5 in comparison to pH 7.5. Another partially unfolded intermediate was detected at pH 5.0, which with its ANS binding capacity lies between the pH 3.5 intermediate and the native form of the enzyme. Gel filtration results revealed that the enzyme at pH 3.5 is dissociated into trimeric species whereas it exists as hexamer at pH 7.5 and 5.0. All the data taken together suggest the existence of two partially unfolded states of GDH at moderate acidic pHs which may be considered as molten and pre-molten globule-like states.  相似文献   

2.
Naeem A  Fatima S  Khan RH 《Biopolymers》2006,83(1):1-10
A systematic investigation of the effects of detergents [Sodium dodecyl sulphate (SDS), hexa decyltrimethyl ammonium bromide (CTAB) and Tween-20] on the structure of acid-unfolded papain (EC.3.4.22.2) was made using circular dichroism (CD), intrinsic tryptophan fluorescence, and 1-anilino 8-sulfonic acid (ANS) binding. At pH 2, papain exhibits a substantial amount of secondary structure and is relatively less denatured compared with 6 M GdnHCl (guanidine hydrochloride) but loses the persistent tertiary contacts of the native state. Addition of detergents caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity value at 208 and 222 nm. Near-UV CD spectra also showed the regain of native-like spectral features in the presence of 8 mM SDS and 3.5 mM CTAB. Induction of structure in acid-unfolded papain was greater in the presence SDS followed by CTAB and Tween-20. Intrinsic tryptophan fluorescence studies indicate the change in the environment of tryptophan residues upon addition of detergents to acid-unfolded papain. Addition of 8 mM SDS resulted in the loss of ANS binding sites exhibited by a decrease in ANS fluorescence intensity, suggesting the burial of hydrophobic patches. Maximum ANS binding was obtained in the presence of 0.1 mM Tween-20 followed by CTAB, indicating a compact "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acid-unfolded papain in the presence of detergents showed the partial recovery of enzymatic activity. These results suggest that papain at low pH and in the presence of SDS exists in a partially folded state characterized by native-like secondary structure and tertiary folds. While in the presence of Tween, acid-unfolded papain exists as a compact intermediate with molten-globule-like characteristics, viz. enhanced hydrophobic surface area and retention of secondary structure. While in the presence of CTAB it exists as a compact intermediate with regain of native-like secondary and partial tertiary structure as well as high ANS binding with the partially recovered enzymatic activity, i.e., a molten globule state with tertiary folds.  相似文献   

3.
P K Werner  R A Reithmeier 《Biochemistry》1985,24(23):6375-6381
Band 3 protein, the anion transport protein of the human erythrocyte membrane, was purified in the presence of the nonionic detergent octyl glucoside. A molecular characterization was carried out to investigate whether the native structure of the protein was retained in the presence of this detergent. Band 3 bound octyl glucoside below the critical micelle concentration (cmc) of the detergent, approaching saturation above the cmc. At 40 mM octyl glucoside, close to saturating concentrations, 0.64 g of octyl glucoside is bound per gram of band 3 protein, corresponding to 208 molecules of detergent bound per monomer of band 3. Sedimentation velocity and gel filtration studies, performed at 40 mM octyl glucoside, indicated that the band 3-octyl glucoside complex had an average molecular weight of 1.98 X 10(6), which corresponds to a dodecamer. Sedimentation equilibrium experiments confirmed that band 3 in octyl glucoside exists in a heterogeneous and high oligomeric state. This high oligomeric state did not change dramatically over octyl glucoside concentrations ranging from 6 to 60 mM. The circular dichroism spectrum of band 3 changed only slightly over this range of octyl glucoside concentrations. The alpha-helical and beta-sheet contents of band 3 in 2 mM octyl glucoside were calculated to be 40% and 27%, respectively, indicating that no gross alteration in the secondary structure of the protein had occurred in octyl glucoside. The ability of band 3 to bind 4-benzamido-4'-aminostilbene-2,2'-disulfonate (BADS), a potent inhibitor (Ki = 1 microM) of anion transport, was measured to assess the integrity of the inhibitor binding site of the protein in octyl glucoside.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A systematic investigation of the effects of several commonly used detergents on the conformation and function of concanavalin A at pH 7 in solution form was made by using circular dichroism (CD), intrinsic fluorescence, 1-anilino 8-sulphonic acid (ANS) binding, dynamic light scattering (DLS) and sugar inhibition assay. In the presence of 6.0 mM sodium dodecyl sulphate (SDS), an anionic detergent, and 0.8 mM cetyl tri methyl ammonium bromide (CTAB), a cationic detergent, intermediate states of concanavalin A were obtained having a negative CD peaks at 222 and 208 nm respectively, a characteristic of alpha-helix. These states also retained tertiary contacts with altered tryptophan environment and high ANS binding (exposed hydrophobic area) which can be characterized as molten globule states. Concanavalin A in the presence of 5.0 mM 3-[(3-cholamidopropyl) dimethyl-ammonio]-1-propanesulphonate (CHAPS), a zwitterionic detergent, and 0.07 mM brij-35, a non-ionic detergent, also exists in intermediate states. These intermediates (molten globules) had high ANS binding with native-like secondary (inherent beta-sheet) and tertiary structure. The intermediate states were characterized further by means of dynamic light-scattering measurements and kinetic data. To study the possible functional requirement of the minimum structure, the intermediate states characterized in the presence of detergents were shown to retain the activity with polysaccharide (dextran). The pattern of activity observed was brij-35 > CHAPS > CTAB > SDS. The specific binding and activity of concanavalin A with ovalbumin was investigated as a function of time by turbidity measurements. Cationic and anionic detergents showed significant effects on the structure of concanavalin A as compared with zwitterionic and non-ionic detergents.  相似文献   

