首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While the two amylase genes of Drosophila melanogaster are intronless, the three genes of D. pseudoobscura harbor a short intron. This raises the question of the common structure of the Amy gene in Drosophila species. We have investigated the presence or absence of an intron in the amylase genes of 150 species of Drosophilids. Using polymerase chain reaction (PCR), we have amplified a region that surrounds the intron site reported in D. pseudoobscura and a few other species. The results revealed that most species contain an intron, with a variable size ranging from 50 to 750 bp, although the very majoritary size was around 60–80 bp. Several species belonging to different lineages were found to lack an intron. This loss of intervening sequence was likely due to evolutionarily independent and rather frequent events. Some other species had both types of genes: In the obscura group, and to a lesser extent in the ananassae subgroup, intronless copies had much diverged from intron-containing genes. Base composition of short introns was found to be variable and correlated with that of the surrounding exons, whereas long introns were all A-T rich. We have extended our study to non-Drosophilid insects. In species from other orders of Holometaboles, Lepidoptera and Hymenoptera, an intron was found at an identical position in the Amy gene, suggesting that the intron was ancestral. Received: 23 October 1995 / Accepted: 5 March 1996  相似文献   

2.
Analyses of the nucleotide sequences of the duplicatedAmy genes in the eight species of theDrosophila melanogaster species subgroup have revealed concerted evolution of the coding regions and divergent evolution between the duplicated genes of the 5’-flanking regions. Homogenization between the duplicated genes in the coding region is maintained by frequent genetic exchange in various portions of the coding region. On the other hand, such genetic exchange seems to produce a large amount of DNA sequence variation and protein polymorphism at the two loci within a species. The puzzling observation that concerted evolution is restricted to the coding regions seems to be explained by not only adaptive evolution of the AMY proteins in speciation but also adaptive fixation of selectively advantageous mutations in the intergenic region that differentiate expression of the twoAmy genes. We review molecular work on theAmy gene system inDrosophila, including evidence from biochemical characterization of the AMY proteins and molecular characterization of the cis regulatory elements.  相似文献   

3.
Cecropin is a type of antibacterial peptide that is synthesized in response to infection and has been characterized in many insect species and one mammal. The Cecropin locus of Drosophila melanogaster also contains the gene Andropin, which has been identified only in this species and encodes a male-specific antibacterial peptide. As a first step in studying the molecular evolution of the cecropin and andropin genes among Drosophila species, we have isolated genomic clones that cover the Cecropin locus in Drosophila virilis. The cloned region totals approximately 25 kb, within which a 9-kb fragment contains four cecropin genes and one pseudogene. All four genes have a high level of sequence homology to D. melanogaster Cecropin, about 80% identity in the coding regions, and the intron positions are conserved. As in D. melanogaster and other insects, κB-related cis-regulatory elements are found upstream of these cecropin genes. An Andropin-related sequence was not identified in D. virilis; however, genome Southern hybridizations suggest that Andropin-related sequences are present in at least the melanogaster species subgroup. Analysis of 19 insect cecropin genes identifies a common ancestral Cecropin before the divergence of Diptera and Lepidoptera. In addition, D. melanogaster and D. virilis can be identified by monophyletic clades for Cecropin. In contrast, the Lepidopteran species show polyphyletic relationships for duplicated cecropin genes. Received: 12 August 1996 / Accepted: 18 October 1996  相似文献   

4.
Tandemly duplicated actin genes have been isolated from a Helicoverpa armigera genomic library. Sequence comparisons with actin genes from other species suggest they encode cytoplasmic actins, being most closely related to the Bombyx mori A3 actin gene. The duplicated H. armigera actin genes, termed A3a and A3b, share 98.3% nucleotide sequence identity over their entire putative coding region. Analysis of the distribution of nucleotide differences shows the first 763 bp are identical between the two coding regions, with the 18 nucleotide changes occurring in the remaining 366 bp. This observation suggests a gene conversion event has taken place between the duplicated H. armigera A3a and A3b actin genes. Translation of the open-reading frames indicates the products of these genes are identical, apart from a single amino acid difference at codon 273. Polymerase chain reaction and northern blot analysis have shown both H. armigera A3a and A3b genes are expressed during pupal development and in the brain of newly eclosed adults. A region 5′ of the H. armigera A3a actin gene start codon has been identified which contains regulatory sequences commonly found in the promoter region of actin genes, including TATA, CAAT, and CArG motifs. Received: 10 January 1996 / Accepted: 12 March 1996  相似文献   

