首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The growth and production of the Baltic clam Macoma balthica in the southeastern part of the Baltic Sea were studied. The shell length of M. balthica reached 23.5 mm, the maximum age was 13+ years. The linear growth was described by the von Bertalanffy equation for shallow-water area (depths 9–40 m): L τ = 23.99(1 − e −0.1293(τ − (−0.9578))), and for the deep-water area (41–81 m): L τ = 20.61(1 − e −0.1813(τ − (−0.5608))). The annual production was lower (25.35 ± 1.72 kJ/m2) in the shallow-water area than in the deep-water area (71.23 ± 4.48 kJ/m2), with values of P s /B ratio 0.44 and 0.38, respectively.  相似文献   

2.
The patch clamp K+-conductance G of the nicotinic acetylcholine receptor (AcChoR) dimer (Mr≈ 590 000) of Torpedo californica, reconstituted in lipid vesicles, which decreases with increasing Ca2+-concentration in the range 0.1≤[Ca2+]/mM≤2, can be quantitatively rationalized by Ca2+-binding to negatively charged sites, causing charge reversal reducing the normal K+-accumulation in the channel vestibules. Cleavage of the sialic acid residues (up to 20±2 per dimer) reduces the K+-accumulation factor α = G0/G from α = 3±0.8 of the normal AcChoR to α = 2±0.7 for the desialyated AcChoR. Desialysation also decreases the Ca2+-sensitivity of the conductance from G0 = 96.6±6 pS at [Ca2+]→0 of the normal AcChoR to G0 = 84.2±6 pS. Endogenous hyperphosphorylation (to up to 28±4 phosphates per dimer) enhances the vestibular K+-accumulation to α = 3.6±0.7, without affecting the Ca2+-dissociation equilibrium constant KCa = 0.34± 0.05 mM at 295 K (22 °C). Most interestingly, even in the absence of AcCho, the hyperphosphorylated AcChoR dimer exhibits spontaneously long-lasting open channel events (τ = 200±50 ms). At [AcCho] = 2 μM there are two open states (τ 1 = 20±10 ms, τ 2 = 140±60 ms) whereas the normal AcChoR dimer has only one open state (τ = 6±4 ms). – Physiologically important is that (i) the sialic acid and phosphate residues render the AcChoR conductance sensitive to control by divalent ions and (ii) the channel behavior of the hyperphosphorylated AcChoR without AcCho appears to indicate pathophysiologically high phosphorylation activity of the cell leading, among others, to myasthenic syndromes. Received: 10 November 1997 / Revised version: 12 January 1998 / Accepted: 7 March 1998  相似文献   

3.
A growth-associated model was applied to the production of recombinant ovine interferon-τ (rOvIFN-τ) with Pichia pastoris for the purpose of manufacturing preclinical and clinical active material. This model predicts that product yields will be the greatest when the specific growth of the culture is maintained at a steady and optimal rate. However, rOvIFN-τ yields did not meet the expected linear model but most closely corresponded to a polynomial relationship. After transitioning from glycerol to methanol, product accumulated for 31–45 h, and then the yield decreased. This production shift, which has been termed decoupling, was clearly related to time on methanol and not culture density. It was determined that a correlation exists between the decoupling point and a drop in energy state of the cell when expressing β-galactosidase. By assigning decoupling as a constraint that limits productivity and by reformulating the growth medium, the time prior to decoupling increased to 46.8±2.4 h, product yield improved for rOvIFN-τ from 203 to 337 mg l−1, and the coefficient of variation for yield decreased from 67.9 to 23.3%. A robust and stable fermentation process was realized, resulting in a 210% improvement in total yield from 557±357 to 1,172±388 mg.  相似文献   

