首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing soybean cotyledons rapidly incorporated acetate intofatty acids and water soluble constituents. Oleic acid was thefirst fatty acid to be detected with 14C and the 14C distributionpattern with time was consistent with its being the precursorof linoleic and linolenic acids. Palmitic or stearic acid didnot appear to be the precursor of oleic acid but appeared tobeformed parallel to it. The cotyledons did fix 14CO2 by eitherdark or light fixation reactions but little 14C was incorporatedinto lipids. 1Presented in part at the Midwest Section of the American Societyof Plant Physiologist Meeting in Columbia, Missouri, June 1970 (Received November 27, 1970; )  相似文献   

2.
Exogenous proline-U-14C is readily metabolized to glutamate,ornithine, sugars, CO2, and organic acids, and is incorporatedinto protein by etiolated and green pumpkin cotyledons. As littletranslocation of proline from the cotyledons occur, it was proposedthat in young tissue proline is converted to glutamate, ornithineor sugar which are then readily translocated from the cotyledons.In older tissue some glutamate carbon derived from proline isalso used as an energy source and metabolized to CO2. As proteinsynthesis is occurring rapidly in these cotyledons, considerableproline is incorporated into new protein. After 10-hr, 15% ofthe absorbed radioactivity still remained as free proline. 1Present address: Instituto de Ciencias Biologicas, UniversidadeFederal de Vicosa, Vicosa, Minas Gerais, Brasil. (Received February 1, 1974; )  相似文献   

3.
Dunaliella tertiolecta, a green euryhaline flagellate, is unableto use glucose as a substitute for photosynthetically fixedCO2 to maintain growth. Glucose, acetate, pyruvate, succinate,sucrose, glycerol, alanine and -ketoglutarate do not stimulateendogenous respiration in this alga. By incubating whole cellswith these compounds labelled with 14C, it was shown that onlyacetate, pyruvate and glycerol penetrated the cell at rateswhich might affect growth. These rates were still only of theorder of 10 m/(moles/hr/mg protein. Only acetate and pyruvatewere metabolized to CO2 at appreciable rates, 20 and 80% ofthe total assimilated, respectively. Cell free preparations of D. tertiolecta metabolized glucoserapidly, up to 2 µmoles/hr/mg protein, with over 75% ofthe 14C-label being recovered as triose phosphate. Both thehexose monophosphate shunt and the Embden-Meyerhof pathway wereactive. When specifically labelled glucose was supplied, CO2from the C-6 carbon was released more rapidly than from theC-6 position, in both whole cells and in the cell free extract. It is concluded that the failure of D. tertiolecta to use glucoseis due to membrane impermeability, not lack of hexokinase. Apossible basis for this impermeability is discussed in the lightof the metabolic sequence which seems to be active in this alga. 1Colombo Plan Fellow, 1968–69. Present address: NaturalProducts Research Institute, Seoul National University, Seoul,Korea. 2Present address: Biology Dept. Queen's University, Kingston,Ont., Canada. (Received August 13, 1970; )  相似文献   

4.
Arginine-U-14C was injected into the cotyledons of 7-day oldpumpkin seedlings. At most, 24% of the administered 14C wastransported to the axis tissue. The amounts of arginine incorporatedinto cotyledonary protein suggests that turnover was occurringat a rapid rate. Arginine was extensively metabolized, and after96 hr 50% of the administered 14C had been released as 14CO2.The remaining label was primarily in unmetabolized arginine,protein or transported to the axis tissue with little labelin other amino acids. The results suggest that the carbon fromarginine is incorporated into protein or catabolized to CO2while the carbon for new amino acid skeletons is derived fromsugar. A simple, reproducible method for the quantitative fractionationof plant extracts or hydrolysates of insoluble plant materialinto basic amino acids, acidic amino acids, neutral amino acids,organic acids and sugars was reported. (Received September 10, 1968; )  相似文献   

