首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The binding of NAD+, NADH and adenosine diphosphoribose (Ado-PP-Rib) to a stable, highly active and nucleotide-free preparation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate: NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) has been studied. All three nucleotides quench the protein fluorescence to the same extent when they bind to the enzyme, and this property has been used to measure the dissociation constants for the two high-affinity binding sites for the nucleotides. The results indicate negative interactions between, or non-identify of, these two binding sites, to which NAD+ and NADH bind with similar affinity. The binding of NAD+ to the enzyme has been studied by spectrophotometric titrations at 360 nm. It appears that the binding of NAD+ to each of the four subunits of the enzyme contributes equally to the intensity of this 'Racker' band. The dissociation constants associated with the binding of the third and fourth molecules of NAD+ estimated from such titrations confirm some previous estimates. The binding of NADH to the enzyme causes a decrease of intensity of the absorbance of the coenzyme at 340 nm, and the dissociation constants for binding of the third and fourth molecules of NADH have been estimated from spectrophotometric titrations. They are the same as those for NAD+. Judging by the apparent dissociation constants, negative interactions on binding the third molecule of NAD+ or NADH are more marked than those associated with the binding of the second and fourth molecules, suggesting that a major conformational change occurs at half-saturation of the tetramer with coenzyme.  相似文献   

2.
Experimental conditions favouring the dissociation of tetrameric rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase into active monomers were elaborated. The urea-induced dissociation of the tetramer was shown to be a stepwise process (in 2 M urea only dimers are formed; an increase in urea concentration up to 3 M causes the splitting of the dimers into monomers). The specific activity of immobilized monomers in the glyceraldehyde-3-phosphate oxidation reaction does not differ from that of the parent immobilized tetrameric form. The tetrameric enzyme molecule binds the coenzyme with a negative cooperativity (the first two NAD+ molecules bind with KD below 0.1 microM; for the third and fourth molecules the dissociation constant was determined to be equal to 5.5 +/- 1.5 microM (50 mM medinal buffer, 10 mM sodium phosphate, pH 8.2). The cooperativity of NAD+ binding is preserved in the immobilized preparation of tetrameric dehydrogenase. The immobilized monomers bind NAD+ with KD of 1.6 +/- 1.0 microM. The experimental results are consistent with the hypothesis according to which the association of catalytically active subunits into a tetramer changes their coenzyme-binding properties in such a way that the first two NAD+ molecules bind more firmly to a tetramer than to a monomer, whereas the third and the fourth NAD+ molecules bind less firmly.  相似文献   

3.
1. The binding parameters for NADH and NAD+ to rabbit-muscle glyceraldehyde-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) have been measured by quenching of the flourescence of the protein and the NADH. 2. The fact that the degree of protein fluorescence quenching by bound NAD+ or NADH, excited at 285 nm and measured at 340 nm ('blue' tryptophans), is not linearly related to the saturation functions of these nucleotides, leads to a slight overestimation of the interaction energy and an underestimation of the concentration of sites, if linearity is assumed. 3. This is also the case for NADH, but not for NAD+, when the protein fluorescence is excited at 305 nm and measured at 390 nm ('red' tryptophans). 4. The binding of NAD+ can be described by a model in which the binding of NAD+, via negative interactions within the dimer, induces weaker binding sites, with the result that the microscopic dissociation constant is 0.08 microM at low saturation and 0.18 microM for the holoenzyme. 5. The binding of NADH can be described on the basis of the same model, the dissociation constant at low saturation being 0.5 microM and of the holoenzyme 1.0 microM. 6. The fluorescence of bound NADH is not sensitive to the conformational changes that cause the decrease in affinity of bound NAD+ or NADH. 7. The binding of NAD+ to the 3-phosphoglyceroyl enzyme can be described by a dissociation constant that is at least two orders of magnitude greater than the dissociation constants of the unacylated enzyme. The affinity of NAD+ to this form of the enzyme is in agreement with the Ki calculated from product inhibition by NAD+ of the reductive dephosphorylation of 1,3-diphosphoglycerate.  相似文献   

