首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Effect of Heat Stress on Wheat Leaf and Ear Photosynthesis   总被引:2,自引:0,他引:2  
The effect of heat-hardening on carbon exchange rate per unitarea (CER) of flag leaves, whole ears, and ears with the awnsremoved, was measured in hexaploid (Triticum aestivum L.) andtetraploid (T. turgidum L. and T. dicoccoides) wheat varieties.The CER for awns was calculated by the difference. For the non-hardened hexaploid cv. ‘H-895’ the CERfor the leaves and glumes had an optimum temperature of 25°C.By contrast, the CER for the awns increased from 25°C to32°C, indicating an optimum at 32°C or more. Heat-hardeningdecreased the CER of leaves and glumes at the optimum temperature,but increased the CER especially in leaves at supra-optimaltemperatures. Thus, leaf CER in hardened plants became essentiallyindependent of temperatures between 25°C and 32°C. AwnCER was little affected by heat-hardening. For all 12 varieties, leaf and ear CER was smaller in hardenedplants at 30°C than in non-hardened plants at 22°C.Leaf and ear CER measured at 30°C differed significantlybetween varieties within a species. Whole ear CER at 30°Cwas negative in most varieties although the calculated valuefor the awns was positive. Thus, the high temperature optimumfor CER of the awns was a major factor in the variation amongwheat varieties in tolerance of ear CER to heat. The biochemicalattributes of the photosynthetic mechanism in awns responsiblefor the high temperature optimum were already present in wildtetraploid wheat. There was a positive correlation across allvarieties between ear CER at 30°C and the percentage ofawns in total ear area (r = 0930, P = 0 This together with previousresults (Blum, 1985a), suggests that a large amount of awnsin the ear is a sensible selection index in wheat for improvedproduction in hot, dry environments. Key words: Carbon exchange rate, photosynthesis, awns, heat, stress, wheat, breeding  相似文献   

2.
Blum, A., Mayer, J. and Golan, G. 1988. The effect of grainnumber per ear (sink size) on source activity and its water-relationsin wheat.–J. exp. Bot. 39: 106–114. Work was done to evaluate the nature of sink-source relationshipsin wheat (Triticum aestivum L.), when the strength of the sinkwas modified by the removal of half of the grain from the earat about anthesis. The main hypothesis was that sink-sourcerelationship would be modified by water stress and that a weakersink would improve the drought resistance of the source. Two experiments were performed. The first experiment evaluatedthe effect of de-graining in two wheat varieties grown in thefield. The second experiment (in the greenhouse) evaluated theeffect of de-graining in plants subjected to water stress afteranthesis by immersing the root system in a solution of polyethyleneglycol (6000), as compared with non-stressed controls. In bothexperiments measurements were performed after de-graining toprovide data on leaf gas exchange, leaf water potential, osmoticadjustment of leaves and ears (greenhouse), the percent of stemweight loss as an index of stem reserve mobilization, finalroot weight (greenhouse) and ear weight components. De-graining caused a decrease in flag leaf stomatal conductance,carbon exchange rate (CER) and transpiration and an increasein flag leaf water potential. These effects were stronger withwater stress. De-graining did not affect osmotic adjustmentin the flag leaf but induced better adjustment in glumes andawns. De-graining decreased the percent of stem weight lossand increased final root weight, especially under drought stress. A weaker sink was, therefore, considered to improve plant droughtresistance in terms of the maintenance of higher leaf waterpotential, a larger root, a better osmotic adjustment in theear and, possibly, increased flag leaf longevity. The ‘cost’of this improved drought resistance was in reduced flag leafCER and reduced stem (and root?) reserve mobilization. Key words: Drought resistance, carbon exchange rate, stomata, transpiration, osmotic adjustment, leaf water potential, root, awns, yield  相似文献   

