首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field-scale experiment to assess biostimulation of uranium reduction is underway at the Natural and Accelerated Bioremediation Research Field Research Center (FRC) in Oak Ridge, Tennessee. To simulate the field experiment, we established replicate batch microcosms containing well-mixed contaminated sediment from a well within the FRC treatment zone, and we added an inoculum from a pilot-scale fluidized bed reactor representing the inoculum in the field experiment. After reduction of nitrate, both sulfate and soluble U(VI) concentration decreased. X-ray absorption near edge structure (XANES) spectroscopy confirmed formation of U(IV) in sediment from biostimulated microcosms, but did not detect reduction of solid-phase Fe(III). Two to three fragments dominated terminal restriction fragment length polymorphism (T-RFLP) profiles of the 16S rDNA gene. Comparison to a clone library indicated these fragments represented denitrifying organisms related to Acidovorax, and Acidovorax isolates from the inoculum were subsequently shown to reduce U(VI). Investigation using the T-RFLP Analysis Program (TAP T-RFLP) and chemical analyses detected the presence and activity of fermenting and sulfate-reducing bacteria after 2 weeks. These organisms likely contributed to uranium reduction. In some microcosms, soluble U(VI) concentration leveled off or rebounded, indicating microbial and/or mineralogical heterogeneity among samples. Sulfate, acetate, and ethanol were depleted only in those microcosms exhibiting a rebound in soluble U(VI). This suggests that rates of U(VI) desorption can exceed rates of U(VI) reduction when sulfate-reducing bacteria become substrate-limited. These observations underscore the importance of effective chemical delivery and the role of serial and parallel processes in uranium reduction.  相似文献   

2.
A microcosm study was performed to investigate the effect of ethanol and acetate on uranium(VI) biological reduction and microbial community changes under various geochemical conditions. Each microcosm contained an uranium-contaminated sediment (up to 2.8 g U/kg) suspended in buffer with bicarbonate at concentrations of either 1 or 40 mM and sulfate at either 1.1 or 3.2 mM. Ethanol or acetate was used as an electron donor. Results indicate that ethanol yielded in significantly higher U(VI) reduction rates than acetate. A low bicarbonate concentration (1 mM) was favored for U(VI) bioreduction to occur in sediments, but high concentrations of bicarbonate (40 mM) and sulfate (3.2 mM) decreased the reduction rates of U(VI). Microbial communities were dominated by species from the Geothrix genus and Proteobacteria phylum in all microcosms. However, species in the Geobacteraceae family capable of reducing U(VI) were significantly enriched by ethanol and acetate in low-bicarbonate buffer. Ethanol increased the population of unclassified Desulfuromonales, while acetate increased the population of Desulfovibrio. Additionally, species in the Geobacteraceae family were not enriched in high-bicarbonate buffer, but the Geothrix and the unclassified Betaproteobacteria species were enriched. This study concludes that ethanol could be a better electron donor than acetate for reducing U(VI) under given experimental conditions, and electron donor and groundwater geochemistry alter microbial communities responsible for U(VI) reduction.  相似文献   

3.
Groundwater near the S3 ponds at the US Department of Energy's Y-12 site in Oak Ridge, Tennessee, is contaminated by high levels of nitrate (up to 160 mM) and U(VI) (∼0.3 mM). To minimize nitrate inhibition, the authors proposed extraction of contaminated groundwater, nitrate removal in a denitrifying fluidized bed bioreactor (FBR), and return of nitrate-free effluent to the aquifer to stimulate in situ microbial reduction of U(VI). In the presence of carbonate, U(VI) sorption to biomass was negligible, but in its absence, sorption was significant. Biomass reduced U(VI) to U(IV), exhibiting slow first-order removal with respect to U(VI). Addition of electron donor increased rates. Addition of an inhibitor of sulfate reduction (molybdate) slowed the rate and inhibited sulfate reduction. Denitrifying β-Proteobacteria dominated clone libraries of SSU rRNA and dsrA gene sequences. Approximately 10% were low-G+C microorganisms that had 90% to 92% sequence identity with Sporomusa, Acetonema, and Propionispora. The dsrA sequences were dominated by a single clone with ∼80% nucleotide identity to dsrA of Desulfovibrio vulgaris sub sp. oxamicus. The authors conclude that some members of this denitrifyng community reduce uranium, and that sulfate-reducing bacteria likely contribute to this capability.  相似文献   