5.
According to the conventional glycolytic sequence [3,4-14C]glucoseyields phosphoenolpyruvate (PEP) labeled in position C-1. Thisyields pyruvate through pyruvate kinase reaction also labeledin C-1. Subsequent metabolism of pyruvate to acetyl CoA releasesradioactive carbon dioxide. Alternatively PEP may be convertedto oxalacetate by PEP carboxylase and then into organic andamino acids which retain the label. The procedure adopted wasto trap carbon dioxide evolved and isolate organic acids producedafter feeding [3,4-14C]glucose to developing soybean cotyledons.Under conditions of 27?C and pH of 7.5 and 8.5 about 60% ofthe glycolytic carbon was processed by pyruvate kinase and 40%by PEP carboxylase. At lower temperature (15?C) 60% of the carbonwas directed through the PEP carboxylase reaction. This maybe caused by cold lability of pyruvate kinase which was demonstratedin in vitro assays. Low pH, down to 5.5, reduced organic acidproduction by inhibition of PEP carboxylase activity. Pyruvatekinase was not affected and carbon dioxide evolution remainedconstant at varying pH. PEP carboxyiase and pyruvate kinaseindependently feed their products into two separate metabolicpools. Possibly they should jointly be considered as final enzymesin the glycolytic pathway of plants. (Received April 3, 1982; Accepted June 12, 1982)  相似文献   

6.
The kinetics of 3H-acetate assimilation by Chlorella pyrenoidosain the light were examined. The primary products of assimilationwere glycollate and succinate. After 10 sec glycollate contained45 per cent and succinate 25 per cent of the tritium incorporatedby the cells. The percentage of the total tritium in glycollateand succinate fell with time while that in citrate increased.Initially the specific activities (µc of 3H per µmoleof acid) of succinate and glycollate were greater than citrate.When 3H-14C-2-acetate was added to the cells, total dpm for3H and 14C in glycollate rapidly reached a steady state andgave a 3H/14C ratio of 10, compared with a 3H/14C ratio of 4in the acetate. This 3H/14C ratio in glycollate is found because3H is derived from 3H-14C-2-acetate and because the 14C is dilutedwith cold carbon from elsewhere. The addition of 14CO2 at thesame time as 3H-14C acetate decreased the 3H/14C ratio in glycollatebut incorporation of 14C from 14CO2 into glycollate was slowerthan incorporation from 14C-2-acetate. Although 14C from acetaterapidly appeared in glycollate, 14C-labelled glyoxylate wasnot detected. The 3H/14C ratio observed in glycollate rulesout formation of glycollate from acetate via glycoaldehyde.The available evidence did not support glycollate formationvia the Calvin cycle. 14C from 14C-Z-acetate appeared in glycollatebefore it did in phosphoglyceric acid. Total dpm for 3H, 14C,and 3H/l4C ratio in Calvin cycle intermediates were not in equilibriumwith glycollic acid.  相似文献   

7.
Most of the 14C added as glucose to carbohydrate-starved cellsof Chlorella Vulgaris can be recovered as alcohol-soluble compoundsor as polysaccharide. Only 5–I6 per cent., depending onthe position of 14C in the glucose supplied, is released ascarbon dioxide. Similar results were obtained with Chlorellapyrenoidosa and Ankistrodesmus. The labelled alcohol-solublecompounds in Chlorella vulgaris include amino-acids, particularlyglutamic acid, aspartic acid, and alanine, and, when glucose-I-14Cis metabolized, the amount of 14C recovered in these amino-acidsis about the same as that recovered as carbon dioxide. Degradationof the glucose incorporated into polysaccharide shown that theC1 and C6 atoms of glucose rapidly interchange when in the cells.The bearing of these results on attempts to estimate the relativeimportance of different pathways of glucose breakdown is discussed.  相似文献   

