首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interaction between the human immunodeficiency virus type 1 (HIV-1) trans-activator Tat and its cis-acting responsive RNA element TAR is necessary for activation of HIV-1 gene expression. We investigated the hypothesis that the essential uridine residue at position 23 in the bulge of TAR RNA is involved in intramolecular hydrogen bonding to stabilize an unique RNA structure required for recognition by Tat. Nucleotide substitutions in the two base pairs of the TAR stem directly above the essential trinucleotide bulge that maintain base pairing but change sequence prevent complex formation with Tat in vitro. Corresponding mutations tested in a trans-activation assay strongly affect the biological activity of TAR in vivo, suggesting an important role for these nucleotides in the Tat-TAR interaction. On the basis of these data, a model is proposed which implicates uridine 23 in a stable tertiary interaction with the GC pair directly above the bulge. This interaction would cause widening of the major groove of the RNA, thereby exposing its hydrogen-bonding surfaces for possible interaction with Tat. The model also predicts a gap between uridine 23 and the first base pair in the stem above, which would require one or more unpaired nucleotides to close, but does not predict any other role for such nucleotides. In accordance with this prediction, synthetic propyl phosphate linkers of equivalent length to 1 or 2 nucleotides, were found to be fully acceptable substitutes in the bulge above uridine 23, demonstrating that neither the bases nor the ribose moieties at these positions are implicated in the recognition of TAR RNA by Tat.  相似文献   

2.
3.
Identification of a novel HIV-1 TAR RNA bulge binding protein.   总被引:6,自引:4,他引:2       下载免费PDF全文
The Tat protein binds to TAR RNA to stimulate the expression of the human immunodeficiency virus type 1 (HIV-1) genome. Tat is an 86 amino acid protein that contains a short region of basic residues (aa49-aa57) that are required for RNA binding and TAR is a 59 nucleotide stem-loop with a tripyrimidine bulge in the upper stem. TAR is located at the 5' end of all viral RNAs. In vitro, Tat specifically interacts with TAR by recognising the sequence of the bulge and upper stem, with no requirement for the loop. However, in vivo the loop sequence is critical for activation, implying a requirement for accessory cellular TAR RNA binding factors. A number of TAR binding cellular factors have been identified in cell extracts and various models for the function of these factors have been suggested, including roles as coactivators and inhibitors. We have now identified a novel 38 kD cellular factor that has little general, single-stranded or double-stranded RNA binding activity, but that specifically recognises the bulge and upper stem region of TAR. The protein, referred to as BBP (bulge binding protein), is conserved in mammalian and amphibian cells and in Schizosaccharomyces pombe but is not found in Saccharomyces cerevisiae. BBP is an effective competitive inhibitor of Tat binding to TAR in vitro. Our data suggest that the bulge-stem recognition motif in TAR is used to mediate cellular factor/RNA interactions and indicates that Tat action might be inhibited by such competing reactions in vivo.  相似文献   

4.
5.
We have used site-directed mutagenesis to delineate sequence specific domains within the human immunodeficiency virus type 1 (HIV-1) trans-acting-responsive (TAR) RNA element that are required for trans activation by the viral Tat protein. Our data in part corroborate a recent report [S. Feng and E. C. Holland, Nature (London) 334:165-167, 1988] that five nucleotides within the loop (+29 to +33) of the TAR hairpin are important for trans activation. We, however, found no absolute requirement for the CUGGG loop sequence. Mutants with substitutions within the loop retained between 9 and 50% activity compared with the wild type. A second sequence, important for trans activation, was found in the 3-base bulge loop (+22 to +24) of the TAR hairpin. Cross-trans-activation studies of mutant HIV-1 TAR elements with the HIV-2 Tat protein suggest that a similar recognition event(s) forms the basis for trans activation of HIV-1 and HIV-2.  相似文献   