4.
T-RFLP clone characterization (screening) was optimized for a fast and basepair-accurate characterization of clones from marine Archaea collected from the Eastern Mediterranean Sea. Because of the high sensitivity of T-RFLP fingerprinting, a protocol was developed where 10 initial PCR cycles gave detectable terminal fragments from clones. Additionally, forward and reverse primers for PCR were individually labeled and detected simultaneously to assess the suitability of the forward and reverse fragments for T-RFLP screening. Based on independent restriction digests with the tetrameric restriction enzymes HhaI, RsaI and HaeIII to characterize the 49 archaeal clones in our library, the clones were grouped into 13 T-RFLP operational taxonomic units (OTUs). Reverse fragments generally gave less heterogeneous fragments in size. The accuracy of T-RFLP screening was evaluated by sequencing representative clones. Closely related clones ( approximately 97% similarity) could only be resolved with multiple restriction digests where forward and reverse fragments were included in the analysis. All fragments from the clone library were detected in the T-RFLP fingerprint from the complex archaeal community. We found representatives of marine group I, II and III Archaea. Thus, the recently discovered low abundant marine group III Archaea could be clearly differentiated from the other clones in our library and comprised a considerable fraction of the clone library ( approximately 12%). Therefore, our T-RFLP screening approach proved successful in characterizing novel archaeal sequences from the marine environment.  相似文献   

5.
An experiment was conducted with subsurface sediments from Oak Ridge National Laboratory to determine the potential for reduction of U(VI) under sulfate-reducing conditions with either ethanol or acetate as the electron donor. The results showed extensive U(VI) reduction in sediments supplied with either electron donor, where geochemical and microbiological analyses demonstrated active sulfate reduction.  相似文献   

6.
The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 micro M in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.  相似文献   

7.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

8.
The potential for removing uranium from contaminated groundwater by stimulating the in situ activity of dissimilatory metal-reducing microorganisms was evaluated in a uranium-contaminated aquifer located in Rifle, Colo. Acetate (1 to 3 mM) was injected into the subsurface over a 3-month period via an injection gallery composed of 20 injection wells, which was installed upgradient from a series of 15 monitoring wells. U(VI) concentrations decreased in as little as 9 days after acetate injection was initiated, and within 50 days uranium had declined below the prescribed treatment level of 0.18 μM in some of the monitoring wells. Analysis of 16S ribosomal DNA (rDNA) sequences and phospholipid fatty acid profiles demonstrated that the initial loss of uranium from the groundwater was associated with an enrichment of Geobacter species in the treatment zone. Fe(II) in the groundwater also increased during this period, suggesting that U(VI) reduction was coincident with Fe(III) reduction. As the acetate injection continued over 50 days there was a loss of sulfate from the groundwater and an accumulation of sulfide and the composition of the microbial community changed. Organisms with 16S rDNA sequences most closely related to those of sulfate reducers became predominant, and Geobacter species became a minor component of the community. This apparent switch from Fe(III) reduction to sulfate reduction as the terminal electron accepting process for the oxidation of the injected acetate was associated with an increase in uranium concentration in the groundwater. These results demonstrate that in situ bioremediation of uranium-contaminated groundwater is feasible but suggest that the strategy should be optimized to better maintain long-term activity of Geobacter species.  相似文献   