4.
The binding of oxidized and reduced coenzyme (NAD+ and NADH) to 3-phosphoglyceroyl-glyceraldehyde-3-phosphate dehydrogenase has been studied spectrophotometrically and fluorimetrically. The binding of NAD+ to the acylated sturgeon enzyme is characterized by a significant quenching of the enzyme fluorescence (about 25%) and the induction of a difference spectrum in the ultraviolet absorbance region of the enzyme. Both of these spectroscopic properties are quantitatively distinguishable from those of the corresponding binary enzyme-NAD+ complex. Binding isotherms estimated by gel filtration of the acylated enzyme are in close agreement to those obtained by spectrophotometric and fluorimetric titrations. Up to four NAD+ molecules are bound to the enzyme tetramer. No anticooperativity can be detected in the binding of oxidized coenzyme, which is well described on the basis of a single class of four binding sites with a dissociation constant of 25 muM at 10 degrees C, pH 7.0. The binding of NADH to the acylenzyme has been characterized spectrophotometrically. The absorption band of the dihydronicotinamide moiety of the coenzyme is blue-shifted to 335 nm with respect to free NADH. In addition, a large hypochromicity (23%) is observed together with a significant increase of the bandwidth at half height of this absorption band. This last property is specific to the acylenzyme-DADH complex, since it disappears upon arsenolysis of the acylenzyme. The binding affinity of NADH to the acylated enzyme has been estimated by performing simultaneous spectrophotometric and fluorimetric titrations of the NADH appearance upon addition of NAD+ to a mixture of enzyme and excess glyceraldehyde 3-phosphate. In contrast to NAD+, the reduced coenzyme NADH appears to be relatively strongly bound to the acylated enzyme, the dissociation constant of the acylenzyme-NADH complex being estimated as 2.0 muM at 25 degrees C. In addition a large quenching of the NADH fluorescence (about 83%) is observed. The comparison of the dissociation constants of the coenzyme-acylenzyme complexes and the corresponding Michaelis constants suggests a reaction mechanism of the enzyme in which significant formation and dissociation of NAD+-acylenzyme and NADH-acylenzyme complexes occur. Under physiological conditions the activity of the enzyme can be regulated by the ratio of oxidized and reduced coenzymes. Possible reasons for the lack of anticooperativity in coenzyme binding to the acylated form of the enzyme are discussed.  相似文献   

5.
The binding of NADH and NAD+ by cytoplasmic aldehyde dehydrogenase was studied by various direct and indirect methods. At pH 7.0 at 25 degrees C there appears to be approx. 1 binding site for both nucleotides per 200 000 daltons of protein, although the NAD+-binding results are rather uncertain. Estimates of the dissociation constants of the E . NADH and E . NAD+ complexes under the stated conditions are also presented. Preparations of enzyme are sometimes found to contain significant amounts of very tightly bound NAD+ and NADH. The implications of these findings are discussed.  相似文献   