8.
The proplastid fraction containing no cytosol and mitochondrionwas isolated from developing castor bean endosperm by stepwisesucrose density centrifugation. This fraction possesses thecapacity to synthesize LFAs from [u-14C]sucrose, [u-14C]-glucose,[u-14C]G-1-P, [u-14C]G-6-P, [2-14C]pyruvate and [1-14C]acetate.Little was incorporated from [1-14C]pyruvate into LFAs, butmuch into 14COa. Addition of cytosol to the proplastid fractiondid not enhance the LFA synthesis. From these data, the wholepath from sucrose to LFAs through glycolytic path and pyruvatedecarboxylation seems to be located within the proplastid indeveloping castor bean endosperm. The difference in utilizationof substrates indicates that the rate of LFA synthesis in castorbean proplastids is limited at a step between sucrose and hexosephosphate. In addition, experiments with CO2 output and LFAsynthesis from [1-14C]glucose, [6-14C]glucose and [u-14C]G-6-Pstrongly suggest that the path flow branches actively throughG-6-P to the pentose phosphate path and little through acetylCoAto the TCA cycle. (Received May 12, 1975; )  相似文献   

9.
Time-courses of 14CO2-fixation and of enzyme activities involvedin photorespiration and photosynthesis were determined duringthe life span of cotyledons from sunflower seedlings (Helianthusannuus L.). Glycolate formation in vivo was estimated from theresults of combined labelling and inhibitor experiments. NADPH-glyceraldehyde-3-phosphatedehydrogenase, NADPH-glyoxylate reductase and chlorophyll werewell correlated with the time-course of 14CO2-fixation (photosynthesis).There was, however, a considerable discrepancy between the developmentalsequence of photosynthesis and that of both ribulose-l,5-bisphosphatecarboxylase and glycolate oxidase. Furthermore, time-coursesof glycolate oxidase activity in vitro and of glycolate formationin vivo differed significantly. Therefore, the use of glycolateoxidase as a marker for the activity of photorespiration ingreening sunflower cotyledons may be questionable. Results from14CO2-labelling experiments with cotyledons treated with theglycolate oxidase inhibitor 2-hydroxy butynoic acid suggestthat glycolate formation relative to CO2-fixation is reducedin senescent cotyledons. Key words: Development, glycolate oxidase, photorespiration, ribulose-l,5-bisphosphate carboxylase, oxygenase  相似文献   

10.
Metabolism of Inorganic Carbon Taken Up by Roots in Salix Plants   总被引:1,自引:0,他引:1  
The metabolic products of inorganic carbon taken up throughthe roots from nutrient solution were studied in willow plants.Willow cuttings (Salix cv. Aquatica gigantea) were suppliedwith unlabelled or 14C-labelled NaHC03 for 1, 5, 10, and 24h in light or in darkness. After feeding, the plants were dividedinto six samples (upper and lower leaves and corresponding stems,cuttings and roots), which were frozen in liquid N2. Freeze-driedground samples were extracted into water-soluble, chloroform-solubleand insoluble fractions. The water-soluble fraction was furtherseparated into basic, acidic, and neutral fractions by ion-exchangechromatography. In the light experiment pronase treatment wasused to separate the insoluble fraction into proteins and insolublecarbohydrates. After I h feeding time, most of the 14C was fixed into organicacids and amino acids both in light and in darkness in all partsof the plants. In the roots a large part of the l4C-carbon wasincorporated into the protein and insoluble fractions alreadyduring short feeding times, and the amounts incorporated increasedwith time. In the leaves, after 1 and 5 h the main labelledcompounds were the organic acids and amino acids, but after10 h about half of the total 14C was in protein and in the insolublefraction. A further analysis of amino acids and organic acidswith HPLC showed that C-4 acids were labelled initially andthat over time the proportion of different acids changed. These results indicate that the metabolism of carbon in rootsmight take place via ß-carboxylation of PEP. Partof the fixed 14C is transported from the roots, probably asamino acids and organic acids, to the shoot. In roots the C-4acids are metabolized further into structural compounds (proteinsand insoluble carbohydrates). Key words: DIC, Salix, roots, metabolism, HPLC  相似文献   