9.
Stimulating microbial reduction of soluble U(VI) to insoluble U(IV) shows promise as a strategy for immobilizing uranium in uranium-contaminated subsurface environments. In order to learn more about which microorganisms might be involved in U(VI) reduction in situ, the changes in the microbial community when U(VI) reduction was stimulated with the addition of acetate were monitored in sediments from three different uranium-contaminated sites in the floodplain of the San Juan River in Shiprock, N.Mex. In all three sediments U(VI) reduction was accompanied by concurrent Fe(III) reduction and a dramatic enrichment of microorganisms in the family Geobacteraceae, which are known U(VI)- and Fe(III)-reducing microorganisms. At the point when U(VI) reduction and Fe(III) reduction were nearing completion, Geobacteraceae accounted for ca. 40% of the 16S ribosomal DNA (rDNA) sequences recovered from the sediments with bacterial PCR primers, whereas Geobacteraceae accounted for fewer than 5% of the 16S rDNA sequences in control sediments that were not amended with acetate and in which U(VI) and Fe(III) reduction were not stimulated. Between 55 and 65% of these Geobacteraceae sequences were most similar to sequences from Desulfuromonas species, with the remainder being most closely related to Geobacter species. Quantitative analysis of Geobacteraceae sequences with most-probable-number PCR and TaqMan analyses indicated that the number of Geobacteraceae sequences increased from 2 to 4 orders of magnitude over the course of U(VI) and Fe(III) reduction in the acetate-amended sediments from the three sites. No increase in Geobacteraceae sequences was observed in control sediments. In contrast to the predominance of Geobacteraceae sequences, no sequences related to other known Fe(III)-reducing microorganisms were detected in sediments. These results compare favorably with an increasing number of studies which have demonstrated that Geobacteraceae are important components of the microbial community in a diversity of subsurface environments in which Fe(III) reduction is an important process. The combination of these results with the finding that U(VI) reduction takes place during Fe(III) reduction and prior to sulfate reduction suggests that Geobacteraceae will be responsible for much of the Fe(III) and U(VI) reduction during uranium bioremediation in these sediments.  相似文献   

10.
Sodium lactate additions to a trichloroethene (TCE) residual source area in deep, fractured basalt at a U.S. Department of Energy site have resulted in the enrichment of the indigenous microbial community, the complete dechlorination of nearly all aqueous-phase TCE to ethene, and the continued depletion of the residual source since 1999. The bacterial and archaeal consortia in groundwater obtained from the residual source were assessed by using PCR-amplified 16S rRNA genes. A clone library of bacterial amplicons was predominated by those from members of the class Clostridia (57 of 93 clones), of which a phylotype most similar to that of the homoacetogen Acetobacterium sp. strain HAAP-1 was most abundant (32 of 93 clones). The remaining Bacteria consisted of phylotypes affiliated with Sphingobacteria, Bacteroides, Spirochaetes, Mollicutes, and Proteobacteria and candidate divisions OP11 and OP3. The two proteobacterial phylotypes were most similar to those of the known dechlorinators Trichlorobacter thiogenes and Sulfurospirillum multivorans. Although not represented by the bacterial clones generated with broad-specificity bacterial primers, a Dehalococcoides-like phylotype was identified with genus-specific primers. Only four distinct phylotypes were detected in the groundwater archaeal library, including predominantly a clone affiliated with the strictly acetoclastic methanogen Methanosaeta concilii (24 of 43 clones). A mixed culture that completely dechlorinates TCE to ethene was enriched from this groundwater, and both communities were characterized by terminal restriction fragment length polymorphism (T-RFLP). According to T-RFLP, the laboratory enrichment community was less diverse overall than the groundwater community, with 22 unique phylotypes as opposed to 43 and a higher percentage of Clostridia, including the Acetobacterium population. Bioreactor archaeal structure was very similar to that of the groundwater community, suggesting that methane is generated primarily via the acetoclastic pathway, using acetate generated by lactate fermentation and acetogenesis in both systems.  相似文献   