4.
Interneurons of the substantia gelatinosa (SG) form a complex synaptic network in the dorsal horn of the spinal cord. The properties of miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs, respectively) were studied in spinal cord slices of 3- to 4-week-old rats. The reversal potentials of the currents were close to 0 mV for excitatory and –70 mV for inhibitory events. Under recording conditions close to physiological ones (holding potential –40 mV, temperature 32°C, low intracellular [Cl]), the mean rise times of these currents were, respectively, 1.0 and 1.8 msec. The decay of the currents was monoexponential in the majority of occurrences (94 and 91.4%), with a time constant (τ) of 2.7 msec for mEPSCs and 7.2 msec for mIPSCs. A part (8.6%) of mIPSCs had an additional slow component with τ = 30.1 msec. All mEPSCs were blocked by 10 mM CNQX, an antagonist of the AMPA/kainate subtype of glutamate receptors. Monoexponential mIPSCs were blocked by 1 mM strychnine, an antagonist of glycine receptors, while two-component mIPSCs required the additional presence of 10 mM bicuculline, a blocker of GABAA receptors. Only two cells of 23 (~9%) demonstrated pure GABA-ergic mIPSCs (τ = 26.2 msec). It is concluded that, under physiological conditions, AMPA/kainate but not NMDA receptors mediate excitatory synaptic transmission in SG neurons. Synaptic inhibition is mediated predominantly by glycine receptors, with mild fractions of IPSCs provided by GABA-ergic transmission and GABA/glycine co-release.  相似文献   

5.
The goal of this research was to measure in vitro the inhibitory constants of the antioxidants ascorbic and uric acid in urine, with lucigenin enhanced chemiluminescence (CL) in Fenton’s system. Maximum CL emission is registered in urine containing H2O2 (5·10−4 M), Fe2+ (5·10−5 M), EDTA (5·10−5 M), and chemical enhancer lucigenin (10−4 M) at pH 5.5 and 36°C. Ascorbic acid exhibits up to 4-fold stronger antioxidant effect than uric acid. The constants of antioxidant inhibition in urine were measured at concentrations 10−3 and 10−4 M: for ascorbic acid, 5.92 ± 0.04 and 24.05 ± 1.82 μmol·sec−1; for uric acid, 1.60 ± 0.02 and 21.45 ± 0.97 μmol·sec−1, respectively. Three phases of CL kinetics of urine are well observed: spontaneous CL (0–10 sec), fast flash of CL (10–50 sec), and latent period (50–300 sec). The antioxidant efficiency of ascorbic and uric acids in the final stage of catabolic processes in the body is discussed. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 8, pp. 1062–1065.  相似文献   

6.
Synopsis Blood samples from cannulated young adult (2.5–15 kg) white sturgeon, acclimated to San Francisco Bay water (24 ppt) had plasma values of 248.8 ± 13.5 mOsm kg−1 H2O, [Na+] = 125 ± 8.0 mEq 1−1, [K+] = 2.6 ± 0.8 mEq 1−1 and [CL] = 122 ± 3.0 mEq 1−1. Freshwater acclimated sturgeon had an osmolality of 236 ± 7, [Na+] = 131.6 + 4.4, [K+] = 2.5 ± 0.7 and [CL] = 110.6 ± 3.6. Freshwater acclimated fish gradually exposed to sea water (increase of 5 ppt h−1) had higher plasma osmolalities than did the bay water acclimated fish. These young adult sturgeon are able to tolerate transfer from fresh water to sea water as well as gradual transfer from sea water to fresh water. Plasma electrolytes in transferred fish are regulated, but tend to differ from long term acclimated fish at the same salinities. There is a gradual increase in the upper salinity tolerance (abrupt transfer) of juvenile white sturgeon with weight: 5–10 ppt for 0.4–0.9 g fish, 10–15 ppt for 0.7–1.8 g fish, and 15 ppt for 4.9–50.0 g fish. The ability of juveniles to regulate plasma osmolality is limited. The young adult fish are able to tolerate higher salinities (35 ppt) than juvenile sturgeon but probably are also characterized by low activity of the necessary ion exchange mechanisms in the gills which permit rapid adjustment of blood electrolytes with graduate change in external salinity.  相似文献   

