首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Synaptic potentials of smooth muscles of the gastrointestinal tract arising in response to intramural stimulation were studied by intracellular recording of potentials and the sucrose gap method. The results showed that muscarinic cholinergic neuromuscular transmission in smooth-muscle cells of the gastrointestinal tract is purely excitatory. This transmission is most marked in the fundal part of the stomach. Adrenergic control of motor activity is manifested as excitation and inhibition of smooth muscles. Relations between these phenomena differ in different parts of the gastrointestinal tract. Depression of inhibitory adrenergic effects by apamin discloses excitation of smooth muscles which is not found under ordinary conditions. Like its inhibitory action, the excitatory action of noradrenalin is exerted as a result of activation of -adrenoreceptors. Nonadrenergic synaptic inhibition, which is more effective than adrenergic, is found in smooth-muscle cells of the circular layer of all parts of the gastrointestinal tract studied. Inhibitory postsynaptic potentials consists of two components: a first fast, and a second slow. Apamin blocks mainly the first phase of the synaptic response. During inhibition of nonadrenergic inhibitory postsynaptic potentials by apamin, noncholinergic synaptic excitation resistant to the action of blockers of cholinergic, adrenergic, and serotoninergic transmission is found in smooth muscles of the cecum. It is complex in character in this part of the intestine: an initial excitatory postsynaptic potential and a slow late depolarization wave. In smooth-muscle cells of other parts noncholinergic excitation is manifested only as a slow depolarization wave. The following types of synaptic influences of the autonomic nervous system on smooth-muscle cells of the gastrointestinal tract are therefore postulated: nonadrenergic excitatory, both cholinergic and noncholinergic; nonadrenergic inhibitory, adrenergic excitatory and adrenergic inhibitory, and also presynaptic modulation of neuromuscular transmission.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 3, pp. 307–319, May–June, 1984.  相似文献   

2.
In muscle strips of the guinea-pig large intestine, haloperidol and clotrimazole increased spontaneous electrical and contractile activities and decreased ATP-evoked hyperpolarization of smooth-muscle cells and the amplitude of inhibitory synaptic potentials. The pattern of effects of haloperidol on hyperpolarization induced by intramural stimulation of muscle strips was preserved under conditions of pre-incubation of the preparations in Krebs solutions containing pyridoxal-5′-phosphate, Nω-nitro-L-arginine, or apamin, as well as both apamin and tetraethylammonium. Neirofiziologiya/Neurophysiology, Vol. 39, Nos. 4/5, pp. 412–415, July–October, 2007.  相似文献   

3.
The effect of neurotensin on canine ileal circular muscle devoid of myenteric plexus was investigated using single and double sucrose gap techniques. Similar results were obtained with microelectrode techniques. Neurotensin caused a temperature-sensitive and dose-dependent biphasic response, an initial hyperpolarization associated with inhibition of contractile activity, followed by an excitatory phase, usually consisting of spike discharge and tonic and phasic contractions, for which depolarization was not required. Neither response was affected by tetrodotoxin, phentolamine, propranolol, or atropine. The hyperpolarization was associated with decreased membrane resistance, blocked by 10(-7) M apamin, and converted to tonic depolarization by apamin (10(-6) M). Tachyphylaxis to neurotensin occurred when the stimulation interval was less than 20 min. After Ca2+ depletion, depolarization was observed instead of the hyperpolarization; this depolarization was not affected by nitrendipine and was gradually abolished with repetitive stimulation at 20-min intervals. When Ca2+ was present, nifedipine did not alter the hyperpolarizing phase of the response but inhibited spiking and blocked all contractions. The excitatory phase of the response was enhanced by Bay K-8644. Neuromedin N elicited a response identical with that of neurotensin. The responses of the two peptides were completely cross tachyphylactic. Inhibitory junction potentials were not affected by neurotensin tachyphylaxis. It is concluded that neurotensin and neuromedin N activate apamin-sensitive, calcium-dependent potassium channels in circular muscle, causing membrane hyperpolarization and inhibition of muscle contraction. Release of intracellular calcium is involved in the activation of these potassium channels.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The role of nitric oxide (NO) as a possible transmitter for nonadrenergic inhibitory transmission was studied on isolated muscle strips of the guinea pig gastro-intestinal tract (GIT) using sucrose-gap technique. In addition, the voltage clamp and intracellular dialysis techniques were employed to study the effects of sodium nitroprusside (NP) on isolated smooth muscle (SM) cells of thetaenia coli. N-nitro-L-arginine methyl ester (L-NAME), a blocker of NO synthesis from L-arginine (0.1 mM), was shown to selectively suppress the apamin-resistant component of nonadrenergic inhibitory junctional (synaptic) potentials (IJP) in the guinea pig GIT SM cells. At the same time, L-NAME did not affect the vasoactive intestinal polypeptide (VIP)- and NP-evoked hyperpolarization in SM cells of the colon. The NP-induced hyperpolarization (0.1 mM) was accompained by a decrease in the SM cell membrane resistance. Application of NP to isolated SM cells activated a small outward current and increased the frequency of spontaneous transient calcium-dependent outward currents. NP increased the Ca-dependent potassium current evoked in SM cells by step depolarization, but did not affect the potassium currents of delayed rectification. Our results suggest that NO is involved in generation of nonadrenergic IJP in SM cells of the guinea pig GIT. The action of NP on SM cells is complex and results in hyperpolarization and relaxation (partially through the activation of Ca-dependent potassium channels in SM cell membrane).  相似文献   

