首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reactive oxygen species in cell signaling   总被引:1,自引:0,他引:1  
Reactive oxygen species (ROS) are generated as by-products of cellular metabolism, primarily in the mitochondria. When cellular production of ROS overwhelms its antioxidant capacity, damage to cellular macromolecules such as lipids, protein, and DNA may ensue. Such a state of "oxidative stress" is thought to contribute to the pathogenesis of a number of human diseases including those of the lung. Recent studies have also implicated ROS that are generated by specialized plasma membrane oxidases in normal physiological signaling by growth factors and cytokines. In this review, we examine the evidence for ligand-induced generation of ROS, its cellular sources, and the signaling pathways that are activated. Emerging concepts on the mechanisms of signal transduction by ROS that involve alterations in cellular redox state and oxidative modifications of proteins are also discussed.  相似文献   

2.
3.
Adaptive responses associated with environmental stressors are critical to cell survival. Under conditions when cellular redox and antioxidant defenses are overwhelmed, the selective oxidation of critical methionines within selected protein sensors functions to down-regulate energy metabolism and the further generation of reactive oxygen species (ROS). Mechanistically, these functional changes within protein sensors take advantage of the helix-breaking character of methionine sulfoxide. The sensitivity of several calcium regulatory proteins to oxidative modification provides cellular sensors that link oxidative stress to cellular response and recovery. Calmodulin (CaM) is one such critical calcium regulatory protein, which is functionally sensitive to methionine oxidation. Helix destabilization resulting from the oxidation of either Met(144) or Met(145) results in the nonproductive association between CaM and target proteins. The ability of oxidized CaM to stabilize its target proteins in an inhibited state with an affinity similar to that of native (unoxidized) CaM permits this central regulatory protein to function as a cellular rheostat that down-regulates energy metabolism in response to oxidative stress. Likewise, oxidation of a methionine within a critical switch region of the regulatory protein phospholamban is expected to destabilize the phosphorylation-dependent helix formation necessary for the release of enzyme inhibition, resulting in a down-regulation of the Ca-ATPase in response to beta-adrenergic signaling in the heart. We suggest that under acute conditions, such as inflammation or ischemia, these types of mechanisms ensure minimal nonspecific cellular damage, allowing for rapid restoration of cellular function through repair of oxidized methionines by methionine sulfoxide reductases and degradation pathways after restoration of normal cellular redox conditions.  相似文献   

4.
Reactive oxygen species (ROS) are known to be mediators of intracellular signaling pathways. However the excessive production of ROS may be detrimental to the cell as a result of the increased oxidative stress and loss of cell function. Hence, well tuned, balanced and responsive antioxidant systems are vital for proper regulation of the redox status of the cell. The cells are normally able to defend themselves against the oxidative stress induced damage through the use of several antioxidant systems. Even though the free radical scavenging enzymes such as superoxide dismutase (SOD) and catalase can handle huge amounts of reactive oxygen species, should these systems fail some reactive molecules will evade the detoxification process and damage potential targets. In such a scenario, cells recruit certain small molecules and proteins as 'rescue specialists' in case the 'bodyguards' fail to protect potential targets from oxidative damage. The thioredoxin (Trx) system thus plays a vital role in the maintenance of a reduced intracellular redox state which is essential for the proper functioning of each individual cell. Trx alterations have been implicated in many diseases such as cataract formation, ischemic heart diseases, cancers, AIDS, complications of diabetes, hypertension etc. The interactions of Trx with many different proteins and different metabolic and signaling pathways as well as the significant species differences make it an attractive target for therapeutic intervention in many fields of medical science. In this review, we present, the critical roles that thioredoxins play in limiting oxidant stress through either its direct effect as an antioxidant or through its interactions with other key signaling proteins (thioredoxin interacting proteins) and its implications in various disease models.  相似文献   