7.
A two-wave technique of calciometry with the use of a fluorescence dye, fura-2/AM, was applied for examination of the effect of a protein, β-amyloid (the main component of senile plaques in Alzheimer’s disease), on calcium homeostasis in cultured neurons of the rat hippocampus; β-amyloid was added to the culture medium. In most neurons, the effect of β-amyloid appeared as a more than twofold increase in the basic calcium concentration, as compared with the control (153.4 ± 11.5 and 71.7 ± 5.4 nM, respectively; P < 0.05). The characteristics of calcium transients induced by application of hyperpotassium solution also changed; the amplitude of these transients decreased, and the duration of a part corresponding to calcium release from the cell (rundown of the transient) increased. The mean amplitude of calcium transients under control conditions was 447.5 ± 20.1 nM, while after incubation in the presence of β-amyloid this index dropped to 278.4 ± 22.6 nM. Under control conditions, the decline phase of calcium transients lasted, on average, 100 ± 6 sec, while after incubation of hippocampal cell cultures in the presence of β-amyloid this phase lasted 250 ± 10 sec. Therefore, an excess of β-amyloid influences significantly calcium homeostasis in the nerve cells by disturbing functions of the calcium-controlling systems, such as voltage-operated calcium channels of the plasma membrane and calcium stores of the mitochondria and endoplasmic reticulum. Neirofiziologiya/Neurophysiology, Vol. 40, No. 1, pp. 9–12, January–February, 2008.  相似文献   

8.
Membrane electroporation, vesicle shape deformation and aggregation of small, NaCl-filled lipid vesicles (of radius a = 50 nm) in DC electric fields was characterized using conductometric and turbidimetrical data. At pulse durations tE≤ 55 ± 5 ms the increase in the conductivity of the vesicle suspension is due to the field-induced efflux of electrolyte through membrane electropores. Membrane electroporation and Maxwell stress on the vesicle membrane lead to vesicle elongation concomitant with small volume reduction (up to 0.6% in an electric field of E = 1 MV m–1). At tE > 55 ± 5 ms, further increases in the conductivity and the optical density suggest electroaggregation and electrofusion of vesicles. The conductivity changes after the electric pulse termination reflect salt ion efflux through slowly resealing electropores. The analysis of the volume reduction kinetics yields the bending rigidity κ = (4.1 ± 0.3) ⋅ 10–20 J of the vesicle membrane. If the flow of Na+ and Cl ions from the vesicle interior is treated in terms of Hagen-Poiseuille's equation, the number of permeable electropores is N = 39 per vesicle with mean pore radius rp = 0.85 ± 0.05 nm at E = 1 MVm–1 and tE≤ 55 ± 5 ms. The turbidimetric and conductometric data suggest that small lipid vesicles (a ≤ 50 nm) are not associated with extensive membrane thermal undulations or superstructures. In particular with respect to membrane curvature, the vesicle results are suggestive for the design and optimization of electroporative delivery of drugs and genes to cell tissue at small field strengths (≤1 MVm–1) and large pulse durations (≤100 ms). Received: 8 July 1997 / Accepted: 15 September 1997  相似文献   