6.
Tetrameric D-glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) isolated from rabbit skeletal muscle was covalently bound to CNBr-activated Sepharose 4B via a single subunit. Catalytically active immobilized dimer and monomeric forms of the enzyme were prepared after urea-induced dissociation of the tetramer. A study of the coenzyme-binding properties of matrix-bound tetrameric, dimeric and monomeric species has shown that: (1) an immobilized tetramer binds NAD+ with negative cooperativity, the dissociation constants being 0.085 microM for the first two coenzyme molecules and 1.3 microM for the third and the fourth one; (2) coenzyme binding to the dimeric enzyme form also displays negative cooperativity with Kd values of 0.032 microM and 1.1 microM for the first and second sites, respectively; (3) the binding of NAD+ to a monomer can occur with a dissociation constant of 1.6 microM which is close to the Kd value for low-affinity coenzyme binding sites of the tetrameric or dimeric enzyme forms. In the presence of NAD+ an immobilized monomer acquires a stability which is not inferior to that of a holotetramer. The catalytic properties of monomeric and tetrameric enzyme forms were compared and found to be different under certain conditions. Thus, the monomers of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase displayed a hyperbolic kinetic saturation curve for NAD+, whereas the tetramers exhibited an intermediary plateau region corresponding to half-saturating concentrations of NAD+. At coenzyme concentrations below half-saturating a monomer is more active than a tetramer. This difference disappears at saturating concentrations of NAD+. Immobilized monomeric and tetrameric forms of D-glyceraldehyde-3-phosphate dehydrogenase from baker's yeast were also used to investigate subunit interactions in catalysis. The rate constant of inactivation due to modification of essential arginine residues in the holoenzyme decreased in the presence of glyceraldehyde 3-phosphate, probably as a result of conformational changes accompanying catalysis. This effect was similar for monomeric and tetrameric enzyme forms at saturating substrate concentrations, but different for the two enzyme species under conditions in which about one-half of the active centers remained unsaturated. Taken together, the results indicate that association of D-glyceraldehyde-3-phosphate dehydrogenase monomers into a tetramer imposes some constraints on the functioning of the active centers.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
8.
The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule.  相似文献   

9.
Intercept inhibition of rabbit-muscle phosphoglucomutase (alpha-D-glucose-1,6-bisphosphate: alpha-D-glucose-1-phosphate phosphotransferase, EC 2.7.5.1) produced by several nucleotide diphosphates and compounds related to coenzyme A was re-examined in order to re-evaluate an earlier suggestion that this enzyme has an allosteric regulatory site. However, in all cases intercept inhibition constants were much larger than those previously reported, and in all but two cases were too large to assess in the assay system, i.e., were greater than 10 mM. Most of the intercept inhibition previously observed apparently was caused by the use of the Li+ salts of inhibitors. Thus, Li+ binds competitively with the natural activator, Mg2+, and in the presence of glucose phosphates binds almost as well as Mg2+: Kd approximately 10 micrometer. The observation that glucose phosphates bind to the Li+ complex of phosphoglucomutase some 900 times more tenaciously than to the corresponding Mg2+ complex could provide a partial rationale for the lack of reactivity of the Le+ form of the enzyme. Attempts to verify the dimeric structure of phosphoglucomutase that was previously reported also produced negative results.  相似文献   

10.
Yeast alcohol dehydrogenase (YADH) with its cofactor nicotinamide adenine dinucleotide (NAD+) could be stably encapsulated in liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycero-3- phosphocholine). The YADH- and NAD+-containing liposomes (YADH-NADL) were 100 nm in mean diameter. The liposomal YADH and NAD+ concentrations were 2.3 mg/mL and 3.9 mM, respectively. A synergistic effect of the liposomal encapsulation and the presence of NAD+ was examined on the thermal stability of YADH at 45 and 50 degrees C. The enzyme stability of the YADH-NADL was compared to the stabilities of the liposomal YADH (YADHL) containing 3.3 mg/mL YADH without NAD+ as well as the free YADH with and without NAD+. Free YADH was increasingly deactivated during its incubation at 45 degrees C for 2 h with decrease of the enzyme concentration from 3.3 to 0.01 mg/mL because of the dissociation of tetrameric YADH into its subunits. At that temperature, the coexistence of free NAD+ at 3.9 mM improved the stability of free YADH at 2.3 mg/mL through forming their thermostable complex, although the stabilization effect of NAD+ was lowered at 50 degrees C. The turbidity measurements for the above free YADH solution with and without NAD+ revealed that the change in the enzyme tertiary structure was much more pronounced at 50 degrees C than at 45 degrees C even in the presence of NAD+. This suggests that YADH was readily deactivated in free solution due to a decrease in the inherent affinity of YADH with NAD+. On the other hand, both liposomal enzyme systems, YADH-NADL and YADHL, showed stabilities at both 45 and 50 degrees C much higher than those of the above free enzyme systems, YADH/NAD+ and YADH. These results imply that the liposome membranes stabilized the enzyme tertiary and thus quaternary structures. Furthermore, the enzyme activity of the YADH-NADL showed a stability higher than that of the YADHL with a more remarkable effect of NAD+ at 50 degrees C than at 45 degrees C. This was considered to be because even at 50 degrees C the stabilization effect of lipid membranes on the tertiary and quaternary structures of the liposomal YADH allowed the enzyme to form its thermostable complex with NAD+ in liposomes.  相似文献   