5.
Peroxisomes are cell organelles that play a central role in lipid metabolism. At the same time, these organelles generate reactive oxygen and nitrogen species as byproducts. Peroxisomes also possess intricate protective mechanisms to counteract oxidative stress and maintain redox balance. An imbalance between peroxisomal reactive oxygen species/reactive nitrogen species production and removal may possibly damage biomolecules, perturb cellular thiol levels, and deregulate cellular signaling pathways implicated in a variety of human diseases. Somewhat surprisingly, the potential role of peroxisomes in cellular redox metabolism has been underestimated for a long time. However, in recent years, peroxisomal reactive oxygen species/reactive nitrogen species metabolism and signaling have become the focus of a rapidly evolving and multidisciplinary research field with great prospects. This review is mainly devoted to discuss evidence supporting the notion that peroxisomal metabolism and oxidative stress are intimately interconnected and associated with age-related diseases. We focus on several key aspects of how peroxisomes contribute to cellular reactive oxygen species/reactive nitrogen species levels in mammalian cells and how these cells cope with peroxisome-derived oxidative stress. We also provide a brief overview of recent strategies that have been successfully employed to detect and modulate the peroxisomal redox status. Finally, we highlight some gaps in our knowledge and propose potential avenues for further research. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of peroxisomes in Health and Disease.  相似文献   

6.
The body of evidence from the past three decades demonstrates that oxidative stress can be involved in several diseases. This study aims to summarise the current state of knowledge on the association between oxidative stress and the pathogenesis of some characteristic to the biological systems diseases and aging process. This review also presents the effect of physical activity on redox homeostasis. There is strong evidence from studies for participation of reactive oxygen and nitrogen species in pathogenesis of acute and chronic diseases based on animal models and human studies. Elevated levels of pro-oxidants and various markers of the oxidative stress and cells and tissues damage linked with pathogenesis of cancer, atherosclerosis, neurodegenerative diseases hypertension, diabetes mellitus, cardiovascular disease, atherosclerosis, reproductive system diseases, and aging were reported. Evidence confirmed that inflammation contributes widely to multiple chronic diseases and is closely linked with oxidative stress. Regular moderate physical activity regulates oxidative stress enhancing cellular antioxidant defence mechanisms, whereas acute exercise not preceded by training can alter cellular redox homeostasis towards higher level of oxidative stress. Future studies are needed to clarify the multifaceted effects of reactive oxygen/nitrogen species on cells and tissues and to continue study on the biochemical roles of antioxidants and physical activity in prevention of oxidative stress-related tissue injury.  相似文献   

7.
NAD(P)H:quinone oxidoreductase 1 (NQO1), a redox-regulated flavoenzyme, plays a central role in monitoring cellular redox state. NQO1 acts to protect against oxidative stress induced by a variety of metabolic situations, including metabolism of quinones and other xenobiotics, by: (i) functioning as a two electron donor to provide a shunt that competes with the formation of reactive oxygen species; (ii) maintaining reduced coenzyme Q; and (iii) regulating the stress activated kinase pathway. In Alzheimer's disease, while there is abundant evidence for the involvement of oxidative stress, the cause or the consequences are largely unresolved. We suspected that increased NQO1 could signal a major shift in redox balance in Alzheimer's disease and, in this study, found that NQO1 is localized not only to neurofibrillary tangles but also the cytoplasm of hippocampal neurons. By marked contrast, there is very little NQO1 in the same neuronal populations in young and age-matched controls. This novel association of NQO1 further buttresses the nexus of oxidative stress, via free radicals, with selective neuronal vulnerability and also supports a fundamental abnormality in redox balance in Alzheimer's disease.  相似文献   

8.
9.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.  相似文献   

10.
Signal transduction by reactive oxygen species (ROS; "redox signaling") has recently come into focus in cellular biology studies. The signaling properties of ROS are largely due to the reversible oxidation of redox-sensitive target proteins, and especially of protein tyrosine phosphatases, whose activity is dependent on the redox state of a low pKa active site cysteine. A variety of mitogenic signals, including those released by receptor tyrosine kinase (RTKs) ligands and oncogenic H-Ras, involve as a critical downstream event the intracellular generation of ROS. Signaling by integrins is also essential for the growth of most cell types and is constantly integrated with growth factor signaling. We provide here evidence that intracellular ROS are generated after integrin engagement and that these oxidant intermediates are necessary for integrin signaling during fibroblast adhesion and spreading. Moreover, we propose a synergistic action of integrins and RTKs for redox signaling. Integrin-induced ROS are required to oxidize/inhibit the low molecular weight phosphotyrosine phosphatase, thereby preventing the enzyme from dephosphorylating and inactivating FAK. Accordingly, FAK phosphorylation and other downstream events, including MAPK phosphorylation, Src phosphorylation, focal adhesion formation, and cell spreading, are all significantly attenuated by inhibition of redox signaling. Hence, we have outlined a redox circuitry whereby, upon cell adhesion, oxidative inhibition of a protein tyrosine phosphatase promotes the phosphorylation/activation and the downstream signaling of FAK and, as a final event, cell adhesion and spreading onto fibronectin.  相似文献   