5.
1. Using extracellular electrodes placed on the serosa, we recorded the modifications of the electrical activity of the colonic muslce fibers caused by the stimulation of vagal and splanchnic nerve fibers. 2. Vagal stimulation produces two types of junction potentials: excitatory junction potentials (EJPs) and inhibitory junction potentials (IJPs). The IJPs are elicited by stimulation of vagal fibers which innervate intramural non-adrenergic inhibitory neurons. 3. The conduction velocity of the nerve impulse along the vagal pre-ganglionic fibers is 1.01 m/sec for excitatory fibers and 0.5. m/sec for inhibitory fibers. 4. Splanchnic fiber stimulation causes EJP disappearance, blocking transmission between preganglionic fibers and intramural excitatory neurons, and a decrease in IJP amplitude that most likely indicates a previous hyperpolarization of the smooth muscle. 5. IJP persistence during splanchnic stimulation proves that sympathetic inhibition does not modify the transmission of the vagal influx onto the non-adrenergic inhibitory neurons of the intramural plexuses. 6. Through a comparative study of proximal and distal colonic innervation, we are able to show that there is a similar organization of both regions, that is a double inhibitory innervation: an adrenergic one of a sympathetic origin, and a non adrenergic one of a parasympathetic origin.  相似文献   

6.
Romanenko  A. V.  Gnatenko  V. M.  Grusha  M. M. 《Neurophysiology》2000,32(5):305-311
We studied the influence of the vitamin B6 form most extensively distributed in the organism, pyridoxal 5-phosphate (PyrP), on neuromuscular transmission in the smooth muscle of the circular layer of the guinea pig distal colon and of the ileum and an initial segment of the jejunum of humans. Application of 10-10 to 10-3 M PyrP reversibly and in a dose-dependent manner decreased the amplitude of non-cholinergic non-adrenergic inhibitory synaptic potentials (ISP) and increased their duration. Under the influence of 10-8 to 10-4 M PyrP, both the amplitude and duration of ATP- and noradrenaline-induced hyperpolarizations increased. Application of 10-4 M PyrP completely suppressed the sensitivity of smooth muscle cells to noradrenaline, but a hyperpolarizing effect of exogenous ATP was preserved. The PyrP-induced amplitude decrease and prolongation of ISP were preserved in the presence of 10-4 M hexonium (a ganglioblocker), 5 · 10-7 M apamin (a blocker of Ca2+-dependent K+ channels of small conductance), 10-5 M verapamil (a blocker of L-type Ca2+ channels), and 10-4 M N-nitro-L-arginine (a blocker of NO-synthase). It seems probable that a decrease in the ISP amplitude is related to a presynaptic PyrP effect. Under conditions of PyrP-induced suppression of non-cholinergic non-adrenergic inhibition, non-cholinergic short-latency excitatory synaptic potentials could be recorded in smooth muscle. Thus, PyrP is an effective modulator of synaptic transmission in smooth muscle of the gastrointestinal tract of mammals.  相似文献   