9.
Bagarinao  T.  Lantin-Olaguer  I. 《Hydrobiologia》1998,382(1-3):137-150
Fish kills of milkfish Chanos chanos and tilapia Oreochromis spp. now occur frequently in brackish, marine, and freshwater farms (ponds, pens, and cages) in the Philippines. Aquafarms with high organic load, limited water exchange and circulation, no aeration, and high stocking and feeding rates can become oxygen-depleted and allow sulfide from the sediments to appear in the water column and poison free-swimming fish. The sulfide tolerance of 2–5 g milkfish and 5–8 g O. mossambicus was determined in 25-liter aquaria with flow-through sea water (100 ml min-1) at 26–30 °C and sulfide stock solutions pumped in at 1ml min-1. Total sulfide concentrations in the aquaria were measured by the methylene blue method and used in the regression against the probits of % survival. Four experiments showed that the two species have similar sulfide tolerance. In sea water of pH 8–8.5, about 163 ± 68 μM or 5.2 ± 2.2 mg l-1 total sulfide (mean ± 2 se) or 10 μM or 313 μg l-1 H2S was lethal to 50% of the fish in 4–8 h, and 61 ± 3 μM total sulfide or 4 μM H2S in 24–96 h (to convert all sulfide concentrations: 1 μM = 32 μg l-1). Earthen pond bottoms had 0–382 μM total dissolved sulfide (mean ± sd = 54 ± 79 μM, n = 76); a tenth of the samples had >200 μM. The water column may have such sulfide levels under hypoxic or anoxic conditions. To simulate some of the conditions during fish kills, 5–12 g milkfish were exposed to an abrupt increase in sulfide, alone or in combination with progressive respiratory hypoxia and decreasing pH. The tests were done in the same flow-through set-up but with sulfide pumped in at 25 ml min-1. The lethal concentration for 50% of the fish was 197 μM total sulfide or 12 μM H2S at 2 h, but 28–53 μM sulfide allowed fish to survive 6–10 h. Milkfish in aquaria with no aeration nor flow-through sea water died of respiratory hypoxia in 5–8 h when oxygen dropped from 6 to 1 mg l-1. Under respiratory hypoxia with 30–115 μM sulfide, the fish died in 2.5–4 h. Tests with low pH were done by pumping a weak sulfuric acid solution at 25 ml min-1 into aquaria with flow-through sea water such that the pH dropped from 8 to 4 in 5 h. Under these conditions, milkfish died in 7–9 h when the pH was 3.5. When 30–93 μM sulfide was pumped in with the acid, the fish died in 2–6 h when the pH was still 4.5–6.3. Thus, sulfide, hypoxia, and low pH are each toxic to milkfish at particular levels and aggravate each other's toxicity. Aquafarms must be well oxygenated to prevent sulfide toxicity and fish kills. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
In experiments on the somata of sensory neurons isolated from the spinal and trigeminal ganglia of rats, we characterized three subclasses of proton-gated currents differing from each other in their kinetics of desensitization and characteristics of stationary desensitization (but not in the characteristics of stationary activation). A voltage clamp technique in the whole cell configuration and intracellular perfusion were used. Expression of the channels providing currents of each subclass depended on the soma diameter but not on anatomical localization of the neuron. Proton-gated channels of type I were characterized by mono- or biexponential kinetics of current desensitization with the duration of complete decay within a 1 to 15 sec range; the mean pH50 of the curve of stationary desensitization was 7.21 ± 0.02. Channels of type II possessed mostly monoexponential desensitization kinetics with the duration of decay within a 1 to 3 sec range; their pH50 of the stationary desensitization curve was 7.11 ± 0.02. Channels of type III showed mostly biexponential desensitization kinetics; the complete current decay lasted about 5 sec, while the mean pH50 was about 6.78 ± 0.02. Channels of type I were typical of small neurons (soma diameter 10-20 m), while those of types II and III were found mostly in large cells (35-60 m).  相似文献   

11.
The vertical distribution of a bloom-forming Microcystis population was studied based on the relevant limnological parameters obtained from the lower Nakdong River (Mulgum) during the summer of 1994. Over three months (late June to late September), a high abundance of Microcystis population (mean ± SD, 2.9 ± 8.4 × 105 cells ml−1, n = 40) and algal biomass (mean ± SD, chlorophyll a, 131 ± 346 μg l−1, n = 31) was persistent throughout the entire water column (0–5 m, n = 11). The vertical distribution of carbon content was uneven, with a high concentration near the surface zone (mean ± SD, total, 7.9 ± 7.8; Microcystis, 5.2 ± 8.3 μg C ml−1, n = 15). Incorporating limnological and meteorological factors, a diel study of the vertical distribution of Microcystis showed that the chlorophyll a concentration was highest near the surface zone on a calm night (wind velocity, <2 m s−1, 2300–700) but was evenly distributed on a windy day (>4 m s−1, 1100–1900). Among many possible factors, wind velocity may have played an important role in controlling the vertical distribution of Microcystis in the lower Nakdong River. Received: July 12, 1999 / Accepted: November 15, 1999  相似文献   