11.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

12.
Stimulating microbial reduction of soluble U(VI) to less soluble U(IV) shows promise as an in situ bioremediation strategy for uranium contaminated groundwater, but the optimal electron donors for promoting this process have yet to be identified. The purpose of this study was to better understand how the addition of various electron donors to uranium-contaminated subsurface sediments affected U(VI) reduction and the composition of the microbial community. The simple electron donors, acetate or lactate, or the more complex donors, hydrogen-release compound (HRC) or vegetable oil, were added to the sediments incubated in flow-through columns. The composition of the microbial communities was evaluated with quantitative PCR probing specific 16S rRNA genes and functional genes, phospholipid fatty acid analysis, and clone libraries. All the electron donors promoted U(VI) removal, even though the composition of the microbial communities was different with each donor. In general, the overall biomass, rather than the specific bacterial species, was the factor most related to U(VI) removal. Vegetable oil and HRC were more effective in stimulating U(VI) removal than acetate. These results suggest that the addition of more complex organic electron donors could be an excellent option for in situ bioremediation of uranium-contaminated groundwater.  相似文献   

13.
A pilot-scale system was established for in situ biostimulation of U(VI) reduction by ethanol addition at the US Department of Energy's (DOE's) Field Research Center (Oak Ridge, TN). After achieving U(VI) reduction, stability of the bioreduced U(IV) was evaluated under conditions of (i) resting (no ethanol injection), (ii) reoxidation by introducing dissolved oxygen (DO), and (iii) reinjection of ethanol. GeoChip, a functional gene array with probes for N, S and C cycling, metal resistance and contaminant degradation genes, was used for monitoring groundwater microbial communities. High diversity of all major functional groups was observed during all experimental phases. The microbial community was extremely responsive to ethanol, showing a substantial change in community structure with increased gene number and diversity after ethanol injections resumed. While gene numbers showed considerable variations, the relative abundance (i.e. percentage of each gene category) of most gene groups changed little. During the reoxidation period, U(VI) increased, suggesting reoxidation of reduced U(IV). However, when introduction of DO was stopped, U(VI) reduction resumed and returned to pre-reoxidation levels. These findings suggest that the community in this system can be stimulated and that the ability to reduce U(VI) can be maintained by the addition of electron donors. This biostimulation approach may potentially offer an effective means for the bioremediation of U(VI)-contaminated sites.  相似文献   

14.
The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely spaced sampling intervals, horizontally and vertically, in both sediment and groundwater are necessary in order to obtain a more in-depth understanding of microbial processes and the relative contribution of attached and planktonic populations to in situ uranium bioremediation.  相似文献   

15.
Methane is a potent greenhouse gas and produced mainly by methanogens. Few studies have specifically dealt so far with methanogens in estuarine environments. In this study, diversity and distribution of methanogens were investigated by clone library and T-RFLP analysis in a Jiulong River estuarine sediment core which contained clear sulfate–methane-transition zone. The majority of obtained sequences in clone libraries and T-RF peaks from T-RFLP analysis were assigned mainly to Methanosaeta, Methanomicrobiales and Methanosarcinales/ANME. The fragments of Methanosarcinales/ANME were most dominant group (mean 51 %) and composed largely of ANME-2a. In addition, Methanosaeta and Methanomicrobiales accounted for 21 and 28 % of all fragments. Therefore, the presence of Methanomicrobiales, Methanosaeta and ANME-2a was indicative of acetoclastic methanogenesis, hydrogenotrophic methanogenesis, and anaerobic methane oxidation in Jiulong River estuarine sediments. This study provided the important knowledge towards understanding methane cycling association of representative of methanogens involved in estuarine environments.  相似文献   

16.
Microbial uranium immobilization independent of nitrate reduction   总被引:2,自引:0,他引:2  
At many uranium processing and handling facilities, including sites in the US Department of Energy (DOE) complex, high levels of nitrate are present as co-contamination with uranium in groundwater. The daunting prospect of complete nitrate removal prior to the reduction of uranium provides a strong incentive to explore bioremediation strategies that allow for uranium bioreduction and stabilization in the presence of nitrate. Typical in situ strategies involving the stimulation of metal-reducing bacteria are hindered by low-pH environments and require that the persistent nitrate must first and continuously be removed or transformed prior to uranium being a preferred electron acceptor. This work investigated the possibility of stimulating nitrate-indifferent, pH-tolerant microorganisms to achieve bioreduction of U(VI) despite nitrate persistence. Enrichments from U-contaminated sediments demonstrated nearly complete reduction of uranium with very little loss of nitrate from pH 5.7-6.2 using methanol or glycerol as a carbon source. Bacterial 16S rRNA genes were amplified from uranium-reducing enrichments (pH 5.7-6.2) and sequenced. Phylogenetic analyses classified the clone sequences into four distinct clusters. Data from sequencing and terminal-restriction fragment length polymorphism (T-RFLP) profiles indicated that the majority of the microorganisms stimulated by these enrichment conditions consisted of low G+C Gram-positive bacteria most closely related to Clostridium and Clostridium-like organisms. This research demonstrates that the stimulation of a natural microbial community to immobilize U through bioreduction is possible without the removal of nitrate.  相似文献   