5.
The effects of nickel ions on reductive amination and oxidative deamination activities of bovine liver glutamate dehydrogenase (GDH) were examined kinetically by UV spectroscopy, at 27 degrees C, using 50 mM Tris, pH 7.8, containing 0.1 M NaCl. Kinetic analysis of the data obtained by varying NADH concentration indicated strong inhibition, presumably due to binding of the coenzyme to the regulatory site. In contrast, almost no inhibition was observed in the forward reaction. The fact that nickel ions have the capacity to enhance binding of NADH to the enzyme was confirmed by an electrochemical method using a modified glassy carbon electrode. Use of NADPH instead of NADH showed only a weak substrate inhibition, presumably related to lower affinity of NADPH for binding to the regulatory site. Lineweaver-Burk plots with respect to alpha-ketoglutarate and ammonium ions indicated substrate and competitive inhibition patterns in the presence of nickel ions, respectively. ADP at 0.2 mM concentration protected inhibition caused by nickel. These observations are explained in terms of formation of a nickel-NADH complex with a higher affinity for binding to the regulatory site in GDH, as compared with the situation where nickel is not present. Such effects may be important for regulation of GDH and other NADH-utilizing enzymes.  相似文献   

6.
The interaction between 1-anilino-8-naphthalenesulfonate (ANS) and yeast phosphoglycerate kinase (ATP:3-phospho-D-glycerate 1-phosphotransferase, EC 2.7.2.3) and the use of ANS as a probe for studying the structure and function of phosphoglycerate kinase has been investigated. The interaction has been studied by kinetic methods, equilibrium dialysis, and fluorometric titrations. ANS inhibits the activity of the enzyme. More than one inhibitor site exists. ANS is competitive with MgATP and noncompetitive with 3-phosphoglycerate at the first detected inhibitor binding site. The Ki value is 1-2 mM. Several ANS molecules bind to the enzyme. By fluorometric titrations the first detected site has a dissociation constant that is in the same range as Ki or bigger. When ANS interacts with phosphoglycerate kinase its fluorescence is increased and a blue shift occurs. ANS appears to bind to a strongly hydrophobic site. The fluorescence is sensitive to the addition of substrates. ADP, ATP, or combinations of Mg2+ and nucleotide decreases the fluorescence as does free Mg2+. 3-Phosphoglycerate, on the other hand, increases the fluorescence giving evidence for conformational changes upon 3-phosphoglycerate binding.  相似文献   