12.
 The ligand DOTASA was designed and synthesized in the aim of obtaining a kinetically and thermodynamically stable Gd(III) chelate which, through its uncoordinated carboxylate function, will provide an efficient pathway to couple the complex to bio- or macromolecules without affecting the coordination pattern of DOTA. Furthermore, it allows us to study the influence of an extra carboxylate arm on the parameters determining proton relaxivity in comparison to the commercial agent [Gd(DOTA)(H2O)]. A combined variable-temperature 17O NMR, EPR and nuclear magnetic relaxation dispersion study on the Gd(III) chelate resulted in k 298 ex=(6.3±0.2)×106 s–1 for the water exchange rate and τ298 R=125±2 ps for the rotational correlation time. The slight increase in both k 298 ex and τ298 R, as compared to those for [Gd(DOTA)(H2O)], is attributed to the presence of the extra negative charge. The longer rotational correlation time results in a proton relaxivity of 5.03 mM–1 s–1 for [Gd(DOTASA)(H2O)]2–, which is approximately 30% higher than that for [Gd(DOTA)(H2O)]. The increased water exchange rate of [Gd(DOTASA)(H2O)]2– has no consequence for proton relaxivity since this latter is exclusively limited by fast rotation for both complexes. However, for slowly rotating macromolecular agents, which contain a covalently coupled DOTASA unit instead of a coupled DOTA, this increased exchange rate will have a significant positive effect. Received: 31 December 1998 / Accepted: 4 March 1999  相似文献   

13.
A pioneering limnological investigation was carried out in Bhutan in a small peat bog in the Trashiyangtse district (1950 m above sea level) from February 2000 to January 2002. The sampled pond water had low transparency (55.0–95.0 cm), was typically acidic (pH 5.69–6.58) with soft water (alkalinity, 11.0–36.0 mg/l; total hardness, 10.0–34.0 mg/l), and had low to moderate specific conductivity (17.0–62.0 μS/cm). Further, moderate Na (2.0–6.8 mg/l), K (1.8–13.5 mg/l), sulphate (0.85–2.99 mg/l), and silicate (2.5–15.0 mg/l) concentrations as well as low nutrient levels such as phosphate (0.006–0.170 mg/l) and nitrate (0.003–0.180 mg/l) characterize the water in the peat bog. The recorded net plankton comprised 27 species of phytoplankton and 49 species of zooplankton, with the latter indicating greater homogeneity and breaking down into Rotifera (23 species) > Cladocera (13 species) > Rhizopoda (8 species) > Copepoda (3 species) > Ostracoda = Nematoda (1 species each). On the other hand, the net plankton density ranged between 93 and 692 number/l (n/l) with numerical dominance by phytoplankton (68.5% ± 12%), of which Chlorophyceae were predominant (90 ± 63 n/l). Zooplankton showed moderately high diversity (2.745 ± 0.293) and evenness (0.925 ± 0.049) and exhibited almost equal abundance of four recorded groups, namely Cladocera (20 ± 15 n/l) > Rotifera (15 ± 6 n/l) > Copepoda (14 ± 7 n/l) > Rhizopoda (14 ± 4 n/l). While no significant impact of abiotic factors was recorded on zooplankton density, rainfall alone was the most important factor that influenced net plankton and various groups of phytoplankton. Comments on some comparative limnological attributes are also made with similar as well as different habitats in the nearby Himalayan countries.  相似文献   