5.
The nucleotide sequences of the 5'-flanking regions of the duplicated Amy genes in eight sibling species belonging to the melanogaster species subgroup are analyzed. In Drosophila melanogaster, a region of about 450 bp immediately upstream of the translation initiation site of the two paralogous genes (the proximal and distal genes) has sequence similarities. However, we could not detect any significant sequence similarity in the region more upstream than -450. This result indicates that the coding regions of the ancestral Amy gene were duplicated together with 450 bp of the 5'-flanking region as one unit. Multiple alignment of these 450-bp sequences in the proximal and distal genes of all eight species revealed a mosaic pattern of highly conserved and divergent regions. The conserved regions included almost all the putative regulatory elements identified in previous analyses of the sequences. A phylogenetic analysis of the aligned sequences shows that these 450-bp sequences are clustered into the proximal and the distal groups. As a whole, the divergence between groups in this region is very large in contrast to that in the coding regions. Based on the divergence between groups, the 450-bp region is divided into two subregions. We found that the ratios of the divergence between groups to that within groups differ in the two subregions. From these observations, we discuss a possibility of positive selection acting on the subregion immediately upstream of the Amy coding region to cause divergence of regulatory elements of the paralogous genes.   相似文献   

6.
We analyzed nucleotide variation in the hsp70 genes of Drosophila melanogaster (five genes) and D. simulans (four genes) to characterize the homogenizing and diversifying roles of gene conversion in their evolution. Gene conversion within and between the 87A7 and 87C1 gene clusters homogenize the hsp70 coding regions; in both D. melanogaster and D. simulans, same-cluster paralogues are virtually identical, and large intercluster conversion tracts diminish 87A7/87C1 divergence. Same-cluster paralogues share many polymorphisms, consistent with frequent intracluster conversion. Shared polymorphism is highly biased toward silent variation; homogenizing conversion interacts with purifying selection. In contrast to the coding regions, some hsp70 flanking regions show conversion-mediated diversification. Strong reductions of nucleotide variability and linkage disequilibria among conversion-mediated sites in hsp70Ab and hsp70Bb alleles sampled from a single natural population are consistent with a selective sweep. Comparison of the D. melanogaster and D. simulans hsp70 genes reveals whole-family fixed differences, consistent with rapid propagation of novel mutations among duplicate genes. These results suggest that the homogenizing and diversifying roles of conversion interact to drive dynamic concerted evolution of the hsp70 genes. Received: 25 June 2001 / Accepted: 10 October 2001  相似文献   

7.
The genomic organization of the hsp83 gene of Drosophila auraria, a far-eastern endemic species belonging to the montium subgroup of the melanogaster species group, is presented here. Based on in situ hybridization on polytene chromosomes, cDNA and genomic clone mapping, nucleotide sequencing, and genomic Southern analysis, hsp83 is shown to be present as a single-copy gene at locus 64B on the 3L chromosome arm in D. auraria. This gene is organized into two exons separated by a 929-bp intron. The first exon represents the mRNA leader sequence and is not translated, while the coding region, having a length of 2,151 bp, is solely included in the second exon. Nucleotide sequence comparisons of D. auraria hsp83 with homologous sequences from other organisms show high conservation of the coding region (88–92% identity) in the genus Drosophila, in addition to the conserved genomic organization of two-exons–one-intron, of comparable size and arrangement. A phylogenetic tree based on the protein sequences of homologous genes from representative organisms is in accord with the accredited phylogenetic position of D. auraria. In the hsp83 gene region, a second case of long antiparallel coupled open reading frames (LAC ORFs) for this species was found. The antiparallel to the hsp83 gene ORF is 1,554 bases long, while the two ORFs overlap has a size of 1,548 bp. The anti-hsp83 ORF does not show significant homology to any known gene sequences. In addition, no similar LAC ORF structures were found in homologous gene regions of other organisms. Received: 18 April 1997 / Accepted: 1 August 1997  相似文献   