6.
TAR, a 59 nt 5′-terminal hairpin in human immunodeficiency virus 1 (HIV-1) mRNA, binds viral Tat and several cellular proteins. We report that eukaryotic translation initiation factor 2 (eIF2) recognizes TAR. TAR and the AUG initiation codon domain, located well downstream from TAR, both contribute to the affinity of HIV-1 mRNA for eIF2. The affinity of TAR for eIF2 was insensitive to lower stem mutations that modify sequence and structure or to sequence changes throughout the remainder that leave the TAR secondary structure intact. Hence, eIF2 recognizes structure rather than sequence in TAR. The affinity for eIF2 was severely reduced by a 3 nt change that converts the single A bulge into a 7 nt internal loop. T1 footprinting showed that eIF2 protects nucleotides in the loop as well as in the strand opposite the A bulge. Thus, eIF2 recognizes the TAR loop and lower part of the sub-apical stem. Though not contiguous, these regions are brought into proximity in TAR by a bend in the helical structure induced by the UCU bulge; binding of eIF2 opens up the bulge context and apical stem. The ability to bind eIF2 suggests a function for TAR in HIV-1 mRNA translation. Indeed, the 3 nt change that reduces the affinity of TAR for eIF2 impairs the ability of reporter mRNA to compete in translation. Interaction of TAR with eIF2 thus allows HIV-1 mRNA to compete more effectively during protein synthesis.  相似文献   

7.
8.
The trans-activation response element (TAR) of human immunodeficiency virus type 1 is a structured RNA consisting of the first 60 nucleotides of all human immunodeficiency virus type 1 RNAs. Computer analyses and limited structural analyses indicated that TAR consists of a stem-bulge-loop structure. Mutational analyses showed that sequences in the bulge are required for Tat binding, whereas sequences in both the bulge and the loop are required for trans activation. In this study, we probed the structures of TAR and various mutants of TAR with chemical probes and RNases and used these methods to footprint a Tat peptide on TAR. Our data show that the structure of wild-type TAR is different from previously published models. The bulge, a Tat-binding site, consists of four nucleotides. The loop is structured, rather than simply single stranded, in a fashion reminiscent of the structures of the tetraloop 5'-UUCG-3' and the GNRA loop (C. Cheong, G. Varani, and I. Tinoco, Jr., Nature [London] 346:680-682, 1990; H.A. Heus and A. Pardi, Science 253:191-193, 1991). RNA footprint data indicate that three bases in the bulge are protected and suggest that a conformational change occurs upon Tat binding.  相似文献   

9.
10.
The trans-activator protein (Tat) of human immunodeficiency virus type 1 (HIV-1) binds to an uridine-rich bulge of an RNA target (TAR; trans-activation responsive element) predominantly via its basic sequence domain. The structure of the Tat(46-58)-TAR complex has been determined by a novel modeling approach relying on structural information about one crucial arginine residue and crosslink data. The strategy described here solely uses this experimental data without additional "modeling" assumptions about the structure of the complex in order to avoid human bias. Model building was performed in a fashion similar to structure calculations from nuclear magnetic resonance (NMR)-spectroscopic data using restrained molecular dynamics. The resulting set of structures of Tat(46-58) in its complex with TAR reveals that all models have converged to a common fold, showing a backbone root mean square deviation (RMSD) of 1.36A. Analysis of the calculated structures suggests that HIV-I Tat forms a hairpin loop in its complex with TAR that shares striking similarity to the hairpin formed by the structure of the bovine immunodeficiency virus Tat protein after TAR binding as determined by NMR studies. The outlined approach is not limited to the Tat-TAR complex modeling, but is also applicable to all molecular complexes with sufficient biochemical and biophysical data available.  相似文献   

11.
12.
Abstract

The trans-activator protein (Tat) of human immunodeficiency virus type 1 (HIV-1>) binds to an uridine-rich bulge of an RNA target (TAR; trans-activation responsive element) predominantly via its basic sequence domain. The structure of the Tat(46–58)-TAR complex has been determined by a novel modeling approach relying on structural information about one crucial arginine residue and crosslink data. The strategy described here solely uses this experimental data without additional “modeling” assumptions about the structure of the complex in order to avoid human bias. Model building was performed in a fashion similar to structure calculations from nuclear magnetic resonance (NMR)-spectroscopic data using restrained molecular dynamics.