11.
The in vivo data presented here are strong evidence for theinvolvement of citrate cleavage enzyme in lipid synthesis indeveloping soybean cotyledons. The incorporation of 14C fromcitrate into crude lipid fraction in vivo had a pH optimum of4.5; was linear with time; had a temperature optimum of 35?C;and was inhibited by (–)-hydroxycitrate. The point ofcitrate cleavage was between carbons 3 and 4 of the citratemolecule and therefore 14C was incorporated into crude lipidfraction from citrate-5-14C but not citrate-1-14C or citrate-6-14C. 1 Cooperative investigations of the Agricultural Research Service,U.S. Department of Agriculture, and the Illinois AgriculturalExperiment Station. 2 This research represents partial fulfillment of the Ph.D.requirements of Daniel R. Nelson. Presently at Monsanto AgriculturalProducts Co., St. Louis, MO 63141, U.S.A. (Received September 20, 1976; )  相似文献   

12.
The pattern for primary products of CO2-fixation and the chloroplaststructure of Amaranthus retrqflexus L., a species which incorporatescarbon dioxide into C4 dicarboxylic acids as the primary productof photosynthesis, were compared in various chlorophyll containingtissues,i.e., foliage leaves, stems, cotyledons and pale-greencallus induced from stem pith. Despite some morphological differencesin these assimilatory tissues, malate and aspartate were identifiedas the major compounds labelled during a 10 sec fixation of14CO2 in all tissues. Whereas, aspartate was the major componentin C4-dicarboxylic acids formed in foliage leaves, malate predominatedas the primary product in stems, cotyledons and the pale-greencallus. The percentage of 14C-radioactivity incorporated intoPGA and sugar-P esters increased and 14C-sucrose was detectedin the prolonged fixation of 14CO2 in the light, not only infoliage leaves, but also in stems and cotyledons. 1 This work was supported by a Grant for Scientific ResearchNo. 58813, from the Ministry of Education, Japan. 2 Present address: Institute of Applied Microbiology, Universityof Tokyo, Tokyo, Japan. 3 Present address: Department of Biochemistry, University ofGeorgia, Athens 30601. Georgia, U. S. A. (Received July 10, 1971; )  相似文献   

13.
Segments of wheat leaves were supplied in the light with 14C-labelledserine or glucose in atmospheres containing different concentrationsof O2 and zero or 350 parts/106 CO2. Some O2 was necessary forsucrose synthesis from either serine or glucose but sucrosesynthesis from glucose depended on reactions with a high affinityfor O2 whereas sucrose synthesis from serine depended both onreactions with high and low affinities for O2. In the presenceof CO2 sucrose synthesis from serine was decreased when theO2 concentration was increased from 20 to 80% by volume andCO2 was liberated; sucrose synthesis from glucose was almostunaffected by the same change in conditions. Also, in an atmospherecontaining 80% O2 and 350 parts/106 CO2, radioactivity from[14C]serine, was incorporated into glycine. This was not truefor glucose feeding. Hence glucose provides a substrate forsucrose synthesis but not for photorespiration whereas serineis used for both processes in the presence of CO2; in the absenceof CO2 glucose provides substrate for both sucrose synthesisand photorespiration and serine metabolism to sucrose is restricted.  相似文献   

14.
The ability of detached cotyledons cultured in the light toassimilate 14CO2, was reduced by the presence of sucrose inthe culture medium. This was due, at least in part, to an increasedrate of chlorophyll loss and yellowing of the blade. When cotyledondiscs were used, the inhibition of 14Carbon fixation by sucrosewas even more marked than in entire cotyledons. This could bedue to a higher level of penetration of the sucrose into discsor to the absence of the petiole which normally accumulatesphotosynthetic products. Sucrose culture also inhibited root production in cotyledonscultured in the light but promoted root formation in dark-grownor DCMU-treated cotyledons. The DCMU-inhibition of 14Carbonfixation by the blades was alleviated to some extent by sucroseculture. The sucrose effect on rooting was not permanent inthat transfer into water from sucrose led to root formationalthough this was delayed and present in a lower proportionof cotyledons than the controls. Thus, although a carbohydrate source either from photosynthesisor as applied sucrose, is essential for root production to takeplace, the combination of culture in the light with the presenceof sucrose in the medium may lead to an accumulation of carbohydrateto a level which directly or indirectly increases blade yellowingand inhibits root production.  相似文献   

