首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《The Journal of cell biology》1994,127(6):1589-1601
Synaptophysin is a major transmembrane glycoprotein of a type of small vesicle with an electron-translucent content (SET vesicles), including the approximately 50-nm presynaptic vesicles in neuronal cells, and of similar, somewhat larger (< or = approximately 90 nm) vesicles (SLMV) in neuroendocrine (NE) cells. When certain epithelial non-NE cells, such as human hepatocellular carcinoma PLC cells, were cDNA transfected to synthesize synaptophysin, the new molecules appeared in specific SET vesicles. As this was in contrast to other reports that only NE cells were able to sort synaptophysin away from other plasma membrane proteins into presynaptic- or SLMV-type vesicles, we have further characterized the vesicles containing synaptophysin in transfected PLC cells. Using fractionation and immunoisolation techniques, we have separated different kinds of vesicles, and we have identified a distinct type of synaptophysin-rich, small (30-90-nm) vesicle that contains little, if any, protein of the constitutive secretory pathway marker hepatitis B surface antigen, of the fluid phase endocytosis marker HRP, and of the plasma membrane recycling endosomal marker transferrin receptor. In addition, we have found variously sized vesicles that contained both synaptophysin and transferrin receptor. A corresponding result was also obtained by direct visualization, using double-label immunofluorescence microscopy for the endocytotic markers and synaptophysin in confocal laser scan microscopy and in double- immunogold label electron microscopy. We conclude that diverse non-NE cells of epithelial nature are able to enrich the "foreign" molecule synaptophysin in a category of SET vesicles that are morphologically indistinguishable from SLMV of NE cells, including one type of vesicle in which synaptophysin is sorted away from endosomal marker proteins. Possible mechanisms of this sorting are discussed.  相似文献   

2.
Synaptophysin is a major glycoprotein of Mr approximately 38,000 (in deglycosylated form: Mr approximately 34,000) characteristic of a certain class of small (30-80 nm diameter) neurosecretory vesicles, including presynaptic vesicles, but also vesicles of various neuroendocrine cells of both neuronal and epithelial phenotype. Using synaptophysin-specific antibodies we have isolated cDNA clones from rat nervous tissue libraries, which identify an approximately 2.5-kb mRNA in rat and human cells, including neuroendocrine tumours, that contains a reading frame for a polypeptide of 307 amino acids with a total mol. wt of 33 312. The deduced amino acid sequence, which was partly confirmed by comparison with sequences of two tryptic peptides obtained from purified synaptophysin, revealed four hydrophobic regions of 24 amino acids each, which are characterized, according to conformation prediction analyses, by marked alpha-helicity. The sequence shows a single potential N-glycosylation site, which is assigned to the vesicle interior, and a carboxy-terminal tail of 89 amino acids which contains glycine-rich tetrapeptide repeats, the epitope of monoclonal antibody SY38, and a number of collagenase-sensitive sites accessible on the surface of the intact vesicles. These features suggest that the polypeptide spans the vesicle membrane four times, with both N and C termini located on the outer, i.e. cytoplasmic, surface of the vesicles.  相似文献   

3.
The presence of unique proteins in synaptic vesicles of neurons suggests selective targeting during vesicle formation. Endocrine, but not other cells, also express synaptic vesicle membrane proteins and target them selectively to small intracellular vesicles. We show that the rat pheochromocytoma cell line, PC12, has a population of small vesicles with sedimentation and density properties very similar to those of rat brain synaptic vesicles. When synaptophysin is expressed in nonneuronal cells, it is found in intracellular organelles that are not the size of synaptic vesicles. The major protein in the small vesicles isolated from PC12 cells is found to be synaptophysin, which is also the major protein in rat brain vesicles. At least two of the minor proteins in the small vesicles are also known synaptic vesicle membrane proteins. Synaptic vesicle-like structures in PC12 cells can be shown to take up an exogenous bulk phase marker, HRP. Their proteins, including synaptophysin, are labeled if the cells are surface labeled and subsequently warmed. Although the PC12 vesicles can arise by endocytosis, they seem to exclude the receptor-mediated endocytosis marker, transferrin. We conclude that PC12 cells contain synaptic vesicle-like structures that resemble authentic synaptic vesicles in physical properties, protein composition and endocytotic origin.  相似文献   