8.
In this study, a comparative genomics approach is employed to investigate the forces that shape evolutionary change in the mitochondrial DNA (mtDNA) of members of the Drosophila melanogaster subgroup. This approach facilitates differentiation of the patterns of variation resulting from processes acting at a higher level from those acting on a single gene. The mitochondrial genomes of three isofemale lines of D. simulans (siI, -II, and -III), two of D. melanogaster (Oregon R and a line from Zimbabwe), and D. mauritiana (maI and -II), and one of D. sechellia were sequenced and compared with that derived from D. yakuba. Data presented here indicate that at least three broad mechanisms shape the evolutionary dynamics of mtDNA in these taxa. The first set of mechanisms is intrinsic to the molecule. Dominant processes may be interpreted as selection for an increased rate of replication of the mtDNA molecule, biases in DNA repair, and differences in the pattern of nucleotide substitution among strands. In the genes encoded on the major strand (62% of the coding DNA) changes to or from C predominate, whereas on the minor changes to or from G predominate. The second set of mechanisms affects distinct lineages. There are evolutionary rate differences among lineages, possibly owing to population demographic changes or changes in mutational biases. This is supported by the heterogeneity found in synonymous, nonsynonymous, and silent substitutions. The third set of mechanisms differentially affects distinct genes. A maximum-likelihood sliding-window analysis detected four disjunct regions that have a significantly different nucleotide substitution process from that derived from the complete sequence. These data show the potential for comparative genomics to tease apart subtle forces that shape the evolution of DNA. Received: 30 July 1999 / Accepted: 16 March 2000  相似文献   

9.
Summary Restriction sites were compared in the mitochondrial DNA (mtDNA) molecules from representatives of two closely related species of fruit flies: nine strains ofDrosophila teissieri and eight strains ofDrosophila yakuba. Nucleotide diversities amongD. teissieri strains and amongD. yakuba strains were 0.07% and 0.03%, respectively, and the nucleotide distance between the species was 0.22%. Also determined was the nucleotide sequence of a 2305-nucleotide pari (ntp) segment of the mtDNA molecule ofD. teissieri that contains the noncoding adenine+thymine (A+T)-rich region (1091 ntp) as well as the genes for the mitochondrial small-subunit rRNA, tRNAf-met, tRNAgln, and tRNAile, and portions of the ND2 and tRNAval genes. This sequence differs from the corresponding segment of theD. yakuba mtDNA by base substitutions at 0.1% and 0.8% of the positions in the coding and noncoding regions, respectively. The higher divergence due to base substitutions in the A+T-rich region is accompanied by a greater number of insertions/deletions than in the coding regions. From alignment of theD. teissieri A+T-rich sequence with those ofD. yakuba andDrosophila virilis, it appears that the 40% of this sequence that lies adjacent to the tRNAile gene has been highly conserved. Divergence between the entireD. teissieri andD. yakuba mtDNA molecules, estimated from the sequences, was 0.3%; this value is close to the value (0.22%) obtained from the restriction analysis, but 10 times lower than the value estimated from published DNA hybridization results. From consideration of the relationships of mitochondrial nucleotide distance and allozyme genetic distance found among seven species of theDrosophila melanogaster subgroup, the mitochondrial nucleotide distance observed forD. teissieri andD. yakuba is anomalously low in relation to the nuclear genetic distance.  相似文献   