7.
Shuba  M. F.  Vladimirova  I. A.  Philyppov  I. B. 《Neurophysiology》2003,35(3-4):224-233
Nonadrenergic inhibitory and excitatory junction potentials (IJP and EJP) in the intestinal smooth muscle cells are of a complex transmitter and ion nature. The IJP consist of two components; the initial, fast, component is of a purinergic nature. Low-conductance Ca2+-dependent potassium channels (SK(Ca)) are involved in generation of the initial component of IJP because this component can be specifically and reversibly blocked by apamin. Probably, local Ca2+ release from the InsP3-sensitive store can be a link between the P2Y receptors and activation of the SK(Ca) channels because inhibition of the activity of phospholipase C (PLC) decreases IJP. The second, slow, component of IJP is nitric oxide-dependent. Such a component of IJP develops due to activation of high-conductance Ca2+-dependent potassium channels (BK(Ca)) because this component can be blocked by TEA and charybdotoxin. The release of Ca2+ from the ryanodine-sensitive store is responsible for activation of the BK(Ca) channels and generation of the second component of IJP. Thus, it appears that Ca2+ released from one of the intracellular stores can activate only a certain type of the Ca2+-dependent K+ channels involved in the generation of IJP.  相似文献   

8.
Effects of stimulation of intramural nerves in the circular smooth muscle layer of the porcine colon (Sus scrofa domestica) were studied using the sucrose-gap technique. Electrical field stimulation of the preparation, superfused with Krebs solution at 21 degrees C, induced a transient hyperpolarization of the smooth muscle cell membrane. This hyperpolarization was an inhibitory junction potential (IJP). The responses obtained from circular muscle originating from either the centripetal or centrifugal gyri of the ascending colon did not differ significantly. The IJP was characterized as being mediated by intramural, nonadrenergic, noncholinergic (NANC) nerves. The amplitude and latency of the IJP changed linearly with temperature (15-25 degrees C: +1 mV and -0.1 s per degree Celsius, respectively) reflecting a temperature-dependent synchronization of transmitter release. The membrane resistance decreased during the IJP. The IJP amplitude decreased or increased during conditioning hyperpolarizations or depolarizations, respectively, and reversed at membrane potentials about 30 mV more negative than the resting membrane potential. Potassium conductance blocking agents, barium (1 mM), tetraethylammonium chloride (TEA, 20 mM), 4-aminopyridine (4-AP, 5 mM), apamin (1 microM), and aminacrine (10(-4) M) added to the superfusion medium increased the membrane resistance. Only barium, TEA, and apamin depolarized the smooth muscle cell membrane. The IJP amplitude decreased in the presence of aminacrine and apamin to 75 and 35%, respectively, suggesting that apamin-sensitive Ca2+-activated K+ channels are involved in this response. ATP, adenosine, and related adenine nucleotides in concentrations up to 10(-3) M did not mimic the IJP. Superfusion with ATP for 15 min revealed a gradually increasing attenuation by up to 20% of the IJP. This might suggest that the release of neurotransmitter from intramural NANC nerves is modulated presynaptically via purinoceptors. Exogenously applied vasoactive intestinal polypeptide (VIP) in concentrations of 10(-9) to 10(-4) M did not affect the preparation. Also at elevated temperatures (up to 35 degrees C), VIP (10(-7) to 10(-4) M) did not cause measurable effects. It is concluded that the inhibitory mediator of the intramural NANC nerves present in the circular muscle layers of the porcine colon is neither a purine nor VIP.  相似文献   