4.
We have developed a purification procedure for the isolation of constitutive post-Golgi secretory vesicles from Saccharomyces cerevisiae. Although the post-Golgi stage of the secretion pathway is normally very rapid, we have used a temperature-sensitive secretory mutant, sec 6-4, to greatly expand the population of secretory vesicles. Following invertase as a marker, intact vesicles are enriched 36-fold from the crude lysate. The final preparation contains few contaminants as assessed by morphologic and biochemical examination. Three proteins (110, 40-45, and 18 kD) co-purify with the vesicle marker enzyme invertase. Metabolic labeling experiments indicate that these vesicle-associated proteins are synthesized during the period of vesicle accumulation. They are not apparent in the corresponding fractions from wild-type cells. Analysis of these proteins indicates that the 110-kD protein is a major glycoprotein residing in the vesicle lumen, while the 40-45- and 18-kD proteins are not glycosylated and are firmly associated with the vesicle membrane, each with at least one domain exposed on the cytoplasmic surface.  相似文献   

5.
The permanent cell culture line AR42J, derived from a rat pancreatic acinar carcinoma, is widely used for functional studies of exocrine pancreatic acinar cells. We now present evidence that these cells are amphicrine in that they contain zymogen granules as well as small (40-80 nm) neuroendocrine (NE) vesicles and typical neurotransmitters. Using the small NE vesicle-specific markers synaptophysin and "protein S.V.2", including synaptophysin cDNA probes, we have found that AR42J cells synthesize these proteins and contain vesicles harboring these proteins with biophysical properties similar to those of small NE vesicles. NE properties of these cells are further indicated by the presence of considerable amounts of stored amino acids (gamma-aminobutyric acid (GABA), glycine, glutamate) and by the presence of the GABA-synthesizing enzyme, glutamic acid decarboxylase. Finally, intermediate filament (IF) protein typing showed only cytokeratins 8 and 18, indicating that AR42J cells possess an IF protein complement indistinguishable from that of acinar and islet cells. Our results document the unusual case of a permanent cell line with combined exocrine and neuroendocrine properties that may be indicative of a derivation from a cell with multipotential character.  相似文献   

6.
The molecular mechanism of nuclear envelope (NE) assembly is poorly understood, but in a cell-free system made from Xenopus eggs NE assembly is controlled by the small GTPase Ran [1,2]. In this system, Sepharose beads coated with Ran induce the formation of functional NEs in the absence of chromatin [1]. Both generation of Ran-GTP by the guanine nucleotide exchange factor RCC1 and GTP hydrolysis by Ran are required for NE assembly, although the roles of the GDP- and GTP-bound forms of Ran in the recruitment of precursor vesicles and their fusion have been unclear. We now show that beads coated with either Ran-GDP or Ran-GTP assemble functional nuclear envelopes in a cell-free system derived from mitotic human cells, forming pseudo-nuclei that actively transport proteins across the NE. Both RCC1 and the GTPase-activating protein RanGAP1 are recruited to the beads, allowing interconversion between Ran-GDP and Ran-GTP. However, addition of antibodies to RCC1 and RanGAP1 shows that Ran-GDP must be converted to Ran-GTP by RCC1 before precursor vesicles are recruited, whereas GTP hydrolysis by Ran stimulated by RanGAP1 promotes vesicle recruitment and is necessary for vesicle fusion to form an intact envelope. Thus, the GTP-GDP cycle of Ran controls both the recruitment of vesicles and their fusion to form NEs.  相似文献   

7.
B Wiedenmann  W W Franke 《Cell》1985,41(3):1017-1028
A polypeptide of Mr 38,000 has been identified as a specific component of the membrane of presynaptic vesicles, using the monoclonal antibody SY38. This protein, which is acidic (isoelectric at approximately pH 4.8) and glycosylated, appears to be an integral membrane protein, as suggested by its solubilization with the nonionic detergent Triton X-100 and the finding that the epitope recognized by antibody SY38 is located on the cytoplasmic surface of those vesicles. It is found in presynaptic vesicles of neurons of the brain, spinal cord, and retina as well as at neuromuscular junctions. It is also found in the adrenal medulla. Its occurrence in diverse vertebrate species indicates its stability during evolution. This protein, for which we propose the name synaptophysin*, provides a molecular marker for the presynaptic vesicle membrane and may be involved in synaptic vesicle formation and exocytosis.  相似文献   