11.
Hydroxypyrenetrisulfonate binds to pig mitochondrial malate dehydrogenase (L-malate: NAD+ oxidoreductase, EC 1.1.1.37) in the presence and absence of coenzymes with a stoichiometry of one dye molecule/enzyme subunit. Binding is competitive with substrates and known substrate analogs as well as with squaric acid, a newly detected analog forming a ternary complex with enzyme/NAD+ similar to enzyme/NAD+/sulfite. Displacement of hydroxypyrenetrisulfonate by substrates and analogs was used to determine dissociation constants of binary and ternary complexes. Binary complexes form with dissociation constants of about 10 mM. They may be important for kinetic studies at high substrate concentrations where oxaloacetate inhibition and malate activation have been described.  相似文献   

12.
R M Gould  B V Plapp 《Biochemistry》1990,29(23):5463-5468
Molecular modeling of alcohol dehydrogenase suggests that His-47 in the yeast enzyme (His-44 in the protein sequence, corresponding to Arg-47 in the horse liver enzyme) binds the pyrophosphate of the NAD coenzyme. His-47 in the Saccharomyces cerevisiae isoenzyme I was substituted with an arginine by a directed mutation. Steady-state kinetic results at pH 7.3 and 30 degrees C of the mutant and wild-type enzymes were consistent with an ordered Bi-Bi mechanism. The substitution decreased dissociation constants by 4-fold for NAD+ and 2-fold for NADH while turnover numbers were decreased by 4-fold for ethanol oxidation and 6-fold for acetaldehyde reduction. The magnitudes of these effects are smaller than those found for the same mutation in the human liver beta enzyme, suggesting that other amino acid residues in the active site modulate the effects of the substitution. The pH dependencies of dissociation constants and other kinetic constants were similar in the two yeast enzymes. Thus, it appears that His-47 is not solely responsible for a pK value near 7 that controls activity and coenzyme binding rates in the wild-type enzyme. The small substrate deuterium isotope effect above pH 7 and the single exponential phase of NADH production during the transient oxidation of ethanol by the Arg-47 enzyme suggest that the mutation makes an isomerization of the enzyme-NAD+ complex limiting for turnover with ethanol.  相似文献   

13.
The binding of NAD+ to glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) from Bacillus stearothermophilus has been studied by measurement of protein fluorescence quenching. Slight negative co-operativity was observed in the binding of the third and fourth coenzyme molecules to the tetrameric enzyme. The first two coenzyme molecules were tightly bound. In this respect the enzyme resembles that from sturgeon muscle rather than that from yeast.  相似文献   