9.
Two peptides from the tachykinin family, substance P (SP) and neurokinin A (NKA), were identified as neurotransmitters (co-transmitters) of non-adrenergic non-cholinergic (NANCh) excitation in the gastrointestinal tract. The contraction of smooth muscles produced by tachykinins released from the excitatory enteric motoneurons is mediated by the NK1 and/or the NK2 tachykinin receptors. The differing contribution of these receptors in mediating the NANCh excitatory responses has been demonstrated in various regions of the intestine. The NK3 tachykinin receptors are confined only to the enteric neurons; they mediate release of different excitatory and inhibitory transmitters. The main secondary messenger pathway for all three tachykinin receptors is phosphoinositide breakdown that results in an increase of intracellular Ca2+ concentration. Signal transduction mechanisms are still not adequately known for tahykinin receptors. A multiple ionic mechanism has been proposed to mediate excitatory action of SP; it comprises activation of non-selective cationic channels, or activation of maxi Cl channels, and/or inhibition of K+ channels. Data about the ionic mechanism underlying the NK2 receptor activation are still missing. In conclusion, SP and NKA play a physiological role as NANCh neurotransmitters in smooth muscles of the gastrointestinal tract and, therefore, tachykinins may have a significant pathophysiological relevance in humans.Neirofiziologiya/Neurophysiology, Vol. 27, No. 5/6, pp. 425–432, September–December, 1995.  相似文献   

10.
Nonadrenergic inhibitory junction potentials (IJPs), evoked by intramural nerve stimulation, were studied in the smooth muscle of the guinea-pig stomach, cecum, and colon, using a modified sucrose-gap technique. After incubating smooth muscle preparations for 4–9 h in potassium-free Krebs solution, IJPs were abolished, but reappeared when cesium ions (6 mM) were added to the Krebs solution. Under these conditions, in the majority of cases the amplitude of the IJP was half as small, and the latency and duration were significantly longer, than in normal conditions; also ATP, but not adenosine, caused hyperpolarization of the smooth muscle membrane. The amplitude of the IJP depended on the extracellular concentration of cesium. In all types of preparation, in cesium-containing Krebs solution, apamin usually abolished the IJP and responses to ATP. These results are consonant with the purinergic hypothesis of inhibitory neuromuscular transmission. The generation of the IJP in these potassium-free conditions depends on cesium ions, which pass through the small-conductance apamin-sensitive, calcium-dependent potassium channels.A. A. Bogomoletz Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 5, pp. 634–641, September–October, 1990.  相似文献   

11.
Neurons in vesical parasympathetic ganglia receive excitatory and inhibitory inputs from both divisions of the autonomic nervous system. Sacral parasympathetic pathways (cholinergic) provide the major excitatory input to these ganglia via activation of nicotinic receptors. Parasympathetic pathways also activate muscarinic inhibitory and excitatory receptors, which may exert a modulatory influence on transmission. Cholinergic transmission is relatively inefficient when preganglionic nerves are stimulated at low frequencies (< 1 Hz). However, excitatory postsynaptic potentials (EPSPs) and postganglionic firing markedly increase during repetitive stimulation at frequencies of 1-10 Hz. It is concluded that enhanced transmitter release accounts for the temporal facilitation and that vesical ganglia function as "high pass filters" that amplify the parasympathetic excitatory input to the detrusor muscle during micturition. Transmission in vesical ganglia is also sensitive to adrenergic inhibitory and facilitatory synaptic mechanisms elicited by efferent pathways in the hypogastric nerves. The effects of exogenous norepinephrine indicate that adrenergic inhibition is mediated by alpha receptors and reflects primarily a presynaptic depression of transmitter release although postsynaptic adrenergic hyperpolarizing and depolarizing effects have also been noted. Adrenergic facilitation is mediated by beta receptors as well as unidentified receptors. Norepinephrine also can inhibit or excite spontaneously active neurons in vesical ganglia. The existence of inhibitory and facilitatory synaptic mechanisms in vesical ganglia provides the basis for a complex ganglionic modulation of the central autonomic outflow to the bladder.  相似文献   