8.
P Knaus  H Betz 《FEBS letters》1990,261(2):358-360
Synaptophysin is a major integral membrane protein of synaptic vesicles. Its transmembrane topology deduced from the cDNA sequence predicts 4 transmembrane regions and a carboxy-terminal cytoplasmic tail containing a characteristic pentapeptide repeat structure. The monoclonal antibody (mAb), SY38, binds to a cytoplasmic domain of synaptophysin. By using fusion proteins corresponding to truncated forms of the cytoplasmic tail, its epitope was located to a flexible segment in the center of the repeat structure. Four other mAbs (c7.1, c7.2, c7.3, c7.4) share the same epitope, which thus emerges as the major immunogenic region of this membrane protein.  相似文献   

9.
Several types of cells store proteins in secretory vesicles from which they are released by an appropriate stimulus. It might be expected that the secretory vesicles in different cell types use similar molecular machinery. Here we describe a transmembrane glycoprotein (Mr approximately 100,000) that is present in secretory vesicles in all neurons and endocrine cells studied, in species from elasmobranch fish to mammals, and in neural and endocrine cell lines. It was detected by cross-reactivity with monoclonal antibodies raised to highly purified cholinergic synaptic vesicles from the electric organ of fish. By immunoprecipitation of intact synaptic vesicles and electron microscopic immunoperoxidase labeling, we have shown that the antigenic determinant is on the cytoplasmic face of the synaptic vesicles. However, the electrophoretic mobility of the antigen synthesized in the presence of tunicamycin is reduced to Mr approximately 62,000, which suggests that the antigen is glycosylated and must therefore span the vesicle membrane.  相似文献   

10.
The three major spore coat proteins of Dictyostelium discoideum are developmentally regulated, cell-type-specific proteins. They are packaged in prespore vesicles and then secreted to form the outer layer of spore coats. We have isolated a cDNA clone from the gene coding for one of these proteins, SP96, a glycoprotein of 96,000 daltons. We screened the cDNA bank by the method of hybrid select translation followed by immunoprecipitation of the translation products with SP96-specific polyclonal antiserum. We found that the gene was first transcribed into stable mRNA a few hours before the time of detection of SP96 synthesis and that the mRNA, like the protein, accumulated specifically in prespore cells and spores. SP96 constituted the same proportion of newly synthesized protein as the proportion of its message in polyadenylated RNA. SP96 appeared to be encoded by a single gene as judged by Southern blot analysis of digested genomic DNA hybridized to the cDNA clone.  相似文献   

11.
The small GTPase Rab2 requires atypical protein kinase C iota/lambda (PKCiota/lambda) kinase activity to promote vesicle budding from normal rat kidney cell microsomes (Tisdale, E. J. (2000) Traffic 1, 702-712). The released vesicles lack anterograde-directed cargo but contain coat protein I (COPI) and the recycling protein p53/p58, suggesting that the vesicles traffic in the retrograde pathway. In this study, we have directly characterized the role of PKCiota/lambda in the early secretory pathway. A peptide corresponding to the unique PKCiota/lambda pseudosubstrate domain was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the endoplasmic reticulum to the cis-medial Golgi compartments. This peptide blocked transport in a dose-dependent manner. Moreover, normal rat kidney cells incubated with Rab2 and the pseudosubstrate peptide displayed abundant swollen or dilated vesicles that contained Rab2, PKCiota/lambda, beta-COP, and p53/p58. Because Rab2, beta-COP, and p53/p58 are marker proteins for pre-Golgi intermediates (vesicular tubular clusters,VTCs), most probably the swollen vesicles are derived from VTCs. Similar results were obtained when the assays were supplemented with kinase-dead PKCiota/lambda (W274K). Both the pseudosubstrate peptide and kinase-dead PKCiota/lambda in tandem with Rab2 caused sustained membrane association of PKCiota/lambda, suggesting that reverse translocation was inhibited. Importantly, the inhibitory phenotype of kinase-dead PKCiota/lambda was reversed by PKCiota/lambda wild type. These combined results indicate that PKCiota/lambda is essential for protein transport in the early secretory pathway and suggest that PKCiota/lambda kinase activity is required to promote Rab2-mediated vesicle budding at a VTC subcompartment enriched in recycling cargo.  相似文献   