7.
L Zeiri  E Reisler 《Biopolymers》1979,18(9):2289-2301
The CD of GDH–NADH complexes was measured in order to reexamine the binding of coenzyme to GDH. The existence of two distinct Cotton effects associated with two separate NADH binding sites/subunit was confirmed with native, polymerizing and crosslinked, unpolymerizing enzyme. CD titration of the high-affinity NADH sites revealed significant dependence of the optical activity of the bound coenzyme on the state of protein association. Molar ellipticity of bound NADH decreased with the increasing degree of polymerization of GDH. It is suggested that the high-affinity NADH sites are loacted at or near the association interface. Binding of NADH to the low-affinity sites, in the presence of GTP, leads to an inversion of the CD spectrum of GDH–NADH complexes. This inversion is not related to the polymerization of GDH. However, for proper analysis of the CD of NADH bound to the low-affinity sites, a correction for the effect of polymerization on the optical activity of NADH bound to the high-affinity sites is required.  相似文献   

8.
Glutamate dehydrogenase (GDH) activity was determined in high-speed fractions (100,000 g for 60 min) obtained from whole rat brain homogenates after removal of a low-speed pellet (480 g for 10 min). Approximately 60% of the high-speed GDH activity was particulate (associated with membrane) and the remaining was soluble (probably of mitochondrial matrix origin). Most of the particulate GDH activity resisted extraction by several commonly used detergents, high concentration of salt, and sonication; however, it was largely extractable with the cationic detergent cetyltrimethylammonium bromide (CTAB) in hypotonic buffer solution. The two GDH activities were purified using a combination of hydrophobic interaction, ion exchange, and hydroxyapatite chromatography. Throughout these purification steps the two activities showed similar behavior. Kinetic studies indicated similar Km values for the two GDH fractions for the substrates alpha-ketoglutarate, ammonia, and glutamate; however, there were small but significant differences in Km values for NADH and NADPH. Although the allosteric stimulation by ADP and L-leucine and inhibition by diethylstilbestrol was comparable, the two GDH components differed significantly in their susceptibility to GTP inhibition in the presence of 1 mM ADP, with apparent Ki values of 18.5 and 9.0 microM GTP for the soluble and particulate fractions, respectively. The Hill plot coefficient, binding constant, and cooperativity index for the GTP inhibition were also significantly different, indicating that the two GDH activities differ in their allosteric sites. In addition, enzyme activities of the two purified proteins exhibited a significant difference in thermal stability when inactivated at 45 degrees C and pH 7.4 in 50 mM phosphate buffer.  相似文献   

9.
A molten globule-like intermediate of Con-A was obtained when subjected to acid unfolding. At pH 2 the intermediate was found to have native-like secondary structure, somewhat denatured tertiary structure and maximum ANS binding. Further the stability of this intermediate was studied in presence of fluoroalcohols (TFE and HFIP) and polyethylene glycols (PEG-400, 4000 and 20,000). Secondary structural changes were monitored by far-UV CD while alterations in the tertiary structure of the acid unfolded intermediate were probed by near-UV CD. To study the environment and position of the tryptophan residues present intrinsic fluorescence studies were performed. ANS binding studies were also made to know the extent of exposure of the hydrophobic patches. Using the above-mentioned techniques it was found that in presence of fluoroalcohols the pH 2 intermediate was transformed to a state with predominant alpha-helical secondary and denatured tertiary structures. In the pathway of these transformations MG-like intermediates were formed at 10% TFE and 6% HFIP. The folding intermediate of Con-A obtained at pH 2 underwent a series of conformational changes when exposed to different molecular weight PEGs. Secondary structure was induced by low molecular weight PEG-400 and low concentrations of PEG-4000 and PEG-20,000 while at higher concentrations transition in structure was observed. Tertiary structure was stabilized only at low concentrations of PEG-400. PEG-4000 and PEG-20,000 in the whole concentration range resulted in the loss of tertiary structure.  相似文献   

10.
The structural change induced by binding of mild detergents to cytoplasmic calf brain tubulin and the effects on the functional properties of this protein have been characterized. Massive binding of octyl glucoside or deoxycholate monomers induces circular dichroism changes indicating a partial alpha-helix to disordered structure transition of tubulin. The protein also becomes more accessible to controlled proteolysis by trypsin, thermolysin, or V8 protease. This is consistent with the looser protein structure proposed in previous binding and hydrodynamic studies [Andreu, J. M., & Mu?oz, J. A. (1986) Biochemistry (preceding paper in this issue)]. Micelles of octyl glucoside and deoxycholate bind colchicine and its analogue 2-methoxy-5-(2,3,4-trimethoxyphenyl)-2,4,6-cycloheptatrien-1-one (MTC). This impedes the determination of colchicine binding in the presence of detergents. Both detergents cause a reduction in the number of tubulin equilibrium binding sites for the colchicine site probe MTC. Deoxycholate monomers bind poorly to the tubulin-colchicine complex, but deoxycholate above the critical micelle concentration effectively dissociates the complex. Microtubule assembly in glycerol-containing buffer is inhibited by octyl glucoside, which raises the critical protein concentration. Low concentrations of deoxycholate enhance tubulin polymerization, allowing it to proceed without glycerol. The polymers formed are microtubules, pairwise associated open microtubular sheets, and macrotubules possibly generated by helical folding of the sheets, as indicated by the optical diffraction patterns. Saturation of tubulin with octyl glucoside, followed by full dissociation of the detergent, allowed the recovery of binding to the colchicine site and microtubule assembly, indicating the reversibility of the protein structural change.  相似文献   