3.
There is continuing controversy over whether a degree of C4 photosynthetic metabolism exists in ears of C3 cereals. In this context, CO2 exchange and the initial products of photosynthesis were examined in flag leaf blades and various ear parts of two durum wheat (Triticum durum Desf.) and two six-rowed barley (Hordeum vulgare L.) cultivars. Three weeks after anthesis, the CO2 compensation concentration at 210 mmol mol?1 O2 in durum wheat and barley ear parts was similar to or greater than that in flag leaves. The O2 dependence of the CO2 compensation concentration in durum wheat ear parts, as well as in the flag leaf blade, was linear, as expected for C3 photosynthesis. In a complementary experiment, intact and attached ears and flag leaf blades of barley and durum wheat were radio-labelled with 14CO2 during a 10s pulse, and the initial products of fixation were studied in various parts of the ears (awns, glumes, inner bracts and grains) and in the flag leaf blade. All tissues assimilated CO2 mainly by the Calvin (C3) cycle, with little fixation of 14CO2 into the C4 acids malate and aspartate (about 10% or less). These collective data support the conclusion that in the ear parts of these C3 cereals C4 photosynthetic metabolism is nil.  相似文献   

4.
Comparisons of leaf structure and gas exchange characteristicshave been made between flag leaves of four old genotypes ofcultivated tetraploid wheats and three current varieties ofhexaploid Triticum aestivum grown under Mediterranean climateconditions. For some genotypes the effect of varying the sowingdate was investigated. In the hexaploid wheat Kolibri the effectof sowing date on leaf structure and gas exchange of the penultimateleaf was also studied. Flag leaves differed significantly in photosynthetic capacityand leaf structure characteristics between genotypes, withineach ploidy level. When the mean values for each ploidy levelwere considered, there were no significant differences in valuesfor photosynthesis per unit leaf area, stomatal conductance,intercellular CO2 concentration, residual CO2 conductance andwater-use efficiency between the tetraploid and hexaploid wheatssown on the same date. When comparisons were made of leaf structurethe only significant differences observed were in adaxial andabaxial stomatal frequencies and leaf area: mean values of theseparameters were higher in tetraploid than in hexaploid wheats. The changes in leaf structure in response to varying sowingdate were significant and followed the same pattern in all thegenotypes studied: a xeromorphic adaptation was observed inlater sowings in response to warmer climate. Such structuralchanges affected some gas exchange characteristics. For example,the area of flag leaves decreased by 60% in the hexaploid wheatKolibri from first to last sowing, which led to a transpirativeloss of 49% per single leaf, in spite of the fact that transpirationrate per unit leaf area increased by 26%. Penultimate leavesof cv. Kolibri followed a fairly similar adaptive pattern inlater sowings as compared with flag leaves. The adaptive significanceof changes in leaf structure and gas exchange characteristicswith varying sowing date under Mediterranean climate conditionsis discussed. Key words: Photosynthesis, leaf structure, wheat  相似文献   