15.
The role of citrate and the citrate cleavage enzyme in lipidsynthesis in developing soybean cotyledons (Glycine max L. Merr.var. Harosoy 63) was investigated. The activity of the enzymewas inhibited by (—) hydroxycitrate, which is a specificinhibitor of citrate cleavage by this enzyme. Incorporationof label from citrate-1-14C and -5-14C indicated that the citratemolecule is cleaved between carbons 3 and 4. Acetyl CoA-14Cand oxaloacetate-14C phenylhydrazone were isolated as productsof the citrate cleavage reaction. The production of oxaloacetate-14C-phenylhdrazonefrom citrate-6-14C was carried out using a nucleotide free enzymepreparation and did not require the addition of ATP or CoA.Therefore it would appear that the citrate cleavage reactionis not CoA dependent in developing soybean seeds. Incorporationof pyruvate-2-14C into the crude lipid fraction was shown torequire both the particulate and soluble fractions. Apparentlyin soybeans, as in animal systems, pyruvate is oxidized by thepyruvate dehydrogenase complex and the acetyl CoA formed condenseswith oxaloacetate to produce citrate in the mitochondria. Citrateis then transported out of the mitochondria to the cytosol whereit is cleaved to form acetyl CoA for lipid synthesis. 1 Cooperative investigations of the Agricultural Research Service,U.S. Department of Agriculture, and Illinois Agricultural ExperimentStation. 2 This research represents partial fulfillment of the Ph. D.requirements of Daniel R. Nelson. Presently at Monsanto AgriculturalProducts Co., St. Louis, MO 63141, U.S.A. (Received January 12, 1977; )  相似文献   

16.
In Daucus carota cells cultivated in vitro, the ammonium ionstimulates the incorporation of radioactivity from labelledglucose and labelled pyruvate into CO2 and into the residueinsoluble in 60 per cent (v/v) ethanol. There is a higher 14CO2production from [6-14C2] glucose than from [6-14C] glucose.These results suggest a possible stimulation of glycolysis bythe ammonium ion.  相似文献   

17.
Glycollate Formation during the Photorespiration of Acetate by Chlorella   总被引:1,自引:0,他引:1  
WhenChlorella pyrenoidosa photoassimilates 3H-14C-acetate theglycollic acid formed shows a high 3H/14C ratio, the only othercompounds showing similar ratios being glycerate and serine.The 3H/14C ratio of glycollate was unaffected by the TCA cycleinhibitors MFA, diethylmalonate and arsenite showing that 3Hin glycollate does not result from the oxidation of acetatevia the TCA cycle, the resulting NADP3H2 or NAD3H2 being usedfor the reduction of the glycollate precursor. Although DCMUdecreased the 3H/14C ratio, complete inhibition of glycollatelabelling was not observed with 10–6 M DCMU, at whichconcentration complete inhibition of the Hill reaction is achieved.Although the 3H/14C ratio was unaltered, total dpm of both 14Cand 3H in glycollate were increased by INH. The 3H/14C ratiosof glycerate and serine were decreased by INH, as were the totaldpm of 3H and 14C incorporated into these compounds. Thus, INHinhibits the further metabolism of glycollate to glycerate andserine. The effect of INH on incorporation of 14C-I-acetateinto various cell fractions was investigated. The incorporationof 14C into polysaccharide and lipid was decreased, while theincorporation of 14C into the water-soluble fraction of cellsand therelease of 14CO2 were little affected. Although glycollicacid was an early product of acetate photoassimilation in Chlorellapyrenoidosa, glycollate excretion does not take place undera wide range of environmental conditions shown to favour glycollateexcretion by other algae. However, small amounts of labelledglycollate were detected in the supernatant from the cells duringthe photoassimilation of 3H-14C-acetate, but this glycollatedid not show the high 3H/14C ratio of glycollate present withinthe cell. The failure of Chlorella pyrenoidosa to excrete appreciableamounts of glycollate when photoassimilating acetate or carbondioxide was considered to result from the presence of glycollateoxidase (EC 1.1.3.1 [EC] ) which allowed the further metabolism ofglycollate. Besides glycollate oxidase, glyoxylate reductasewas also demonstrated in Chlorella pyrenoidosa so that glycollatecould function in hydrogen transfer during the photoassimilationof acetate.  相似文献   