11.
Characterization of conformational transition and folding intermediates is central to the study of protein folding. We studied the effect of various alcohols (trifluoroethanol (TFE), butanol, propanol, ethanol and methanol) and salts (K(3)FeCN(6), Na(2)SO(4), KClO(4) and KCl) on the acid-induced state of alpha-chymotrypsinogen A, a predominantly beta-sheet protein, at pH 2.0 by near-UV circular dichroism (CD), far-UV CD and 1-anilinonaphthalene-8-sulfonic acid (ANS) fluorescence measurements. Addition of alcohols led to an increase in ellipticity value at 222 nm indicating the formation of alpha-helical structure. The order of effectiveness of alcohols was shown to be TFE>butanol>propanol>ethanol>methanol. ANS fluorescence data showed a decrease in fluorescence intensity on alcohol addition, suggesting burial of hydrophobic patches. The near-UV CD spectra showed disruption of tertiary structure on alcohol addition. No change in ellipticity was observed on addition of salts at pH 2.0, whereas in the presence of 2 M urea, salts were found to induce a molten globule-like state as evident from the increases in ellipticity at 222 nm and ANS fluorescence indicating exposure of hydrophobic regions of the protein. The effectiveness in inducing the molten globule-like state, i.e. both increase in ellipticity at 222 nm and increase in ANS fluorescence, followed the order K(3)FeCN(6)>Na(2)SO(4)>KClO(4)>KCl. The loss of signal in the near-UV CD spectrum on addition of alcohols indicating disordering of tertiary structure results suggested that the decrease in ANS fluorescence intensity may be attributed to the unfolding of the ANS binding sites. The results imply that the alcohol-induced state had characteristics of an unfolded structure and lies between the molten globule and the unfolded state. Characterization of such partially folded states has important implications for protein folding.  相似文献   

12.
In our earlier communications, we had studied the acid induced unfolding of stem bromelain, glucose oxidase and fetuin [Eur. J. Biochem. 269 (2002) 47; Biochem. Biophys. Res. Comm. 303 (2003) 685; Biochim. Biophys. Acta 1649 (2003) 164] and effect of salts and alcohols on the acid unfolded state of alpha-chymotrypsinogen and stem bromelain [Biochim. Biophy. Acta 1481 (2000) 229; Arch. Biochem. Biophys. 413 (2) (2003) 199]. Here, we report the presence of molten globule like equilibrium intermediate state under alkaline, native and acid conditions in the presence of SDS and butanol. A systematic investigation of sodium dodecyl sulphate and butanol induced conformational alterations in alkaline (U(1)) and acidic (U(2)) unfolded states of horse heart ferricytochrome c was examined by circular dichroism (CD), tryptophan fluorescence and 1-anilino-8-napthalene sulfonate (ANS) binding. The cytochrome c (cyt c) at pH 9 and 2 shows the loss of approximately 61% and 65% helical secondary structure. Addition of increasing concentrations of butanol (0-7.2 M) and sodium dodecyl sulphate (0-5 mM) led to an increase in ellipticity value at 208 and 222 nm, which is the characteristic of formation of alpha-helical structure. Cyt c is a heme protein in which the tryptophan fluorescence is quenched in the native state by resonance energy transfer to the heme group attached to cystines at positions 14 and 17. At alkaline and acidic pH protein shows enhancement in tryptophan fluorescence and quenched ANS fluorescence. Addition of increasing concentration of butanol and SDS to alkaline or acid unfolded state leads to decrease in tryptophan and increase in ANS fluorescence with a blue shift in lambda(max), respectively. In the presence of 7.2 M butanol and 5 mM SDS two different intermediate states I(1) and I(2) were obtained at alkaline and acidic pH, respectively. States I(1) and I(2) have native like secondary structure with disordered side chains (loss of tertiary structure) as predicted from tryptophan fluorescence and high ANS binding. These results altogether imply that the butanol and SDS induced intermediate states at alkaline and acid pH lies between the unfolded and native state. At pH 6, in the presence of 7.2 M butanol or 5 mM SDS leads to the loss of CD bands at 208 and 222 nm with the appearance of trough at 228 nm also with increase in tryptophan and ANS fluorescence in contrast to native protein. This partially unfolded intermediate state obtained represents the folding pathway from native to unfolded structure. To summarize; the 7.2 M butanol and 5 mM SDS stabilizes the intermediate state (I(1) and I(2)) obtained at low and alkaline pH. While the same destabilizes the native structure of protein at pH 6, suggesting a difference in the mechanism of conformational stability.  相似文献   