5.
Greenhouse experiments were carried out with six diploid, ninetetraploid and seven hexaploid wheats, including wild and primitivegenotypes, to study the influence of varied zinc (Zn) supplyon the severity of Zn deficiency symptoms, shoot dry matterproduction and shoot Zn concentrations. In addition to wildand primitive genotypes, one modern tetraploid cultivar withhigh sensitivity to Zn deficiency and two modern hexaploid cultivars,one highly sensitive to and one resistant to Zn deficiency,were included for comparison. Plants were grown for 44 d ina severely Zn-deficient calcareous soil, with (+Zn; 5 mg Znkg-1soil) and without (-Zn) Zn fertilization. Visible Zn deficiencysymptoms, including whitish-brown necrotic patches on leaf blades,appeared very rapidly and severely in all tetraploid wheat genotypes.Compared with tetraploid wheats, diploid and hexaploid wheatswere less sensitive to Zn deficiency. With additional Zn, shootdry matter production was higher in tetraploid than diploidand hexaploid wheats. However, under Zn-deficient conditionstetraploid wheats had the lowest shoot dry matter production,indicating the very high sensitivity of tetraploid wheats toZn deficiency. Consequently, Zn efficiency expressed as theratio of shoot dry matter produced under Zn deficiency to Znfertilization, was much lower in tetraploid wheats than in diploidand hexaploid wheats. On average, Zn efficiency ratios were36% for tetraploid, 60% for diploid and 64% for hexaploid wheats.Differences in Zn efficiency among and within diploid, tetraploidand hexaploid wheats were positively related to the amount ofZn per shoot of the genotypes, but not to the amount of Zn perunit dry weight of shoots or seeds used in the experiments.The seeds of the accessions of tetraploid wild wheats containedup to 120 mg Zn kg-1, but the resulting plants showed very highsensitivity to Zn deficiency. By contrast, hexaploid wheatsand primitive diploid wheats with much lower Zn concentrationsin seeds had higher Zn efficiencies. It is suggested that notonly enhanced Zn uptake capacity but also enhanced internalZn utilization capacity of genotypes play important roles indifferential expression of Zn efficiency. The results of thisstudy also suggest the importance of the A and D genomes asthe possible source of genes determining Zn efficiency in wheat.Copyright 1999 Annals of Botany Company Seeds, Triticum aestivum, Triticum monococcum, Triticum turgidum, zinc concentrations, zinc deficiency, zinc efficiency.  相似文献   

6.
The origin of six-rowed cultivated barley was studied using a DNA marker cMWG699 closely linked to the vrs1 locus. Restriction patterns of the PCR-amplified product of the cMWG699 locus were examined in 280 cultivated (Hordeum vulgare ssp. vulgare) and 183 wild (H. vulgare ssp. spontaneum) barleys. Nucleotide sequences of the PCR products were also examined in selected accessions. Six-rowed cultivated barleys were divided into two distinct groups, types I and II. Type I six-rowed cultivated barley was distributed widely while type II six-rowed cultivated barley was found only in the Mediterranean region. The type I sequence was also found in a wild barley accession from Turkmenistan whereas the type II sequence was also found in a two-rowed cultivated barley from North Africa and a wild barley from Morocco. These results suggested that the six-rowed type I and II barleys were derived from two-rowed type I and II barleys, respectively, by independent mutations at the vrs1 locus. Received: 3 November 2000 / Accepted: 17 April 2001  相似文献   

7.
Three primitive varieties of six-row barley from Nepal withdifferent degrees of awn development were compared with a bredEuropean cultivar, Senta, under glasshouse conditions, fromanthesis onwards. Apart from the flag leaf the last three mainshoot leaves of the Nepalese varieties were smaller than thoseof Senta, and the lower leaves did not become senescent duringthe first 3 weeks of grain filling. In all varieties the penultimateleaf was the major assimilatory organ but in Senta the relativecontribution of the awns increased with time as the leaves senescedand fixed almost half of the total 14C assimilated by the shoot.Whereas the supply of assimilate to the ear increased with timein Senta, the reverse was found for the Nepalese varieties andoverall a smaller proportion of assimilate was supplied to theear in these varieties. The grain yield of the main shoot earof the two Nepalese varieties studied in detail was one-thirdof that of Senta; there were only approximately half the numberof grains in each median and lateral row of the ear and thegrains were smaller. There was no correlation between the degreeof awn development or the pattern of awn arrangement withinthe ear and the size of individual grains. The total biomassof the Nepalese varieties was much lower than that of Sentabut there were no differences in the harvest index or in tillerproduction. However, the Nepalese varieties, in contrast toSenta, had a mean grain yield per tiller comparable to thatof their main shoot and thus it appears that selection by plantbreeding may have increased the dominance of the main shoot. Hordeum vulgare L., barley, primitive barley varieties, carbon dioxide assimilation, assimilate translocation, grain filling  相似文献   