14.
 Direct cyclic voltammetry and 1H NMR spectroscopy have been combined to investigate the electrochemical and spectroscopic properties of cytochrome c 553 isolated from the alkaliphilic soil bacterium Bacillus pasteurii. A quasi-reversible diffusion-controlled redox process is exhibited by cytochrome c 553 at a pyrolitic graphite edge microelectrode. The temperature dependence of the reduction potential, measured using a non-isothermal electrochemical cell, revealed a discontinuity at 308 K. The thermodynamic parameters determined in the low-temperature range (275–308 K;ΔS°′=–162.7±1.2 J mol–1 K–1, ΔH°′=–53.0±0.5 kJ mol–1, ΔG°′=–4.5±0.1 kJ mol–1, E°′=+47.0±0.6 mV) indicate the presence of large enthalpic and entropic effects, leading, respectively, to stabilization and destabilization of the reduced form of cytochrome c 553. Both effects are more accentuated in the high-temperature range (308–323 K;ΔS°′=–294.1±8.4 J mol–1 K–1, ΔH°′=–93.4±3.1 kJ mol–1, ΔG°′=–5.8±0.6 kJ mol–1, E°′=+60.3±5.8 mV), with the net result being a slight increase of the standard reduction potential. These thermodynamic parameters are interpreted using the compensation theory of hydration of biopolymers as indicating the extrusion, upon reduction, of water molecules from the hydration sphere of the cytochrome. The low-T and high-T conformers differ by the number of water molecules in the solvation sphere: in the high-T conformer, the number of water molecules extruded upon reduction increases, as compared to the low-T conformer. The ionic strength dependence of the reduction potential at 298 K, treated within the frame of extended Debye-Hückel theory, yields values of E °′ (I=0) =–25.4±1.4 mV, z red=–11.3, and z ox=–10.3. The pH dependence of the reduction potential at 298 K shows a plateau in the pH range 7–10 and an increase at more acidic pH, allowing the calculation of pK O=5.5 and pK R=5.7, together with the estimate of the reduction potentials of completely protonated (+71 mV) and deprotonated (+58 mV) forms of cytochrome c 553. 1H NMR spectra of the oxidized paramagnetic cytochrome c 553 indicate the presence of a His-Met axial coordination of the low-spin (S=1/2) heme iron, which is maintained in the temperature interval 288–340 K at pH 7 and in the pH range 4.8–10.0 at 298 K. The temperature dependence of the hyperfine-shifted signals shows both Curie-type and anti-Curie-type behavior, with marked deviations from linearity, interpreted as indicating the presence of a fast equilibrium between the low-T and high-T conformers, having slightly different heme electronic structures resulting from the T-induced conformational change. Increasing the NaCl concentration in the range 0–0.2 M causes a slight change of the 1H NMR chemical shifts of the hyperfine-shifted signals, with no influence on their linewidth. The calculated lower limit value of the apparent affinity constant for specific ion binding is estimated as 5.2±1.1 M–1. The pH dependence of the isotropically shifted 1H NMR signals of the oxidized cytochrome displays at least one ionization step with pK O=5.7. The thermodynamic and spectroscopic data indicate a large solvent-derived entropic effect as the main cause for the observed low reduction potential of B. pasteurii cytochrome c 553. Received: 9 January 1998 / Accepted: 8 April 1998  相似文献   