12.
The possible function of sialic acid containing substrates in the synaptic terminals was studied by intracellular injection of ruthenium red (RuR) and neuraminidase (NAA). When injected into cholinergic and non cholinergic neurons of Aplysia, NAA and RuR, known to have similar molecular targets, blocked synaptic transmission. The subcellular sites of action of these molecules were investigated. 1. ACh receptors are not affected by RuR. 2. An intracellular site of action of RuR is likely, as less was necessary to block transmission when injected into the presynaptic cell than when applied in the bath. 3. Ca++ channels are not blocked by RuR or neuraminidase. 4. Transmission block is not due to an axonal conduction block, since strong somatic depolarization is not able to induce transmitter release in the presence of RuR. 5. Biochemical analysis of pools of 3H ACh was performed in controls and after injection of RuR. RuR appeared to significantly increase the cytoplasmic ACh pool without any change of the vesicular ACh pool. 6. Quantal release of transmitter was analysed with a current fluctuation method. There were no changes in the amplitude or decay time (tau) of miniataure postsynaptic potentials, but a decrease in the quantal content of the synapse was found.  相似文献   

13.
兔肠系膜下神经节细胞的两种非胆碱能性慢突触后电位   总被引:4,自引:2,他引:2  
以常规细胞内记录技术对兔肠系膜下神经节细胞的跨膜电位进行了观察。对节前神经的短串脉冲刺激,可诱发出一串快兴奋性突触后电位(f-EPSP)或顺向动作电位;在此之后,大多数细胞还出现一个持续约2min 的缓慢去极化电位。该电位具有抗箭毒和阿托品性质,受低钙高镁溶液的可逆性阻抑,因而可称为非胆碱能性兴奋性突触后电位,或者也可归入迟慢兴奋性突触后电位(ls-EPSP)。多数细胞的 ls-EPSP 伴有膜电阻增大,电位的幅度随细胞静息电位的超极化而变小;提示在这些细胞上,钾电导的失活很可能参与了电位的发生。以P物质溶液灌流神经节未见该电位有显著改变。另外,在箭毒化加阿托品化的神经节中,还发现少数细胞对节前神经的串刺激发生一个持续约一分钟的超极化电位。它也具有抗胆碱能受体阻断剂的性质,受低钙高镁溶液可逆性阻抑,为此我们命之为“极慢抑制性突触后电位”(vs-IPSP),以区别于“慢抑制性突触后电位”(s-IPSP),后者是通常用以表示一种胆碱能性的慢电位。本文所述的这两种非胆碱能性的突触电位有关递质,尚待探索。  相似文献   

14.
Morphine reduces the output of transmitter from the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum and from the mouse vas deferens. Intracellular recordings were made from ganglion cells of the myenteric plexus and smooth muscle cells of the vas deferens. Synaptic transmission within the myenteric plexus was blocked by hexamethonium. Morphine did not change the properties of the ganglion cells, nor did it affect synaptic potentials. 5-Hydroxytryptamine inhibited acetylcholine release at intraganglionic synapses by an action which was unaffected by morphine. In the vas deferens, excitatory junction potentials were elicited by stimulation of postganglionic adrenergic nerve fibres. The junction potentials were depressed by morphine and levorphanol but not by dextrorphan. This depression was reversed by naloxone. The results indicate that morphine acts directly to reduce transmitter release at the neuro-effector junctions in the myenteric plexus-longitudinal muscle preparation and in the vas deferens in these species.  相似文献   

15.
Action potentials of myotubes in culture prepared from 18-19 day -old mouse embryos have a contractile activity and action potentials that are followed by a long lasting after hyperpolarization (ahp) which is blocked by apamin. Myotubes prepared from embryos of mice with muscular dysgenesis (mdg/mdg) did not contract and had action potentials which were never followed by a.h.p.'s. Voltage-clamp experiments have shown that Na+ channel activity was identical in mutant and control muscles and that the activity of fast and slow Ca2+ channels was nearly absent in the mutant.  相似文献   