10.
Drosophila ananassae is known to produce numerous alpha-amylase variants. We have cloned seven different Amy genes in an African strain homozygous for the AMY1,2,3,4 electrophoretic pattern. These genes are organized as two main clusters: the first one contains three intronless copies on the 2L chromosome arm, two of which are tandemly arranged. The other cluster, on the 3L arm, contains two intron-bearing copies. The amylase variants AMY1 and AMY2 have been assigned to the intronless cluster, and AMY3 and AMY4 to the second one. The divergence of coding sequences between clusters is moderate (6.1% in amino acids), but the flanking regions are very different, which could explain their differential regulation. Within each cluster, coding and noncoding regions are conserved. Two very divergent genes were also cloned, both on chromosome 3L, but very distant from each other and from the other genes. One is the Amyrel homologous (41% divergent), the second one, Amyc1 (21.6% divergent) is unknown outside the D. ananassae subgroup. These two genes have unknown functions. Received: 30 May 2000 / Accepted: 17 July 2000  相似文献   

11.
A total of 790 Drosophila melanogaster genes that are alternatively spliced in a coding region and have orthologs in Drosophila pseudoobscura were studied. It proved that nucleotide substitutions are accumulated in alternative coding regions more rapidly than in constitutive coding regions. Moreover, the evolutionary patterns of alternative regions differing in insertion-deletion mechanisms (use of alternative promoters, splicing sites, or polyadenylation sites) differ significantly. The synonymous substitution rate in coding regions of genes varies more strongly than the nonsynonymous substitution rate. The patterns of substitutions in different classes of alternative regions of Drosophila melanogaster and mammals differ considerably.  相似文献   

12.
A partialpaired gene ofDrosophila willistoni containing the paired box and extended homeo box was amplified by PCR and the nucleotide sequence of 1141 bp was determined. Comparison of thepaired genes inD. willistoni andD. melanogaster showed that the proportions of identical nucleotide sites in the coding region and identical amino acid sites were 73.8 and 86.5%, respectively. The amino acid sites in the N-terminal region, the paired box, and the extended homeo box were 88.5, 95.3, and 98.6% identical in the two species. The rates of amino acid substitution for these regions were estimated to be 1.73×10?9, 0.67×10?9, and 0.19×10?9/site/year, respectively. In contrast, the connecting region between the two boxes has been highly diverged and evolved very rapidly, 18.3×10?9/site/year, suggesting almost no functional constraint in the connecting region.  相似文献   

13.
Drosophila nuclear introns are commonly assumed to change according to a single rate of substitution, yet little is known about the evolution of these non-coding sequences. The hypothesis of a uniform substitution rate for introns seems to be at odds with recent findings that the nucleotide composition of introns varies at a scale unknown before, and that their base content variation is correlated with that of the adjacent exons. However, no direct attempt at comparing substitution rates in introns seems to have been addressed so far. We have studied the rate of nucleotide substitution over a region of the Xdh gene containing two adjacent short, constitutively spliced introns, in several species of Drosophila and related genera. The two introns differ significantly in base composition and substitution rate, with one intron evolving at least twice as fast as the other. In addition, the substitution pattern of the introns is positively associated with that of the surrounding coding regions, evidencing that the molecular evolution of these introns is impacted by the region in which they are embedded. The observed differences cannot be attributed to selection acting differently at the level of the secondary structure of the pre-mRNA. Rather, they are better accounted for by locally heterogeneous patterns of mutation. Received: 26 July 1999 / Accepted: 21 August 1999  相似文献   