8.
Vernalization requirement, as measured by days from sowing toear emergence (plants grown under an 18-h photoperiod), andspikelet number per ear were recorded for 17 synthetic hexaploidwheats and the six tetraploid (Triticum durum) and the ninediploid T. tauschii parents used to synthesize them. The tetraploid parents and the synthetic hexaploids had springphenotypes (little or no vernalization requirement) whereasthe T. tauschii parents were all winter types (strong vernalizationrequirement). The tetraploid wheats and the synthetic hexaploidsreached ear emergence 50·3 to 63·8 d and 58·2to 75·3 d after sowing, respectively, while the T. tauschiilines reached ear emergence 114·3 to 179·5 d aftersowing. The spring habit of the synthetic hexaploids demonstrates theepistasis of spring over winter habit. It is considered thatwith a presumed single vrn locus in the diploid species T. tauschiithe range of ear emergence in these lines is consistent withthe action of multiple alleles at that locus. Although there was no general epistasis for spikelet number,the tetraploid parents appear to be exerting more influenceover spikelet number in the synthetic hexaploids than T. tauschii.The well established association between the duration from sowingto ear emergence and spikelet number was not evident eitherwithin each ploidy group or when the 32 lines were consideredtogether. Triticum tauschii, Triticum durum, hexaploid wheat, spikelet number, vernalization requirement  相似文献   

9.
Cakmak  I.  Cakmak  O.  Eker  S.  Ozdemir  A.  Watanabe  N.  Braun  H.J. 《Plant and Soil》1999,215(2):203-209
The effect of varied zinc (Zn) supply on shoot and root dry matter production, severity of Zn deficiency symptoms and Zn tissue concentrations was studied in two Triticum turgidum (BBAA) genotypes and three synthetic hexaploid wheat genotypes by growing plants in a Zn-deficient calcareous soil under greenhouse conditions with (+Zn=5 mg kg-1 soil) and without (−Zn) Zn supply. Two synthetic wheats (BBAADD) were derived from two different Aegilops tauschii (DD) accessions using same Triticum turgidum (BBAA), while one synthetic wheat (BBAAAA) was derived from Triticum turgidum (BBAA) and Triticum monococcum (AA). Visible symptoms of Zn deficiency, such as occurrence of necrotic patches on leaves and reduction in shoot elongation developed more rapidly and severely in tetraploid wheats than in synthetic hexaploid wheats. Correspondingly, decreases in shoot and root dry matter production due to Zn deficiency were higher in tetraploid wheats than in synthetic hexaploid wheats. Transfer of the DD genome from Aegilops tauschii or the AA genome from Triticum monococcum to tetraploid wheat greatly improved root and particularly shoot growth under Zn-deficient, but not under Zn-sufficient conditions. Better growth and lesser Zn deficiency symptoms in synthetic hexaploid wheats than in tetraploid wheats were not accompanied by increases in Zn concentration per unit dry weight, but related more to the total amount of Zn per shoot, especially in the case of synthetic wheats derived from Aegilops tauschii. This result indicates higher Zn uptake capacity of synthetic wheats. The results demonstrated that the genes for high Zn efficiency from Aegilops tauschii (DD) and Triticum monococcum (AA) are expressed in the synthetic hexaploid wheats. These wheat relatives can be used as valuable sources of genes for improvement of Zn efficiency in wheat. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
To elucidate the phylogenetic relationships and cytoplasmic types, restriction endonuclease fragment patterns of chloroplast (cp) and mitochondrial (mt) DNAs isolated from two different accessions of Dasypyrum villosum (L.) candargy were compared with those of tetraploid wheat (Triticum durum Desf., PI265007), hexaploid wheat (Triticum aestivum L., cv Chinese Spring), Aegilops longissimum (S. and M., in Muschli) Bowden and Hordeum vulgare L. T. aestivum and T. durum had identical restriction patterns for their cp and mtDNAs in digestions with four different enzymes. Likewise, no differences were found between the restriction fragment patterns of two accessions of D. villosum. But, there were distinct differences in chloroplast and mitochondrial DNA restriction fragment patterns between D. villosum and tetraploid and hexaploid wheats. A. longissimum (G609) showed a similar pattern to those wheats for PstI digestion of cpDNA. Organellar DNA from Hordeum vulgare (cv Himalaya) showed a distinctly different restriction pattern from those of wheat and D. villosum. These results suggest that D. villosum is unlikely to be the donor of cytoplasm to wheats, and its cytoplasmic organelles were also different from those of A. longissimum.Contribution No. 92-522-J from the Kansas Agricultural Experiment Station; Kansas State University, Manhattan, Kansas, USA  相似文献   