16.
G-protein-mediated inhibition of Ca2+ current is ubiquitous in neurons, and in synaptic terminals it can lead to a reduction in transmitter release (presynaptic inhibition). This type of Ca2+ current inhibition can often be relieved by prepulse depolarization, so the disinhibition of Ca2+ current can combine with Ca2+-dependent mechanisms for activity-induced synaptic facilitation to amplify this form of short-term plasticity. We combine a mathematical model of a G-protein-regulated Ca2+ channel with a model of transmitter secretion to study the potential effects of G-protein-mediated Ca2+ channel inhibition and disinhibition on transmitter release and facilitation. We investigate several scenarios, with the goal of observing a range of behaviors that may occur in different synapses. We find that the effects of Ca2+ channel disinhibition depend greatly on the location and distribution of inhibited channels. Facilitation can be greatly enhanced if all channels are subject to inhibition or if the subpopulation of channels subject to inhibition are located closer to release sites than those insensitive to inhibition, an arrangement that has been suggested by recent experiments (Stanley and Mirotznik, 1997). We also find that the effect of disinhibition on facilitation is greater for longer action potentials. Finally, in the case of homosynaptic inhibition, where Ca2+ channel inhibition occurs through the binding of transmitter molecules to presynaptic autoreceptors, there will be little reduction in transmitter release during the first of two successive bursts of impulses. The reduction of release during the second burst will be significantly greater, and if the unbinding rate of autoreceptors is relatively low, then the effects of G-protein-mediated channel inhibition become more pronounced as the duration of the interburst interval is increased up to a critical point, beyond which the inhibitory effects become less pronounced. This is in contrast to presynaptic depression due to the depletion of the releasable vesicle pool, where longer interburst intervals allow for a more complete replenishment of the pool. Thus, G-protein-mediated Ca2+ current inhibition leads to a reduction in transmitter release, while having a highly variable amplifying effect on synaptic facilitation. The dynamic properties of this form of presynaptic inhibition are very different from those of vesicle depletion.  相似文献   

17.
Focal activation of glutamate receptors in distal dendrites of hippocampal pyramidal cells triggers voltage-dependent Ca(2+) channel-mediated plateau potentials that are confined to the stimulated dendrite. We examined the role of dendritic K(+) conductances in determining the amplitude, duration, and spatial compartmentalization of plateau potentials. Manipulations that blocked SK-type Ca(2+)-activated K(+) channels, including apamin and BAPTA dialysis, increased the duration of plateau potentials without affecting their amplitude or compartmentalization. Manipulations that blocked Kv4.2 A-type K(+) channels, including a dominant-negative Kv4.2 construct and 4-aminopyridine, increased the amplitude of plateau potentials by allowing them to recruit neighboring dendrites. Prolongation of plateau potentials or block of Kv4.2 channels at branch points facilitated the ability of dendritic excitation to trigger fast action potentials. SK channels thus underlie repolarization of dendritic plateau potentials, whereas Kv4.2 channels confine these potentials to single dendritic branches, and both act in concert to regulate synaptic integration.  相似文献   

18.
SK2- and KV4.2-containing K+ channels modulate evoked synaptic potentials in CA1 pyramidal neurons. Each is coupled to a distinct Ca2+ source that provides Ca2+-dependent feedback regulation to limit AMPA receptor (AMPAR)- and NMDA receptor (NMDAR)-mediated postsynaptic depolarization. SK2-containing channels are activated by Ca2+ entry through NMDARs, whereas KV4.2-containing channel availability is increased by Ca2+ entry through SNX-482 (SNX) sensitive CaV2.3 R-type Ca2+ channels. Recent studies have challenged the functional coupling between NMDARs and SK2-containing channels, suggesting that synaptic SK2-containing channels are instead activated by Ca2+ entry through R-type Ca2+ channels. Furthermore, SNX has been implicated to have off target affects, which would challenge the proposed coupling between R-type Ca2+ channels and KV4.2-containing K+ channels. To reconcile these conflicting results, we evaluated the effect of SK channel blocker apamin and R-type Ca2+ channel blocker SNX on evoked excitatory postsynaptic potentials (EPSPs) in CA1 pyramidal neurons from CaV2.3 null mice. The results show that in the absence of CaV2.3 channels, apamin application still boosted EPSPs. The boosting effect of CaV2.3 channel blockers on EPSPs observed in neurons from wild type mice was not observed in neurons from CaV2.3 null mice. These data are consistent with a model in which SK2-containing channels are functionally coupled to NMDARs and KV4.2-containing channels to CaV2.3 channels to provide negative feedback regulation of EPSPs in the spines of CA1 pyramidal neurons.  相似文献   