14.
We previously sequenced two regions around the centromeric end of HLA class I and the boundary between class I and class III. In this paper we analyze the two regions of about 385 kb and confirm, giving a new line of evidence, that the following two pairs of the genomic segments were duplicated in evolution: (i) a 43-kb genomic segment including the HLA-B gene showing the highest polymorphism among the classical HLA class I loci (class Ia) and a 40-kb segment including the HLA-C locus showing the lowest polymorphism and (ii) a 52-kb segment including the MIC (MHC class I chain related gene) B and a 35-kb segment including MICA. We also found that repetitive elements such as SINEs, LINEs, and LTRs occupy as much as 47% of nucleotides in this 385-kb region. This unusually high content of repetitive elements indicates that repeat-mediated rearrangements have frequently occurred in the evolutionary history of the HLA class Ia region. Analysis of LINE compositions within the two pairs of duplicated segments revealed that (i) LINEs in these regions had been dispersed prior to both the duplication of the HLA-B and -C loci and the duplication of the MICB and MICA loci, and (ii) the divergence of the HLA-B and -C loci occurred prior to the duplication of the MICA and MICB loci. To find novel genes responsible for HLA class I-associated or other diseases, we performed computer analysis applying GenScan and GRAIL to GenBank's dbEST. As a result, at least five as yet uncharacterized genes were newly mapped on the HLA class I centromeric region studied. These novel genes should be analyzed further to determine their relationships to diseases associated with this region. Received: 16 June 1998 / Accepted: 18 August 1998  相似文献   

15.
We have analyzed the nad3-rps12 locus for eight angiosperms in order to compare the utility of mitochondrial DNA and edited mRNA sequences in phylogenetic reconstruction. The two coding regions, containing from 25 to 35 editing sites in the various plants, have been concatenated in order to increase the significance of the analysis. Differing from the corresponding chloroplast sequences, unedited mitochondrial DNA sequences seem to evolve under a quasi-neutral substitution process which undifferentiates the nucleotide substitution rates for the three codon positions. By using complete gene sequences (all codon positions) we found that genomic sequences provide a classical angiosperm phylogenetic tree with a clear-cut grouping of monocotyledons and dicotyledons with Magnoliidae at the basal branch of the tree. Conversely, owing to their low nucleotide substitution rates, edited mRNA sequences were found not to be suitable for studying phylogenetic relationships among angiosperms. Received: 24 January 1996 / Accepted: 5 June 1996  相似文献   

16.
Phylogenetic analyses frequently rely on models of sequence evolution that detail nucleotide substitution rates, nucleotide frequencies, and site-to-site rate heterogeneity. These models can influence hypothesis testing and can affect the accuracy of phylogenetic inferences. Maximum likelihood methods of simultaneously constructing phylogenetic tree topologies and estimating model parameters are computationally intensive, and are not feasible for sample sizes of 25 or greater using personal computers. Techniques that initially construct a tree topology and then use this non-maximized topology to estimate ML substitution rates, however, can quickly arrive at a model of sequence evolution. The accuracy of this two-step estimation technique was tested using simulated data sets with known model parameters. The results showed that for a star-like topology, as is often seen in human immunodeficiency virus type 1 (HIV-1) subtype B sequences, a random starting topology could produce nucleotide substitution rates that were not statistically different than the true rates. Samples were isolated from 100 HIV-1 subtype B infected individuals from the United States and a 620 nt region of the env gene was sequenced for each sample. The sequence data were used to obtain a substitution model of sequence evolution specific for HIV-1 subtype B env by estimating nucleotide substitution rates and the site-to-site heterogeneity in 100 individuals from the United States. The method of estimating the model should provide users of large data sets with a way to quickly compute a model of sequence evolution, while the nucleotide substitution model we identified should prove useful in the phylogenetic analysis of HIV-1 subtype B env sequences. Received: 4 October 2000 / Accepted: 1 March 2001  相似文献   