14.
Bovine liver and mammary UDP-galactose-4-epimerases were investigated with respect to various inhibitors and inactivators. Uridine nucleotides and NADH are potent inhibitors with Ki values in the low micromolar range. The NAD+/NADH ratio may be an important physiological control mechanism for it affects markedly the activity of the enzyme with 50% inhibition occurring at a ratio of 20:1. In the presence of uridine nucleotides binding of NADH to the epimerases is enhanced. Consequently, the effect of changes in the NAD+/NADH ratio in vivo would not be immediately apparent as uridine nucleotides would slow down the displacement of NADH by NAD+. Neither uridine nor galactose 1-phosphate inhibits the purified enzymes as previously reported with the impure liver enzyme. Uridine nucleotides provide almost total protection against the apparent first order inactivation of the epimerases by trypsin and allow determination of dissociation constants. NAD+ partially protects against trypsin inactivation. Inactivation with various sulfhydryl reagents is complex and the results indicate that at least three sulfhydryl groups may be modified before total inactivation occurs. Partial inactivation occurs upon modification of the epimerases with 2-hydroxy-5-nitrogenzyl bromide. Some protection against this modification is provided by the combination of NAD+ and UDP.  相似文献   

15.
1. The binding of NAD(+) and NADH to glycerol 3-phosphate dehydrogenase was studied in the pH range 6.0-9.0 at 25 degrees C and in the temperature range 16-43 degrees C at pH7.0. 2. The second-order velocity constants for the combination of NADH with the enzyme in the pH range 6.0-9.0 and for the combination of NAD(+) with the enzyme at pH6.0 were determined. 3. The velocity constant for the dissociation of the enzyme-NAD(+) complex at pH6.0 was measured.  相似文献   

16.
On- and off-velocity constants for NADH and NAD+ binding to liver alcohol dehydrogenase in the pH range 10-12 have been determined by stopped-flow kinetic methods. The results are consistent with previously reported equilibrium binding data and proposals attributing the main effects of pH on coenzyme binding to ionization of Lys-228 and zinc-bound water. Deprotonation of the group identified as Lys-228 decreases the NADH and NAD+ association rates by a factor exceeding 20 and has no detectable effect on the coenzyme dissociation rates in the examined pH range. Ionization of the group identified as zinc-bound water causes a 3-fold increase of the rate of NADH dissociation from the enzyme, and decreases the rate of NAD+ dissociation by a factor of 200. The NADH and NAD+ association rates are decreased by a factor of 30 and 5, respectively. The observed effects of pH can be rationalized in terms of electrostatic interactions of the ionizing groups with the charges present on the coenzyme molecules and lend support to the idea that binding of the coenzyme nicotinamide ring occurs subsequent to binding of the AMP portion of the coenzyme.  相似文献   

17.
V C Sekhar  B V Plapp 《Biochemistry》1988,27(14):5082-5088
The binding of NAD+ to liver alcohol dehydrogenase was studied by stopped-flow techniques in the pH range from 6.1 to 10.9 at 25 degrees C. Varying the concentrations of NAD+ and a substrate analogue used to trap the enzyme-NAD+ complex gave saturation kinetics. The same maximum rate constants were obtained with or without the trapping agent and by following the reaction with protein fluorescence or absorbance of a ternary complex. The data fit a mechanism with diffusion-controlled association of enzyme and NAD+, followed by an isomerization with a forward rate constant of 500 s-1 at pH 8: E E-NAD+ *E-NAD+. The isomerization may be related to the conformational change determined by X-ray crystallography of free enzyme and enzyme-coenzyme complexes. Overall bimolecular rate constants for NAD+ binding show a bell-shaped pH dependence with apparent pK values at 6.9 and 9.0. Acetimidylation of epsilon-amino groups shifts the upper pK to a value of 11 or higher, suggesting that Lys-228 is responsible for the pK of 9.0. Formation of the enzyme-imidazole complex abolishes the pK value of 6.9, suggesting that a hydrogen-bonded system extending from the zinc-bound water to His-51 is responsible for this pK value. The rates of isomerization of E-NAD+ and of pyrazole binding were maximal at pH below a pK of about 8, which is attributable to the hydrogen-bonded system. Acetimidylation of lysines or displacement of zinc-water with imidazole had little effect on the rate of isomerization of the E-NAD+ complex.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Freshly prepared samples of yeast alcohol dehydrogenase (EC 1.1.1.1) were inhibited by 1,10-phenanthroline at pH 7.0 and 0 degrees C in a two-stage process. The first step appeared to be slowly established, but was rendered reversible by removal of reagent or by addition of excess Zn2+ ions. The second step was irreversible and was associated with the dissociation of the tetrameric enzyme. The presence of saturating concentrations of NAD+ or NADH promoted and enhanced inhibition by the slowly established reversible process, but prevented dissociation of the enzyme. For the incubation mixtures containing NAD+, removal of the 1,10-phenanthroline resulted in virtually complete recovery of activity, whereas, for the incubation mixtures containing NADH, removal of the reagent gave only partial re-activation. The presence of NAD+ and pyrazole, or NADH and acetamide, in incubation mixtures with the enzyme gave rise to ternary complexes that gave protection against both forms of inactivation by 1,10-phenanthroline. The results support the view that at least some of the Zn2+ ions associated with yeast alcohol dehydrogenase have a catalytic, as opposed to a purely structural, role.  相似文献   