11.
Photosynthetic characteristics of ear and flag leaves of wheat species, tetraploid Triticum dicoccoides Kom and hexaploid Bima1, were studied in plants grown under well-watered (WW) and water-stressed (WS) conditions. Compared to ears, flag leaves exhibited higher photosynthetic rate (P N) at the filling stage, but more severe decrease under WS. P N in the tetraploid wheat ear remained higher than that in the hexaploid wheat during the grain-filling stage. Water stress decreased PN in both the organs; this decline was caused by a reduction in Rubisco activity, not by drought-induced stomatal limitation. Tetraploid wheat ears exhibited higher relative water content and water-use efficiency than that of hexaploid wheat, under WS. The change in phosphoenolpyruvate carboxylase activity and carbon isotope composition indicated the absence of C4 metabolism in the ears of both species under both conditions. The improved performance of the tetraploid wheat ears under WS was associated with better water relations.  相似文献   

12.
Studies of synthetic hexaploid wheat developed from Triticumturgidum(AABB genomes) and T. tauschii(DD genome) can provideinformation on potentially useful characters in T. tauschiiand/or T. turgidum for genetic improvement of hexaploid wheat(T. aestivum). Synthetic hexaploid wheats and the T. turgidumand T. tauschii parents were assessed for their developmentalresponses to photoperiod and vernalization for days to ear emergence,final leaf number and the number of spikelets per spike. Theresponses to photoperiod and vernalization of the synthetichexaploids were generally intermediate between those of theparents but in some instances the levels of expression exhibitedby the T. tauschii or T. turgidum parents were epistatic inthe synthetic hexaploids. The relatively strong photoperiodresponse of the T. tauschii accessions was not expressed inthe synthetic hexaploids, but rather the synthetic hexaploidsreflected the photoperiod response of the respective T. turgidumparents. The synthetic hexaploids had vernalization responsesstronger than those of the T. turgidum and bread wheats usedin the study. The expression of ear emergence in response tovernalization of these synthetic hexaploids appeared to be modifiedby the T. turgidum parent. Copyright 2001 Annals of Botany Company Photoperiod, synthetic hexaploids, Triticum aestivum, Triticum tauschii, Triticum turgidum, vernalization  相似文献   

13.
One cultivar each of spring wheat (Triticum aestivum L. cv. Arkas), oat (Avena sativa L. cv. Lorenz), and barley (Hordeum vulgare L. cv. Aramir) was chosen in order to study the relative contributions of individual bracts to the gas exchange of whole ears. The distribution and frequency of the stomata on the bracts were examined. Gas exchange was measured at normal atmospheric CO2 (330 bar) and at high CO2 (2000 bar) on intact ears and on ears from which glumes or lemmas and pleae (wheat and oat) or awns (barley) had been removed.The relative contribution to the gas exchange of the whole organ is highest for the awns of barley ears. In wheat, the contribution of the glumes is slightly higher than that of the inner bracts before anthesis. Two weeks after anthesis the inner bracts contribute more than the glumes. This tendency of increasing importance of the inner bracts is also found in oat ears, but the relative amount of CO2 uptake by the glumes is higher than in wheat. These changes during ontogeny result from the better supply of light to the inner bracts caused by opening of the ears' structures during grain filling, which in part compensates for the decreasing photosynthetic capacity.The ratio of the photosynthesis rate at high CO2 to that at normal CO2 is lower for the glumes of oat and for the awns of barley than for the other bracts.Abbreviations A330, A2000 net photosynthesis rate, A330 at normal atmospheric CO2 (330 bar), A2000 at high CO2 (2000 bar) - PPFD photosynthetic photon flux density - pc intercellular partial pressure of CO2  相似文献   