12.
The localization and transporting properties of a kidney protein homologous to human erythrocyte protein CHIP28 was evaluated. The cDNA encoding rat kidney protein CHIP28k was isolated from a rat renal cortex cDNA library. A 2.8-kb cDNA was identified which contained an 807 bp open reading frame encoding a 28.8 kD protein with 94% amino acid identity to CHIP28. in vitro translation of CHIP28k cDNA in rabbit reticulocyte lysate generated a 28-kD protein; addition of ER-derived microsomes gave a 32-kD transmembrane glycoprotein. Translation of truncated RNA demonstrated glycosylation of residue Asn42 which is predicted to lie between the first and second transmembrane domains. Expression of in vitro transcribed mRNA encoding CHIP28k in Xenopus oocytes increased oocyte osmotic water permeability (Pf) from (4 +/- 1) x 10(-4) to (33 +/- 4) x 10(-4) cm/s at 10 degrees C; the increase in oocyte Pf was weakly temperature dependent and inhibited by HgCl2. Two- electrode voltage clamp measurements indicated that CHIP28k was not permeable to ions. Oocyte Pf also increased with expression of total mRNA from kidney cortex and papilla; the increase in Pf with mRNA from cortex, but not kidney papilla, was blocked by coinjection with excess antisense CHIP28k cRNA. In situ hybridization of a 150 base cRNA antisense probe to tissue sections from rat kidney showed selective CHIP28k localization to epithelial cells in proximal tubule and thin descending limb of Henle. Pf in purified apical membrane vesicles from rat and human proximal tubule, and in proteoliposomes reconstituted with purified protein, was very high and inhibited by HgCl2; stripping of apical vesicles with N-lauroylsarcosine enriched a 28-kD protein by 25-fold and yielded a vesicle population with high water, but low urea and proton permeabilities. CHIP28k identity was confirmed by NH2- terminus sequence analysis. These results indicate that CHIP28k is a major and highly selective water transporting protein in the kidney proximal tubule and thin descending limb of Henle, but not collecting duct.  相似文献   

13.
ABSTRACT. A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to ISO nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   

14.
Neurons communicate by releasing neurotransmitters that are stored in intracellular vesicular compartments. PC12 cells are frequently used as a model secretory cell line that is described to have two subpools of vesicles: small clear vesicles and dense core vesicles. We measured transmitter molecules released from vesicles in NGF-differentiated PC12 cells using carbon-fiber amperometry, and relative diameters of individual vesicles using electron microscopy. Both amperometry and electron micrograph data were analyzed by statistical and machine learning methods for Gaussian mixture models. An electron microscopy size correction algorithm was used to predict and correct for observation bias of vesicle size due to tangential slices through some vesicles. Expectation maximization algorithms were used to perform maximum likelihood estimation for the Gaussian parameters of different populations of vesicles, and were shown to be better than histogram and cumulative distribution function methods for analyzing mixed populations. The Bayesian information criterion was used to determine the most likely number of vesicle subpools observed in the amperometric and electron microscopy data. From this analysis, we show that there are three major subpools, not two, of vesicles stored and released from PC12 cells. The three subpools of vesicles include small clear vesicles and two subpools of dense core vesicles, a small and a large dense core vesicle subpool. Using PC12 cells stably transfected with short-hairpin RNA targeted to synaptotagmin I, an exocytotic Ca2+ sensor, we show that the presence and release of the small dense core vesicle subpool is dependent on synaptotagmin I. Furthermore, synaptotagmin I also plays a role in the formation and/or maintenance of the small dense core vesicle subpool in PC12 cells.  相似文献   