13.
The equilibrium unfolding of ElysL, a homodimeric legume lectin, was studied using different denaturing agents such as guanidinium chloride (GdnHCl), temperature and pH. Simultaneously, changes in the secondary as well as tertiary structure of lectin were followed by CD spectroscopy examination in both far and near-UV region, respectively. The hydrophobic cluster binding dye, 1-anilino-8-naphthalene sulfonate (ANS), was used to further explore intermediates and to follow the unfolding pathway of lectin. The adenine binding ability of lectin was examined and monitored via absorption spectra and the intrinsic tryptophan fluorescence. Our findings indicate that the ElysL unfolding process occurs via a three state pathway with an intermediate state. We also showed that ElysL binds adenine in a manner that involves a hydrophobic binding pocket that is independent of the carbohydrate binding sites.  相似文献   

14.
Conformational changes induced by binding of divalent cations to calregulin   总被引:3,自引:0,他引:3  
Scatchard analysis of equilibrium dialysis studies have revealed that in the presence of 3.0 mM MgCl2 and 150 mM KCl, calregulin has a single binding site for Ca2+ with an apparent dissociation constant (apparent Kd) of 0.05 microM and 14 binding sites for Zn2+ with apparent Kd(Zn2+) of 310 microM. Ca2+ binding to calregulin induces a 5% increase in the intensity of intrinsic fluorescence and a 2-3-nm blue shift in emission maximum. Zn2+ binding to calregulin causes a dose-dependent increase of about 250% in its intrinsic fluorescence intensity and a red shift in the emission maximum of about 11 nm. Half-maximal wavelength shift occurs at 0.4 mol of Zn2+/mol of calregulin, and 100% of the wavelength shift is complete at 2 mol of Zn2+/mol of calregulin. In the presence of Zn2+ and calregulin the fluorescence intensity of the hydrophobic fluorescent probe 8-anilino-1-napthalenesulfonate (ANS) was enhanced 300-400% with a shift in emission maximum from 500 to 480 nm. Half-maximal Zn2+-induced shift in ANS emission maximum occurred at 1.2 mol of Zn2+/mol of calregulin, and 100% of this shift occurred at 6 mol of Zn2+/mol of calregulin. Of 12 cations tested, only Zn2+ and Ca2+ produced changes in calregulin intrinsic fluorescence, and none of these metal ions could inhibit the Zn2+-induced red shift in intrinsic fluorescence emission maximum. Furthermore, none of these cations could inhibit or mimic the Zn2+-induced blue shift in ANS emission maximum. These results suggest that calregulin contains distinct and specific ligand-binding sites for Ca2+ and Zn2+. While Ca2+ binding results in the movement of tryptophan away from the solvent, Zn2+ causes a movement of tryptophan into the solvent and the exposure of a domain with considerable hydrophobic character.  相似文献   