14.
BATTEN  G. D. 《Annals of botany》1986,58(1):49-59
Twenty genotypes of Triticum and Aegilops wheats including diploid,tetraploid and hexaploid types, were grown under contrastingphosphorus (P) regimes (control and low P) at 15 °C by dayand 10 °C at night. Dry-matter production and phosphorusand nitrogen uptake and distribution were measured on matureplants. Phosphorus efficiency (PE) was considered in terms of yieldper unit of P in the main shoot and concentration of phosphorusin grain (per cent P). In the low-P set, PE, which ranged from110 to 715 mg grain mg–1 P, increased as the yield perculm and dry-matter partitioning (harvest index) increased,with hexaploid > tetraploid > diploid. In both the controland low-P plants percentage P in grain decreased in the orderdiploids > tetraploids > hexaploid wheats. Grain phosphoruswas highly negatively correlated with the log of grain yield(r = –0.74; –0.88) and the log of harvest index(r = –0.80 and –0.88) for control and low-P plants,respectively. This suggests that future gains in plant harvestindex will cause smaller reductions in grain phosphorus concentrations.But, within either a high or low phosphorus supply, wheats witha given grain harvest index have significantly different grainphosphorus concentrations, and conscious selection for thischaracter is feasible. Low-P plants had similar grain nitrogen concentrations but lowernitrogen harvest indexes than control plants. Aegilops spp., Triticum spp., wheat, yield components, harvest index, polyploidy, evolution, phosphorus efficiency  相似文献   

15.
Experiments were conducted during the 1974–75 and 1975–76winter season with the barley (Hordeum vulgare L.) cultivarJyoti. From amongst the various plant parts, the flag leaf bladehad higher in vivo nitrate reductase (NR) activity than thelower two leaf blades, glumes, and grains. However, the potentialof a plant part to reduce NO3 is a function of its freshweight and the NR per unit fresh weight. On this basis, thesecond and third leaf blades could reduce more NO3 thanthe flag leaf blade. N fertilizer application resulted in enhancementof the activity of the leaf blades alone. N fertilizer appliedduring the reproductive phase was taken up and assimilated bythe various plant parts. The studies suggest that, even whenthe fertilizer is applied at optimum levels for obtaining maximumyields, the upper leaf blades have sub-optimal NR activity andthat there is a likelihood of either a preferential flow ofNO3 to the leaf blades or transnational barriers to NO3movement to the ear.  相似文献   

16.
Two tetraploid (Triticum turgidum L.emend gr. turgidum and gr.durum) and five hexaploid wheats (Triticum x aestivum L. emendgr. aestivum) with reported tendencies for ‘branched heads’(supernurnerary spikelets) exhibited variation in its expressionunder different vernalization photoperiod and temperature regimes. Two main types of supernumerary spikelets were identified, multiplesessile spikelets (MSS) with two or more complete spikeletsat a rachis node and indeterminate rachilla spikelets (IRS)with two to 13 spikelets on an extended rachilla. The degree of supernumerary spikelet expression in wheats withvernalization response differed from those without. Short photoperiods(9–14 h) both outdoors and in a glasshouse environment,were more conducive to supernumerary spikelet expression than24 h photoperiod in both environments. The 24 h photoperiodglasshouse environment (higher mean temperatures) was leastconducive to its expression except in lines with a strong vernalizationresponse. The high stability of supernumerary spikelet expression in certaingenotypes in the different environments indicated the feasibilityof incorporating this character in breeding and selecting commercialwheats to increase grain number per head. Triticum, wheat, ear-branching, supernumerary spikelets, vernalization, photoperiod, temperature  相似文献   