15.
As a part of the ICEFISH04 project on the RVIB Nathaniel B. Palmer, miniature end plate currents (MEPCs) were recorded from the extraocular muscles of Notothenia rossii captured at King Edward Point, South Georgia. A total of 1,176 MEPCs were recorded from the inferior oblique extraocular muscles of four specimens, over a temperature range of 1–12°C. The MEPCs were normal in form, with a rapid quasi-linear increase in inward current (typically <500 μs), followed by a slower exponential decay of the inward current to baseline. Exponential decay rates were calculated for individual MEPCs by linear regression of the log-transformed data, and converted to exponential time constants (τ). Only those MEPCs that fit the exponential model well, with r 2 ≥ 0.95 (or in some cases r 2 ≥ 0.99) were used for further calculations. At temperatures between 1 and 2°C, τ ranged from about 2,000 to 4,000 μs, similar to values extrapolated for temperate teleosts at the same temperature, but significantly longer than τ from MEPCs of high-latitude Antarctic nototheniids. Between 11 and 12°C, τ values for the N. rossii MEPCS were mainly between 1,100 and 1,700 μs, giving a Q 10 of 2.05. An Arrhenius plot and linear regression were used to describe the effect of changing temperature on the decay phase of the N. rossii MEPCs: −ln τ = 27.887−6078/K, yielding an Arrhenius temperature coefficient (μ or apparent E a) of −50.5 ± 2.9 (95% CL) kJ mol−1 deg−1. When compared with other nototheniids, these results showed that the neuromuscular junctions of N. rossii are compensated for low temperature, but not to the same degree as those of high Antarctic species. The ICEFISH Cruise (International Collaborative Expedition to collect and study Fish Indigenous to Sub-antarctic Habitats) was conducted on board the RVIB Nathaniel B. Palmer in May to July 2004. For further information, please visit .  相似文献   

16.
In previous studies, we have shown that cerebral hypoxia results in increased activity of caspase-9, the initiator caspase, and caspase-3, the executioner of programmed cell death. We have also shown that cerebral hypoxia results in high affinity Ca2+–ATPase-dependent increase in nuclear Ca2+-influx in the cerebral cortex of newborn piglets. The present study tests the hypothesis that inhibiting nuclear Ca2+-influx by pretreatment with clonidine, an inhibitor of high affinity Ca2+–ATPase, will prevent the hypoxia-induced increase in caspase-9 and caspase-3 activity in the cerebral cortex of newborn piglets. Thirteen newborn piglets were divided into three groups, normoxic (Nx, n = 4), hypoxic (Hx, n = 4), and hypoxic treated with clonidine (100 mg/kg) (Hx–Cl, n = 5). Anesthetized, ventilated animals were exposed to an FiO2 of 0.21 (Nx) or 0.07 (Hx) for 60 min. Cerebral tissue hypoxia was documented biochemically by determining levels of ATP and phosphocreatine (PCr). Caspase-9 and -3 activity were determined spectrofluoro-metrically using specific fluorogenic synthetic substrates. ATP (μmoles/g brain) was 4.6 ± 0.3 in Nx, 1.7±0.4 in Hx (P < 0.05 vs. Nx), and 1.5 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). PCr (μmoles/g brain) was 3.6 ± 0.4 in Nx, 1.1 ± 0.3 in Hx (P < 0.05 vs. Nx), and 1.0 ± 0.2 in Hx–Cl (P < 0.05 vs. Nx). Caspase-9 activity (nmoles/mg protein/h) was 0.548 ± 0.0642 in Nx and increased to 0.808 ± 0.080 (P < 0.05 vs. Nx and Hx–Cl) in the Hx and 0.562 ± 0.050 in the Hx–Cl group (p = NS vs. Nx). Caspase-3 activity (nmoles/mg protein/h) was 22.0 ± 1.3 in Nx and 32 ± 6.3 in Hx (P < 0.05 vs. Nx) and 18.8 ± 3.2 in the Hx–Cl group (P < 0.05 vs. Hx). The data demonstrate that clonidine administration prior to hypoxia prevents the hypoxia-induced increase in the activity of caspase-9 and caspase-3. We conclude that the high afinity Ca2+–ATPase-dependent increased nuclear Ca2+ during hypoxia results in increased caspase-9 and caspase-3 activity.  相似文献   