11.
Oxidative stress as a mechanism of teratogenesis   总被引:1,自引:0,他引:1  
Emerging evidence shows that redox-sensitive signal transduction pathways are critical for developmental processes, including proliferation, differentiation, and apoptosis. As a consequence, teratogens that induce oxidative stress (OS) may induce teratogenesis via the misregulation of these same pathways. Many of these pathways are regulated by cellular thiol redox couples, namely glutathione/glutathione disulfide, thioredoxinred/thioredoinox, and cysteine/cystine. This review outlines oxidative stress as a mechanism of teratogenesis through the disruption of thiol-mediated redox signaling. Due to the ability of many known and suspected teratogens to induce oxidative stress and the many signaling pathways that have redox-sensitive components, further research is warranted to fully understand these mechanisms.  相似文献   

12.
Mitochondria are key regulators of cellular energy and redox metabolism, also playing a central role in cell signaling and death pathways. A number of processes occur within mitochondria, including redox-dependent ATP synthesis by oxidative phosphorylation and reactive oxygen species production. Mitochondrial permeability transition is a reversible process that may lead to cell death and is regulated by calcium and reactive oxygen species. Functional mitochondria are present in platelets, and evidence has demonstrated the direct involvement of these organelles in cellular ATP production, redox balance, as well as in platelet activation and apoptosis. Here, we review aspects of platelet physiology in which mitochondria are involved, as well as assess their function as new tools for studying a number of human diseases.  相似文献   

13.
Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.  相似文献   

14.
Silke Essler 《FEBS letters》2009,583(21):3531-1690
Reactive oxygen species not only serve as signaling molecules, they also contribute to oxidative stress and cell damage. The thioredoxin and glutaredoxin systems form along with peroxiredoxins a precisely regulated defense system to maintain the cellular redox homeostasis. There is evidence that nitric oxide (NO) protects cells from oxidative stress by preventing inactivation of peroxiredoxins by sulfinylation. Here we demonstrate that NO and hypoxia upregulate Sestrin2 by HIF-1-dependent and additional mechanisms and that Sestrin2 contributes to preventing peroxiredoxins from sulfinylation. We conclude that Sestrin2 plays a role in peroxide defense as a reductase for peroxiredoxins.  相似文献   

15.
Abstract

NAD(P)H:quinone oxidoreductase 1 (NQO1), a redox-regulated flavoenzyme, plays a central rolein monitoring cellular redox state. NQO1 acts to protect against oxidative stress induced by a variety of metabolic situations, including metabolism of quinones and other xenobiotics, by: (i)functioning as a two electron donor to provide a shunt that competes with the formation of reactive oxygen species; (ii) maintaining reduced coenzyme Q; and (iii) regulating the stress activated kinase pathway. In Alzheimer's disease, while there is abundant evidence for the involvement of oxidative stress, the cause or the consequences are largely unresolved. We suspected that increased NQO1 could signal a major shift in redox balance in Alzheimer's disease and, in this study, found that NQO1 is localized not only to neurofibrillary tangles but also the cytoplasm of hippocampal neurons. By marked contrast, there is very little NQO1 in the same neuronal populations in young and age-matched controls. This novel association of NQO1 further buttresses the nexus of oxidative stress, via free radicals, with selective neuronal vulnerability and also supports a fundamental abnormality in redox balance in Alzheimer's disease.  相似文献   

16.
Understanding the dynamics of redox elements in biologic systems remains a major challenge for redox signaling and oxidative stress research. Central redox elements include evolutionarily conserved subsets of cysteines and methionines of proteins which function as sulfur switches and labile reactive oxygen species (ROS) and reactive nitrogen species (RNS) which function in redox signaling. The sulfur switches depend on redox environments in which rates of oxidation are balanced with rates of reduction through the thioredoxins, glutathione/glutathione disulfide, and cysteine/cystine redox couples. These central couples, which we term redox control nodes, are maintained at stable but nonequilibrium steady states, are largely independently regulated in different subcellular compartments, and are quasi-independent from each other within compartments. Disruption of the redox control nodes can differentially affect sulfur switches, thereby creating a diversity of oxidative stress responses. Systems biology provides approaches to address the complexity of these responses. In the present review, we summarize thiol/disulfide pathway, redox potential, and rate information as a basis for kinetic modeling of sulfur switches. The summary identifies gaps in knowledge especially related to redox communication between compartments, definition of redox pathways, and discrimination between types of sulfur switches. A formulation for kinetic modeling of GSH/GSSG redox control indicates that systems biology could encourage novel therapeutic approaches to protect against oxidative stress by identifying specific redox-sensitive sites which could be targeted for intervention.  相似文献   