15.
Interaction of tubulin with non-denaturing amphiphiles.   总被引:1,自引:0,他引:1       下载免费PDF全文
J M Andreu 《The EMBO journal》1982,1(9):1105-1110
Soluble purified calf brain tubulin contains extensive and easily accessible regions capable of hydrophobic interactions. The binding of non-ionic and mild anionic detergents to this protein has been characterized by difference absorption spectroscopy and equilibrium gel chromatography with labelled ligands. Tubulin bound reversibly and co-operatively 0.42 +/- 0.05 g deoxycholate per g protein and bound octyl glucoside at a minimal stoichiometry of 0.26 g per g protein. Binding of deoxycholate and octyl glucoside perturbed the protein absorption, quenched the fluorescence, and produced a moderate change in the far u.v. circular dichroism of tubulin. These changes have been interpreted as the result of detergent binding near aromatic amino acids and the production of a structural change different from detergent-induced denaturation. Deoxycholate and octyl glucoside inhibited colchicine binding. Octyl glucoside and Triton X-100 inhibited the in vitro self-assembly of tubulin into microtubules, whereas small concentrations of deoxycholate were found to enhance microtubule formation.  相似文献   

16.
We studied the effect of various anions (of acids and salts) on the acid denatured state of HSA by near-UV circular dichroism (CD), far-UV CD, 1-anilinonaphthalene-8-sulfonate (ANS) binding, tryptophan fluorescence and thermal transition. Addition of different acids and salts caused an induction of alpha-helical structure as evident from the increase in the mean residue ellipticity (MRE) value at 222 nm and loss of ANS binding sites exhibited by the decrease in the ANS fluorescence intensity at 480 nm. However, the concentration range of acids/salts required to bring about the transition varied greatly among different acids and salts. Among various acids/salts tested, K(3)Fe(CN)(6) was found to be most effective whereas HCl and KCl were least effective in inducing the properties close to native structure. Further, they followed the electroselectivity series. The near-UV CD spectra showed an increase in MRE towards the native state, whereas the tryptophan fluorescence emission spectra produced a red shift of about 6 nm on addition of KClO(4). The temperature-induced transition in the presence of 40 mM KClO(4) monitored by ellipticity measurements at 222 nm was characterized by the presence of an intermediate state in the temperature range 30-50 degrees C having abundant secondary structure. These results suggest that human serum albumin at low pH and in the presence of acids or salts exists in a partially folded state characterized by native-like secondary structure and tertiary folds.  相似文献   

17.
Fatima S  Ahmad B  Khan RH 《IUBMB life》2007,59(3):179-186
Studies on the acid-induced denaturation of Mucor miehei lipase (E.C. 3.1.1.3) were performed by circular dichroism (CD) spectroscopy, fluorescence emission spectroscopy and binding of hydrophobic dye, 1-anilino 8-naphthalenesulfonic acid (ANS). Acid denaturation of the lipase showed loss of secondary structure and alterations in the tertiary structure in the pH range 4 to 2 and 7 to 2 respectively, suggesting that the lipase exists as an acid-unfolded state approximately pH 2.0. A further decrease in pH (from 2.0 to 1.0) resulted in a second transition, which corresponded to the formation of both secondary and tertiary structures. The acid unfolded state at around pH 2.0 has been characterized by significant loss of secondary structure and a small increase in fluorescence intensity with a blue shift of 2 nm, indicating shift of tryptophan residues to less polar environment. Interestingly, the lipase at pH 1.0 exhibits characteristics of molten globule, such as enhanced binding of hydrophobic dye (ANS), native-like secondary structure and slightly altered tryptophanyl environments. That the molten globule of the lipase at pH 1.0 also possesses native-like tertiary structure is an interesting observation made for this lipase.  相似文献   

18.
The equilibrium and kinetics studies of an 82 kDa large monomeric Escherichia coli protein Malate Synthase G (MSG) was investigated by far and near-UV CD, intrinsic tryptophan fluorescence and extrinsic fluorescence spectroscopy. We find that despite of its large size, folding is reversible, in vitro. Equilibrium unfolding process of MSG exhibited three-state transition thus, indicating the presence of at least a stable equilibrium intermediate. Thermodynamic parameters suggest this intermediate resembles the unfolded state. However, the equilibrium intermediate exhibits pronounced secondary structure as measured by far-UV CD, partial tertiary structure as delineated by near-UV CD, compactness (m value) and exposed hydrophobic surface area as assessed by ANS binding, typically depicting a molten globule state. The stopped-flow kinetic data provide clear evidence for the presence of a burst phase during the refolding pathway due to the formation of an early Intermediate, within the dead time of the instrument. Refolding from 4 M to various lower concentrations until 0.4 M of GdnHCl follow biphasic kinetics at lower concentrations of GdnHCl (<0.8 M), whereas monophasic kinetics at concentrations above 1.5 M. Also, rollover in the refolding and unfolding limbs of chevron plot verifies the presence of a fast kinetic intermediate at lower concentration of GdnHCl. Based upon the above observations we hereby propose the folding pathway of a large multi-domain protein Malate Synthase G.  相似文献   