18.
When solutions of [14C]glycollate, glycine, serine, glycerate,or glucose were supplied to segments of wheat leaves throughtheir cut bases in the light, most of the 14C was incorporatedinto sucrose in air but in CO2-free air less sucrose was made.The synthesis of sucrose was decreased because metabolism ofserine was partly blocked. Sucrose synthesis from glucose andglycerate in CO2-free air was decreased but to a smaller extent;relatively more CO2 was evolved and serine accumulated. Theeffects of DCMU and light of different wavelengths on metabolismby leaves of L-[U-14C]serine confirmed that simultaneous photosyntheticassimilation of carbon was necessary for the conversion of serineto sucrose. Of various products of photosynthesis fed exogenouslyto the leaves -keto acids were the most effective in promotingphotosynthesis of sucrose and release of 14CO2 from 14C-labelledserine. This suggests that in CO2-free air the metabolism ofserine may be limited by a shortage of -keto acid acceptorsfor the amino group. In CO2-free air added glucose stimulatedproduction of CO2 and sucrose from D-[U-14C]- glycerate andno competitive effects were evident even though glucose is convertedrapidly to sucrose under these conditions. In addition to asupply of keto acid, photosynthesis may also provide substratesthat can be degraded and provide energy in the cytoplasm forthe conversion of glycerate to sugar and phosphates and sucrose.  相似文献   

19.
Cell Wall Metabolism in Developing Strawberry Fruits   总被引:11,自引:5,他引:6  
Cell wall metabolism was studied in strawberry receptacles (Fragariaananassa, Duchesne) of known age in relation to petal fall (PF).Polysaccharide and protein composition, incorporation of [14C]glucoseand [14C]proline by excised tissue, and the fate of 14CO2 fixedby young, attached fruits were followed in relation to celldivision, cell expansion, fine structure, and ethylene synthesis. Cell division continued for about 7 d after PF although vacuolationof cells was already beginning at PF and the subsequent cellexpansion was logarithmic. There was an associated logarithmicincrease in sugar content per cell and a decreasing rate ofethylene production per unit fresh weight. During cell expansion radioactivity from [14C]glucose was incorporatedinto fractions identified as starch and soluble polyuronideand into glucose and galactose residues in the cell wall. Radioactivityfrom [14C]proline was also incorporated into the cell wall,but only 10 per cent of this activity was found in hydroxyproline.Correspondingly wall protein contained a low proportion of hydroxyprolineresidues. The proportion of radioactivity from 14CO2 fixed byfruitlets remained constant in most sugar residues in the cellwall. The proportion of radioactivity in galactose fell, indicatingturnover of these residues. Between 21 and 28 d after PF receptacles became red and softenedbut there was no change in the rate of ethylene production.Cell expansion continued for at least 28 d. Tubular proliferationof the tonoplast and hydration of middle lamella and wall matrixmaterial had begun 7–14 d after PF but became extremeduring ripening. Associated with the hydration of the wall,over 70 per cent of the polyuronide in the wall became freelysoluble, and arabinose and galactose residues lost from thewall appeared in soluble fractions. There was no increase intotal polysaccharide during ripening and incorporation of [14C]glucoseinto polysaccharides ceased, although protein increased andincorporation of [14C]proline into wall protein continued.  相似文献   

20.
Silica gel thin layer chromatography showed that acetate-2-14C,pyruvate-3-14C and citrate-2,4-14C were incorporated into ipomeamaronein sweet potato root tissues infected by Ceratocystis fimbriata.Rates of incorporation of 14C, from these 3 substances, intothe CHCl3-CH3OH-soluble lipid fraction and ipomeamarone wereof the followingder: acetate > pyruvate > citrate 1This paper constitutes Part 82 of the Phytopathological Chemistryof Sweet Potato with Black Rot and Injury (Received December 11, 1969; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号