17.
Water pollution by toxic heavy metals is a burning environmental problem and has presented a challenge to humans. Removal of heavy metals using non-living biomass of seaweeds could be a potential solution to this problem. In the present investigation, biomass of three color forms of Kappaphycus alvarezii, viz. brown, green and pale yellow, were studied in the laboratory for their heavy metal chelating capacity using cadmium, cobalt, chromium and copper. Amongst the four concentrations used (25, 50, 75 and 100 mg L−1) maximum chelation of Cd, Co and Cu was recorded at 25 mg L−1 concentration. The highest amount of Cr was chelated at 100 mg L−1 by all the three color forms. The pale yellow form showed maximum chelation for all four metals studied. Further, chelation in all the color forms was found to be: Cd 5.37 ± 0.59–15.84 ± 0.32 %, Co 21.19 ± 0.13–32.32 ± 0.62 %, Cr 65.38 ± 0.27–88.09 ± 0.51 % and Cu 59.53 ± 0.37–90.28 ± 0.89 %. All the three color forms of K. alvarezii serve as an excellent biodetoxifier as they all chelated considerable amounts of heavy metals.  相似文献   

18.
There is a scarcity of investigation into the mechanical properties of subdermal fat. Recently, progress has been made in the determination of subdermal stress and strain distributions. This requires accurate constitutive modelling and consideration of the subdermal tissues. This paper reports the results of a study to estimate non-linear elastic and viscoelastic properties of porcine subdermal fat using a simple constitutive model. High-resolution magnetic resonance imaging (MRI) was used to acquire a time series of coincident images during a confined indentation experiment. Inverse finite element analysis was used to estimate the material parameters. The Neo Hookean model was used to represent the elastic behaviour (μ = 0.53 ± 0.31 kPa), while a single-element Prony series was used to model the viscoelastic response (α = 0.39 ± 0.03, τ = 700 ± 255 s).  相似文献   

19.
Migration and reproduction of the Caspian Lamprey, Caspiomyzon wagneri, in the Shirud River were investigated during late-March to early-May at water temperatures ranging from 11 to 21.25°C. We examined the effect of water temperature on timing of spawning migrations. There was a significant negative relationship between temperature and intensive migration of Caspian Lamprey (p < 0.05). The most intensive migration of lampreys was at night (21:00–3:00 h) and when the water temperatures averaged 16°C (34.43%). The overall sex ratio (male to female) was 1.07 to 1. The individual absolute fecundity was 31 ‘758–51’ 198 eggs (mean±SD—41,924 ± 5,382). The egg diameter was 0.780–1.151 (0.92 ± 0.081) mm. The individual relative fecundity varies from 80.3 to 148.1 (107.2 ± 15.1) eggs per 1 mm of length and from 260.8 to 677.4 (397.6 ± 93) eggs per 1 g of weight. The gonadosomatic index (GSI) of females was 5.83–31.44 (11.22 ± 4.30).  相似文献   

20.
Fatty acids of Azotobacter vinelandii ATCC 12837 were determined at various times during aerobic vegetative growth at 30°C to provide baseline data for studying the effects of chemical agents on the organism’s survival and fatty acid biosynthesis. Palmitate (16:0) was the highest at 36.7±4.3 mol% (mean±SD) after the first 5 h in fresh culture, decreasing slightly to 33.4±2.6 mol% at 49 h. The other fatty acids were therefore each normalized as a ratio of 16:0. At 5 h, as a ratio of 16:0, myristate (14:0) was 0.14±0.06, palmitoleate (16:1cΔ9–10) 0.13±0.06, oleate (18:1cΔ9–10) 0.21±0.12, cis-vaccenate (18:1cΔ11–12) 0.30±0.17 and stearate (18:0) 0.68±0.02. As the growth phase advanced to 49 h, 14:0 and 16:1cΔ9–10 increased, 18:1cΔ9–10 decreased and cis-vaccenate reciprocally increased, whereas 18:0 decreased. These suggest that the saturated fatty acid biosynthesis pathway yielded 16:0 and 18:0 in the 5-h lag period. By desaturation, 18:0 formed the unsaturated fatty acid (UFA) 18:1cΔ9–10. As the culture aged, the anaerobic UFA biosynthesis pathway formed 16:1cΔ9–10, which was elongated to 18:1cΔ11–12. These fatty acid alterations represent a homeoviscous adaptation, modulating the microbe’s membrane lipid viscosity for optimal cellular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号