The resulting set of structures of Tat(46–58) in its complex with TAR reveals that all models have converged to a common fold, showing a backbone root mean square deviation (RMSD) of 1.36Å. Analysis of the calculated structures suggests that HIV-1 Tat forms a hairpin loop in its complex with TAR that shares striking similarity to the hairpin formed by the structure of the bovine immunodeficiency virus Tat protein after TAR binding as determined by NMR studies. The outlined approach is not limited to the Tat-TAR complex modeling, but is also applicable to all molecular complexes with sufficient biochemical and biophysical data available.  相似文献   

13.
J W Harper  N J Logsdon 《Biochemistry》1991,30(32):8060-8066
Substantial evidence indicates that HIV-1 trans-activation by tat protein is mediated through the TAR RNA element. This RNA forms a stem-loop structure containing a three-nucleotide bulge and a six-nucleotide loop. Previous mutagenic analysis of TAR indicates that the bulge residues and a 4 bp segment of the stem constitute, in part, the tat binding site. However, there appears to be no sequence-specific contribution of the six-base loop. We have employed a ribonuclease protection technique to explore the interaction of tat with single-stranded regions of TAR. The results indicate that tat interacts with both the bulge and loop regions of TAR. Treatment of TAR RNA with RNase A results in cleavage at U23 and U31, located in the bulge and loop regions, respectively. High concentrations (approximately 2 microM) of Escherichia coli derived tat protein, prepared by standard procedures, gave complete protection of TAR RNA from RNase A cleavage. However, under these conditions, truncated TAR derivatives in which no stem-loop structure is expected to form were also protected, indicating nonspecific binding. In order to obtain a tat preparation with enhanced specificity toward TAR RNA, methods were developed for refolding the recombinant protein. This treatment enhanced the affinity of tat for TAR by approximately 30-fold [Kd(apparent) less than 25 nM] and markedly increased its specificity for the TAR. Again, tat protected TAR RNA from RNase A cleavage at both U23 and U31. Protection was also observed with RNase T1 which cleaves TAR RNA at three G residues in the six-base loop.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
trans activation of human immunodeficiency virus type 1 (HIV-1) involves the viral trans-activator protein (Tat) and a cellular factor(s) encoded on human chromosome 12 (HuChr12) that targets the trans-activation response element (TAR) in the viral long terminal repeat. Because nascent TAR RNA is predicted to form a secondary structure that specifically binds cellular proteins, we investigated the composition of the TAR RNA-protein complex for HuChr12-specific proteins. UV cross-linking of TAR RNA-nuclear protein complexes formed in vitro identified an 83-kDa protein in human cells and in a human-hamster hybrid cell containing only HuChr12. The 83-kDa TAR RNA-binding protein was absent in the parental hamster cells. TAR RNA mutations that inhibited binding of the 83-kDa protein in vitro also inhibited HuChr12-dependent Tat trans activation. These TAR mutations changed the native sequence or secondary structure of the TAR loop. The TAR RNA binding activity of the 83-kDa protein also correlated with a HuChr12-dependent increase in steady-state HIV-1 RNA expression during Tat trans activation. Our results suggest that either a species-specific 83-kDa TAR RNA loop-binding protein is directly encoded on HuChr12 or a HuChr12 protein(s) induces the expression of an 83-kDa TAR-binding protein in nonprimate cells.  相似文献   

15.
16.
17.
18.
19.
Evidence for a base triple in the free HIV-1 TAR RNA   总被引:2,自引:0,他引:2       下载免费PDF全文
We propose the existence of a novel base triple in the HIV-1 TAR hairpin. This triple is supported by covariation of loop residue 31 with residue 22, which is part of an unusual base pair with U40 below the 3-nucleotide bulge. A set of mutants was constructed to test the involvement of bases A22, U31, and U40 in a triple interaction. RNA structure probing, trans-activation assays, and structure modeling are consistent with the existence of this base triple in a bent conformation of the free TAR element. However, disruption of the base triple does not affect binding of a Tat-derived peptide. We therefore compared the structure of free and Tat-bound TAR RNA by footprinting and site-specific cross-linking analyses. These studies indicate that the Tat arginine-rich motif, in addition to its known binding site at the bulge, is in close contact with U31 in the TAR loop. Because binding of Tat to TAR is known to coincide with the formation of a base triple with residues U23, A27, and U38, we hypothesize that Tat binding and the associated straightening of TAR triggers the disruption of the (A22-U40)U31 triple.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号