17.
Twenty-nine accessions of Triticum including ancestral diploidsand primitive and modern tetraploid and hexaploid froms wereexamined for differences in yield components. Mean whole plant and main shoot harvest index for the ploidygroups exhibited significant (P < 001) increascs from thediploids to the tetraploids and from the tetraploids to thehexaploids. Mean biological yield per plant for the ploidy groupsincreased significantly (P < 001) from the diploid to thehexaploid but declined significantly (P < 001) from thetetraploid to the hexaploid level. There were marked reductions in shoot number and percentageof infertile shoots per plant and increases in grain numberper spikelet and grain size from diploid what (Triticum monococcum)to the early tetraploids. Yield component variation in early and recent Australian wheatsrevealed that the semi-dwarf (gibberellininsensitive) wheatswere significantly higher in whole plant and main shoot harvestindex over normal height (gibberellin-sensitive) wheats. Triticum aestivum, wheat, Aegilops spp, harvest index, polyploidy, yield components, evolution  相似文献   

18.
We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUEi). Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.  相似文献   

19.
The characteristics of pigment composition and photosystem II (PSII) photochemistry in the flag leaf and ear parts of wheat (Triticum aestivum L.) grown in the field was compared. At the early stage of flowering, awns and the flag leaf showed the highest values in the maximal efficiency of PSII photochemistry (Fv/Fm), actual PSII efficiency (phi(PSII)), photochemical quenching (qP), and the efficiency of excitation capture by open PSII centres (Fv/F'm), followed by glumes, lemmas, and paleae, respectively except that no differences in F'v/F'm were observed among glumes, leamms, and paleae. With progressing grain filling, there was a change in the photosynthetic pigment stoichiometry. In the ear parts, neoxanthin and antheraxanthin decreased equally with chlorophyll levels. Lutein and zeaxanthin decreased less than chlorophyll levels while beta-carotene and violaxanthin decreased faster than chlorophyll levels. No big differences in pigment composition were observed among different ear parts. For the flag leaf, neoxanthin and beta-carotene decreased concomitantly with chlorophyll, whereas lutein and xanthophyll cycle pigment were less affected, leading to increases in lutein/chlorophyll and xanthophyll cycle pigment/chlorophyll ratios. Fv/Fm, phi(PSII), qP, and F'v/F'm decreased gradually in the flag leaf and ear parts but to different extents. The largest changes were observed in awns, followed by the lemmas of floret 2, the lemmas of floret 1, glumes, and the flag leaf, respectively. The results suggest that during grain filling, a down-regulation of PSII associated with an increase of the de-epoxidation state of the xanthophyll cycle carotenoids occurred in the flag leaf but not in the ear parts.  相似文献   

20.
Four triticale (×Triticosecale Wittmack) genotypes were grown under rainfed conditions with limited irrigation support in Lleida in northeast Spain. For each variety, samples consisting of 10 tillers with half-sterilized spikes were taken three times from anthesis to maturity. Carbon isotope ratios (δ13C) were then determined in water extracts from ear bracts (glumes, paleas, and lemmas), awns and flag leaves, and in powdered kernels. For the half-sterilized spikes, carbon isotope analysis was carried out separately in bracts and awns from fertile and nonfertile spikelets. The δ13C in the water-soluble fraction of awns, glumes, and glumells from fruitless spikelets was significantly higher than that from fertile spikelets sampled at mid-grain filling. Differences in δ13C among sterile and fertile spikelets were not significant in samples taken a few days after anthesis or at maturity. These results are in accordance with some degree of refixation by awns and ear bracts of the CO2 respired by grains during grain filling. There was progressively higher δ13C from flag leaf blades to awns, glumes, and glumells. This variation in δ13C along plant parts may be caused by differences in the ratio of assimilation rate to CO2-diffusive conductance. Values of δ13C of mature kernels were between the values at anthesis and mid-grain filling for the water-soluble fraction of flag leaves and inner bracts and were fairly similar to those of glumes and awns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号