19.
The role of ATP and its stable analogue ATPγS [adenosine-5′-o-(3-thio)triphosphate] was studied in rat hippocampal neurotransmission under normoxic conditions and during oxygen and glucose deprivation (OGD). Field excitatory postsynaptic potentials (fEPSPs) from the dendritic layer or population spikes (PSs) from the soma were extracellularly recorded in the CA1 area of the rat hippocampus. Exogenous application of ATP or ATPγS reduced fEPSP and PS amplitudes. In both cases the inhibitory effect was blocked by the selective A1 adenosine receptor antagonist DPCPX (8-cyclopentyl-1,3-dipropylxanthine) and was potentiated by different ecto-ATPase inhibitors: ARL 67156 (6-N,N-diethyl-D-β,γ-dibromomethylene), BGO 136 (1-hydroxynaphthalene-3,6-disulfonate) and PV4 [hexapotassium dihydrogen monotitanoundecatungstocobaltate(II) tridecahydrate, K6H2[TiW11CoO40]·13H2O]. ATPγS-mediated inhibition was reduced by the P2 antagonist suramin [8-(3-benzamido-4-methylbenzamido)naphthalene-1,3,5-trisulfonate] at the somatic level and by other P2 blockers, PPADS (pyridoxalphosphate-6-azophenyl-2′,4′-disulfonate) and MRS 2179 (2′-deoxy-N 6-methyladenosine 3′,5′-bisphosphate), at the dendritic level. After removal of both P2 agonists, a persistent increase in evoked synaptic responses was recorded both at the dendritic and somatic levels. This effect was prevented in the presence of different P2 antagonists. A 7-min OGD induced tissue anoxic depolarization and was invariably followed by irreversible loss of fEPSP. PPADS, suramin, MRS2179 or BBG (brilliant blue G) significantly prevented the irreversible failure of neurotransmission induced by 7-min OGD. Furthermore, in the presence of these P2 antagonists, the development of anoxic depolarization was blocked or significantly delayed. Our results indicate that P2 receptors modulate CA1 synaptic transmission under normoxic conditions by eliciting both inhibitory and excitatory effects. In the same brain region, P2 receptor stimulation plays a deleterious role during a severe OGD insult.  相似文献   

20.
Changes in ionic conductance lying at the basis of nonlinearity of the current-voltage characteristic curve of the cell (nonsynaptic) membrane of horizontal cells were studied in experiments on the goldfish and turtle retina. All measurements were made during blocking of synaptic transmission by bright light or Co++. An increase in the K+ concentration led to depolarization and to a reduction of the steepness of the hyperpolarization branch of the current-voltage curve, whereas a decrease in K+ had the opposite effect. Changes in the Cl or Na+ concentrations had no significant effect on membrane potential or on the shape of the current-voltage curve. The principal potential-forming ion in the horizontal cells is thus K+; conductance for Cl is absent or very low, and conductance for Na+ also is evidently small. In the presence of Ba++ (2–5 mM) the steepness of the hyperpolarization branch of the current-voltage curve was increased and the whole curve became more linear. It is concluded that nonlinearity of the current-voltage curve of the horizontal cell membrane is due mainly to potential-dependent potassium channels, whose conductance increases during hyperpolarization; this increase in conductance is blocked by Ba++. An increase in the Ca++ concentration to 20 mM led to an increase in steepness of the depolarization branch of the current-voltage curve, suggesting that depolarization increases membrane conductance for Ca++.Institute for Problems in Information Transmission, Academy of Sciences of the USSR, Moscow. Translated from Neirofiziologiya, Vol. 13, No. 5, pp. 531–539, September–October, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号