19.
A systematic investigation of the effect of polyethylene glycol (PEG) 200 and 400 on the solution conformation of concanavalin A (con A) was made using circular dichroism (CD), tryptophan fluorescence, 1-anilino-8-naphthalenesulfonic acid (ANS) binding, and size-exclusion chromatography. Far-UV CD spectra of con A at 30%(v/v) PEGs show the retention of ordered secondary structure as compared to 70%(v/v) PEGs. Near-UV CD spectra showed the retention of native-like spectral features in the presence of 30%(v/v) PEGs. Intrinsic tryptophan fluorescence studies indicate a change in the environment of tryptophan residues on the addition of PEG. ANS binding was maximum at 30%(v/v) PEGs suggesting the compact "molten-globule"-like state with enhanced exposure of hydrophobic surface area. Size-exclusion chromatography indicates an intermediate hydrodynamic size at 30%(v/v) PEGs. GdnHCl denaturation of these states was a single-step, two-state transition. To study the possible minimum structural requirement in the specific binding, the effect of PEGs on the interaction of con A with ligand was investigated by turbidity measurements. The C50 value was less in PEG 400 suggesting the more inhibitory ability of PEG 400. The C50 value of PEGs was highest for dextran followed by glycogen, ovalbumin, and ovomucoid. From percentage inhibition of con A-ligands at 30%(v/v) PEG, maximum inhibition was in ovalbumin followed by ovomucoid, glycogen, and dextran. To summarize: con A at 30%(v/v) PEGs exists as compact intermediate with molten-globule-like characteristics, viz., enhanced hydrophobic surface area, retention of compact secondary as well as tertiary structure, and a considerable degree of carbohydrate binding specificity and activity. This result has significant implications on the molten globule state during the folding pathway(s) of proteins in general and quaternary association in the legume lectin in particular, where precise topology is required for their biological activities.  相似文献   

20.
Sodium dodecyl sulfate (SDS) was shown to elicit NADPH-dependent superoxide (O2-) production by a cell-free system derived from sonically disrupted resting guinea pig macrophages (Bromberg, Y., and Pick, E. (1985) J. Biol. Chem. 260, 13539-13545). O2- production was absolutely dependent on the cooperation between a membrane-associated component, sedimenting with the 48,000 X g pellet and a cytosolic factor, nonsedimentable at 265,000 X g. The present report describes the solubilization and characterization of the membrane-associated component of the SDS-activable O2(-)-forming NADPH oxidase (operationally termed pi). Treatment of the 48,000 X g pellet with 30 mM octyl glucoside resulted in complete transfer of pi to the soluble fraction. The solubilized pellet produced an average of 0.92 mumol of O2-/mg of protein/min upon reduction of octyl glucoside content below the critical micellar concentration and in the presence of cytosol, 100 microM SDS, and 0.2 mM NADPH. The activity of solubilized pellet-cytosol combinations was also expressed as NADPH-dependent, azide-resistant oxygen consumption and hydrogen peroxide production. pi was inactivated by the sulfhydryl reagent p-chloromercuribenzoate. Solubilized pellet contained spectroscopically detectable cytochrome b559 (225.6 +/- 15.0 pmol/mg mg protein). Both pi and cytochrome b559 were bound by Cibacron Blue Sepharose and could be eluted by a gradient of octyl glucoside (0-30 mM) in the presence of 1 M KCl. On high performance gel filtration on Superose 12, both pi and cytochrome b559 eluted in the excluded volume; when 25 mM octyl glucoside was present in the elution buffer, pi was partially dissociated from cytochrome b559. Sequential purification of pi on Blue Sepharose followed by gel filtration on Superose 12 in the presence of 25 mM octyl glucoside lead to complete resolution of pi from cytochrome b559 (pi was found in the Mr = 28,000 - 11,000 range while the bulk of cytochrome b559 eluted in the Mr = 113,000 - 71,000 range). We propose that pi is distinct from cytochrome b559 and represents a membrane-associated component in an amphiphile-activated electron transport chain from NADPH to oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号