15.
A procedure was developed to purify a coated vesicle fraction from the protozoan parasite Trypanosoma brucei. Electron microscopy revealed a difference between T. brucei coated vesicles and clathrin-coated vesicles from other eukaryotes: trypanosome vesicles were larger (100 to 150 nm in diameter) and contained an inner coat of electron-dense material in addition to the external coat. Evidence suggests that the internal coat is the parasite's variant surface glycoprotein (VSG) coat. The SDS-PAGE analysis shows the major protein of T. brucei coated vesicles has a molecular mass of 61 kD, similar to VSG; this protein was recognized in an immunoblot by anti-VSG serum. Trypanosome coated vesicles also contain a protein which comigrates with the major protein (clathrin) of coated vesicles purified from rat brains. However, this protein is a minor component and it is not serologically cross-reactive with mammalian clathrin. Immunoblot analysis demonstrated that the parasite vesicles contained host IgG, IgM, and serum albumin.  相似文献   

16.
To monitor the fate of the synaptic vesicle membrane compartment, synaptic vesicles were isolated under varying experimental conditions from blocks of perfused Torpedo electric organ. In accordance with previous results, after low-frequency stimulation (0.1 Hz, 1,800 pulses) of perfused blocks of electric organ, a population of vesicles (VP2 type) can be separated by density gradient centrifugation and chromatography on porous glass beads that is denser and smaller than resting vesicles (VP1 type). By simultaneous application of fluorescein isothiocyanate-dextran as extracellular volume marker and [3H]acetate as precursor of vesicular acetylcholine, and by identifying the vesicular membrane compartment with an antibody against the synaptic vesicle transmembrane glycoprotein SV2, we can show that the membrane compartment of part of the synaptic vesicles becomes recycled during the stimulation period. It then contains both newly synthesized acetylcholine and a sample of extracellular medium. Recycled vesicles have not incorporated the presynaptic plasma membrane marker acetylcholinesterase. Cisternae or vacuoles are presumably not involved in vesicle recycling. After a subsequent period of recovery (18 h), all vesicular membrane compartments behave like VP1 vesicles on subcellular fractionation and still retain both volume markers. Our results imply that on low-frequency stimulation, synaptic vesicles are directly recycled, equilibrating their luminal contents with the extracellular medium and retaining their membrane identity and capability to accumulate acetylcholine.  相似文献   

17.
Norepinephrine (NE):adenosinetriphosphate (ATP) ratios were studied in a highly purified fraction of large dense core vesicles isolated from the bovine splenic nerve. Vesicles prepared from nerves chilled ~10 and 30 min post mortem were compared. The NE:ATP molar ratio decreased from 6.3 to 4.8, p < 0.005; NE decreased from 61 to 42 nmol, while ATP decreased only from 9.6 to 8.8 nmol/mg protein. Animals weighing 180-360 kg were compared with heavier ones weighing 400-700 kg. NE increased from 42 to 68 nmol and ATP increased from 5.9 to 13.2 nmol/mg protein, while the NE:ATP molar ratio decreased from 7.2 to 5.2, p < 0.005. Changes during vesicle maturation were studied by comparing vesicles identically prepared from equal weights of a proximal nerve segment close to the coeliac ganglion and a distal, intrasplenic segment. NE increased from 45 to 70 nmol while ATP remained unchanged at 10.0 nmol/mg protein and the NE:ATP molar ratio increased from 4.5 to 7.0, p < 0.005. It was interpreted that vesicle ATP content, like dopamine β-hydroxylase, was established early in the cell body and remained unchanged during axoplasmic transport. ATP was in a complex which was relatively stable to post mortem hydrolysis at least between 10 and 30 min prior to chilling the nerves. The addition of newly synthesized NE into a readily releasable pool during axoplasmic transport occurs without ATP and can account for the increased ratio above 4:1 in the distal segment vesicles.  相似文献   

18.
H Riedel  C Kondor-Koch    H Garoff 《The EMBO journal》1984,3(7):1477-1483
Vesicular stomatitis virus (VSV) enters the host cell by the receptor-mediated endocytotic pathway. This brings the virus particle into acidic vesicles inside the cell where infection occurs through a fusion event between the viral and the host vesicle membrane. In this work we have shown that the VSV glycoprotein (G) carries the fusion activity of this virus. The G protein was expressed on the surface of baby hamster kidney 21 cells from cloned cDNA which had been engineered into an expression vector and introduced into cell nuclei with the aid of a glass microneedle. A short (60 s) treatment with acid (pH less than or equal to 6.0) medium induced fusion of cells having G protein on their surface. For efficient G protein expression and cell-cell fusion we had to trim the 5' end of the G cDNA and to use as promoter the long terminal repeat of the mouse Moloney sarcoma virus.  相似文献   