17.
The intracellular redox state is a key determinant of cell fate, such as cell survival, proliferation, differentiation, and apoptosis. Redox imbalance is closely linked to a variety of human diseases, so that the intracellular redox condition should be tightly regulated. The redox state of the cell is a consequence of the precise balance between the levels of oxidizing and reducing equivalents, such as reactive oxygen species (ROS) and endogenous antioxidants. ROS are not only toxicants to the cell, but also second messengers in intracellular signal transduction, and control the action of several signaling pathways, including mitogen-activated protein (MAP) kinases. Apoptosis signal-regulating kinase 1 (ASK1) is a MAP kinase kinase kinase of the c-Jun N-terminal kinase (JNK) and p38 MAP kinase pathways, which is preferentially activated in response to various types of stress such as oxidative stress and plays pivotal roles in a wide variety of cellular responses. Recent studies have revealed that ASK1 is also required for innate immune response through ROS production. In this review, we focus on redox control of cell function by MAP kinase signaling, and provide the advanced mechanism of redox-regulated ASK1 activation and physiological roles of the ASK1-MAP kinase pathway in stress signaling.  相似文献   

18.
A redox imbalance caused by an over-production of prooxidants or a decrease in antioxidants seems to play a role in the programmed cell death that occurs in various developmental programs. Such a physiological function for oxidative stress is particularly applicable to the immune system, wherein individual lymphocytes undergo continuous scrutiny to determine if they should be preserved or programmed to die. Following activation, lymphocytes produced increased levels of reactive oxygen species (ROS) which may serve as intracellular signaling molecules. The ultimate outcome of this increased ROS formation, i.e., lymphocyte proliferation versus programmed cell death, may be dictated by macrophage-derived costimulatory molecules that bolster or diminish lymphocyte antioxidant defenses. HIV-1-infected individuals display multiple symptoms of redox imbalance consistent with their being in oxidative stress, and lymphocytes from such individuals are more prone to undergo apoptosis in vitro. It is suggested that oxidative stress is a physiological mediator of programmed cell death in lymphoid cells, and that HIV disease represents an extreme case of what can happen when regulatory safeguards are compromised.  相似文献   

19.
Andreas Daiber 《BBA》2010,1797(6-7):897-906
This review highlights the important role of redox signaling between mitochondria and NADPH oxidases. Besides the definition and general importance of redox signaling, the cross-talk between mitochondrial and Nox-derived reactive oxygen species (ROS) is discussed on the basis of 4 different examples. In the first model, angiotensin-II is discussed as a trigger for NADPH oxidase activation with subsequent ROS-dependent opening of mitochondrial ATP-sensitive potassium channels leading to depolarization of mitochondrial membrane potential followed by mitochondrial ROS formation and respiratory dysfunction. This concept was supported by observations that ethidium bromide-induced mitochondrial damage suppressed angiotensin-II-dependent increase in Nox1 and oxidative stress. In another example hypoxia was used as a stimulator of mitochondrial ROS formation and by using pharmacological and genetic inhibitors, a role of mitochondrial ROS for the induction of NADPH oxidase via PKC? was demonstrated. The third model was based on cell death by serum withdrawal that promotes the production of ROS in human 293T cells by stimulating both the mitochondria and Nox1. By superior molecular biological methods the authors showed that mitochondria were responsible for the fast onset of ROS formation followed by a slower but long-lasting oxidative stress condition based on the activation of an NADPH oxidase (Nox1) in response to the fast mitochondrial ROS formation. Finally, a cross-talk between mitochondria and NADPH oxidases (Nox2) was shown in nitroglycerin-induced tolerance involving the mitochondrial permeability transition pore and ATP-sensitive potassium channels. The use of these redox signaling pathways as pharmacological targets is briefly discussed.  相似文献   

20.
Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号