17.
The complete nucleotide sequence of the SSU rRNA gene from the soil bug, Armadillidium vulgare (Crustacea, Isopoda), was determined. It is 3214 bp long, with a GC content of 56.3%. It is not only the longest SSU rRNA gene among Crustacea but also longer than any other SSU rRNA gene except that of the strepsipteran insect, Xenos vesparum (3316 bp). The unusually long sequence of this species is explained by the long sequences of variable regions V4 and V7, which make up more than half of the total length. RT-PCR analysis of these two regions showed that the long sequences also exist in the mature rRNA and sequence simplicity analysis revealed the presence of slippage motifs in these two regions. The putative secondary structure of the rRNA is typical for eukaryotes except for the length and shape variations of the V2, V4, V7, and V9 regions. Each of the V2, V4, and V7 regions was elongated, while the V9 region was shortened. In V2, two bulges, located between helix 8 and helix 9 and between helix 9 and helix 10, were elongated. In V4, stem E23-3 was dramatically expanded, with several small branched stems. In V7, stem 43 was branched and expanded. Comparisons with the unusually long SSU rRNAs of other organisms imply that the increase in total length of SSU rRNA is due mainly to expansion in the V4 and V7 regions. Received: 2 March 1999 / Accepted: 22 July 1999  相似文献   

18.
Phylogenetic trees were drawn and analyzed based on the nucleotide sequences of the 1.5-kb gene fragment coding for the L and M subunits of the photochemical reaction center of various purple photosynthetic bacteria. These trees are mostly consistent with phylogenetic trees based on 16S rRNA and soluble cytochrome c, but differ in some significant details. This inconsistency implies horizontal transfer of the genes that code for the photosynthetic apparatus in purple bacteria. Possibilities of similar transfers of photosynthesis genes during the evolution of photosynthesis are discussed especially for the establishment of oxygenic photosynthesis. Received: 8 July 1996 / Accepted: 12 March 1997  相似文献   

19.
Major parts of amino-acid-coding regions of elongation factor (EF)-1α and EF-2 in Trichomonas tenax were amplified by PCR from total genomic DNA and the products were cloned into a plasmid vector, pGEM-T. The three clones from each of the products of the EF-1α and EF-2 were isolated and sequenced. The insert DNAs of the clones containing EF-1α coding regions were each 1,185 bp long with the same nucleotide sequence and contained 53.1% of G + C nucleotides. Those of the clones containing EF-2 coding regions had two different sequences; one was 2,283 bp long and the other was 2,286 bp long, and their G + C contents were 52.5 and 52.9%, respectively. The copy numbers of the EF-1α and EF-2 gene per chromosome were estimated as four and two, respectively. The deduced amino acid sequences obtained by the conceptual translation were 395 residues from EF-1α and 761 and 762 residues from the EF-2s. The sequences were aligned with the other eukaryotic and archaebacterial EF-1αs and EF-2s, respectively. The phylogenetic position of T. tenax was inferred by the maximum likelihood (ML) method using the EF-1α and EF-2 data sets. The EF-1α analysis suggested that three mitochondrion-lacking protozoa, Glugea plecoglossi, Giardia lamblia, and T. tenax, respectively, diverge in this order in the very early phase of eukaryotic evolution. The EF-2 analysis also supported the divergence of T. tenax to be immediately next to G. lamblia. Received: 15 February 1996 / Accepted: 28 June 1996  相似文献   

20.
Summary We have analyzed 18 kb of DNA in and upstream of thedefective chorion-1 (dec-1) locus of the eight known species of themelanogaster species subgroup ofDrosophila. The restriction maps ofD. simulans, D. mauritiana, D. sechellia, D. erecta, andD. orena are shown to have basically the restriction map ofD. melanogaster, whereas the maps ofD. teissieri andD. yakuba were more difficult to align. However, the basic amount of DNA and sequence arrangement appear to have been conserved in these species. A small deletion of varying length (65–200 bp) is found in a repeated sequence of the central transcribed region ofD. melanogaster, D. simulans, andD. erecta. Restriction site mapping indicated that thedec-1 gene is highly conserved in themelanogaster species subgroup. However, sequence comparison revealed that the amount of nucleotide and amino acid substitution in the repeated region is much larger than in the 5 translated region. The 5 flanking region showed noticeable restriction site polymorphisms between species. Based on calculations from the restriction maps a dendrogram was derived that supports earlier published phylogenetic relationships within themelanogaster species subgroup except that theerecta-orena pair is placed closer to themelanogaster complex than toD. teissieri andD. yakuba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号