19.
Psychrobacter sp. TAD1 is a psychrotolerant bacterium from Antarctic frozen continental water that grows from 2 to 25 degrees C with optimal growth rate at 20 degrees C. The new isolate contains two glutamate dehydrogenases (GDH), differing in their cofactor specificities, subunit sizes and arrangements, and thermal properties. NADP+-dependent GDH is a hexamer of 47 kDa subunits and it is comparable to other hexameric GDHs of family-I from bacteria and lower eukaria. The NAD+-dependent enzyme, described in this communication, has a subunit weight of 160 kDa and belongs to the novel class of GDHs with large size subunits. The enzyme is a dimer; this oligomeric arrangement has not been reported previously for GDH. Both enzymes have an apparent optimum temperature for activity of approximately 20 degrees C, but their cold activities and thermal labilities are different. The NAD+-dependent enzyme is more cold active: at 10 C it retains 50% of its maximal activity, compared with 10% for the NADP+-dependent enzyme. The NADP+-dependent enzyme is more heat stable, losing only 10% activity after heating for 30 min, compared with 95% for the NAD+-dependent enzyme. It is concluded that in Psychrobacter sp. TAD1 not only does NAD+-dependent GDH have a novel subunit molecular weight and arrangement, but that its polypeptide chains are folded differently from those of NADP+-dependent GDH, providing different cold-active properties to the two enzymes.  相似文献   

20.
The binding of NADH and NAD+ to the human liver cytoplasmic, E1, and mitochondrial, E2, isozymes at pH 7.0 and 25 degrees C was studied by the NADH fluorescence enhancement technique, the sedimentation technique, and steady-state kinetics. The binding of radiolabeled [14C]NADH and [14C]NAD+ to the E1 isozyme when measured by the sedimentation technique yielded linear Scatchard plots with a dissociation constant of 17.6 microM for NADH and 21.4 microM for NAD+ and a stoichiometry of ca. two coenzyme molecules bound per enzyme tetramer. The dissociation constant, 19.2 microM, for NADH as competitive inhibitor was found from steady-state kinetics. With the mitochondrial E2 isozyme, the NADH fluorescence enhancement technique showed only one, high-affinity binding site (KD = 0.5 microM). When the sedimentation technique and radiolabeled coenzymes were used, the binding studies showed nonlinear Scatchard plots. A minimum of two binding sites with lower affinity was indicated for NADH (KD = 3-6 microM and KD = 25-30 microM) and also for NAD+ (KD = 5-7 microM and KD = 15-30 microM). A fourth binding site with the lowest affinity (KD = 184 microM for NADH and KD = 102 microM for NAD+) was observed from the steady-state kinetics. The dissociation constant for NAD+, determined by the competition with NADH via fluorescence titration, was found to be 116 microM. The number of binding sites found by the fluorescence titration (n = 1 for NADH) differs from that found by the sedimentation technique (n = 1.8-2.2 for NADH and n = 1.2-1.6 for NAD+).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号