19.
We have recently described a system that recreates in vitro the generation of post-Golgi vesicles from purified Golgi fractions obtained from virus-infected MDCK cells in which the vesicular stomatitis virus-G envelope glycoprotein had been allowed to accumulate in vivo in the TGN. Vesicle formation, monitored by the release of the viral glycoprotein, was shown to require the activation of a GTP- binding ADP ribosylation factor (ARF) protein that promotes the assembly of a vesicle coat in the TGN, and to be regulated by a Golgi- associated protein kinase C (PKC)-like activity. We have now been able to dissect the process of post-Golgi vesicle generation into two sequential stages, one of coat assembly and bud formation, and another of vesicle scission, neither of which requires an ATP supply. The first stage can occur at 20 degrees C, and includes the GTP-dependent activation of the ARF protein, which can be effected by the nonhydrolyzable nucleotide analogue GTP gamma S, whereas the second stage is nucleotide independent and can only occur at a higher temperature of incubation. Cytosolic proteins are required for the vesicle scission step and they cannot be replaced by palmitoyl CoA, which is known to promote, by itself, scission of the coatomer-coated vesicles that mediate intra-Golgi transport. We have found that PKC inhibitors prevented vesicle generation, even when this was sustained by GTP gamma S and ATP levels reduced far below the K(m) of PKC. The inhibitors suppressed vesicle scission without preventing coat assembly, yet to exert their effect, they had to be added before coat assembly took place. This indicates that a target of the putative PKC is activated during the bud assembly stage of vesicle formation, but only acts during the phase of vesicle release. The behavior of the PKC target during vesicle formation resembles that of phospholipase D (PLD), a Golgi-associated enzyme that has been shown to be activated by PKC, even in the absence of the latter's phosphorylating activity. We therefore propose that during coat assembly, PKC activates a PLD that, during the incubation at 37 degrees C, promotes vesicle scission by remodeling the phospholipid bilayer and severing connections between the vesicles and the donor membrane.  相似文献   

20.
We describe an in vitro system in which post-Golgi vesicles containing metabolically labeled, sialylated, vesicular stomatitis virus (VSV) G protein molecules (VSV-G) are produced from the trans-Golgi network (TGN) of an isolated Golgi membrane fraction. This fraction is prepared from VSV-infected Madin-Darby canine kidney (MDCK) cells in which the (35)S-labeled viral envelope glycoprotein was allowed to accumulate in the trans-Golgi network during a prolonged incubation at 20 degrees C. The vesicles produced in this system are separated from the remnant Golgi membranes by differential centrifugation or by velocity sedimentation in a sucrose gradient. Vesicle production, quantified as the percentage of labeled VSV-G released from the Golgi membranes, is optimal at 37 degrees C and does not occur below 20 degrees C. It requires GTP and the small GTP-binding protein Arf (ADP-ribosylation factor), as well as coat protein type I (COPI) coat components (coatomer) and vesicle scission factors-one of which corresponds to the phosphatidylinositol transfer protein (PITP). Formation of the vesicles does not require GTP hydrolysis which, however, is necessary for their uncoating. Thus, vesicles generated in the presence of the nonhydrolyzable GTP analogs, GTPgammaS or GMP-PNP, retain a coatomer coat visible in the electron microscope, sediment more rapidly in sucrose density gradients than those generated with ATP or GTP, and can be captured with anticoatomerantibodies. The process of coatomer-coated vesicle formation from the TGN can be dissected into two distinct sequential phases, corresponding to coat assembly/bud formation and vesicle scission. The first phase is completed when Golgi fractions are incubated with cytosolic proteins and nonhydrolyzable GTP analogs at 20 degrees C. The scission phase, which leads to vesicle release, takes place when coated Golgi membranes, recovered after phase I, are incubated at higher temperatures in the presence of cytosolic proteins. The scission phase does not take place if protein kinase C inhibitors are added during the first phase, even though these inhibitors do not prevent membrane coating and bud formation. The phosphorylating activity of a protein kinase C, however, plays no role in vesicle formation, since this process does not require ATP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号