17.
Iron(III)-reducing bacteria have been demonstrated to rapidly catalyze the reduction and immobilization of uranium(VI) from contaminated subsurface sediments. Thus, these organisms may aid in the development of bioremediation strategies for uranium contamination, which is prevalent in acidic subsurface sediments at U.S. government facilities. Iron(III)-reducing enrichment cultures were initiated from pristine and contaminated (high in uranium, nitrate; low pH) subsurface sediments at pH 7 and pH 4 to 5. Enumeration of Fe(III)-reducing bacteria yielded cell counts of up to 240 cells ml(-1) for the contaminated and background sediments at both pHs with a range of different carbon sources (glycerol, acetate, lactate, and glucose). In enrichments where nitrate contamination was removed from the sediment by washing, MPN counts of Fe(III)-reducing bacteria increased substantially. Sediments of lower pH typically yielded lower counts of Fe(III)-reducing bacteria in lactate- and acetate-amended enrichments, but higher counts were observed when glucose was used as an electron donor in acidic enrichments. Phylogenetic analysis of 16S rRNA gene sequences extracted from the highest positive MPN dilutions revealed that the predominant members of Fe(III)-reducing consortia from background sediments were closely related to members of the Geobacteraceae family, whereas a recently characterized Fe(III) reducer (Anaeromyxobacter sp.) and organisms not previously shown to reduce Fe(III) (Paenibacillus and Brevibacillus spp.) predominated in the Fe(III)-reducing consortia of contaminated sediments. Analysis of enrichment cultures by terminal restriction fragment length polymorphism (T-RFLP) strongly supported the cloning and sequencing results. Dominant members of the Fe(III)-reducing consortia were observed to be stable over several enrichment culture transfers by T-RFLP in conjunction with measurements of Fe(III) reduction activity and carbon substrate utilization. Enrichment cultures from contaminated sites were also shown to rapidly reduce millimolar amounts of U(VI) in comparison to killed controls. With DNA extracted directly from subsurface sediments, quantitative analysis of 16S rRNA gene sequences with MPN-PCR indicated that Geobacteraceae sequences were more abundant in pristine compared to contaminated environments,whereas Anaeromyxobacter sequences were more abundant in contaminated sediments. Thus, results from a combination of cultivation-based and cultivation-independent approaches indicate that the abundance/community composition of Fe(III)-reducing consortia in subsurface sediments is dependent upon geochemical parameters (pH, nitrate concentration) and that microorganisms capable of producing spores (gram positive) or spore-like bodies (Anaeromyxobacter) were representative of acidic subsurface environments.  相似文献   

18.
【目的】革兰氏阴性菌Geobacter metallireducens可以与乙酸型产甲烷菌Methanosaeta harundinacea或Methanosarcina barkeri通过种间直接电子传递(DIET)还原CO2产甲烷。本实验室前期的研究发现Methanosarcina mazei和Geobacteraceae在铁还原富集培养中形成团聚体,可能存在直接电子传递。然而,革兰氏阳性菌(如Clostridium spp.)与产甲烷菌是否存在种间直接电子传递尚不明确。【方法】采用Hungate厌氧滚管法,以乙醇为唯一电子供体从铁还原富集培养体系中获得产甲烷分离物(S6)。通过T-RFLP及克隆文库分析群落多样性,结合循环伏安法等电化学方法研究产甲烷分离物的电活性。【结果】Clostridium spp.(与C.tunisiense相似性最高)和M.barkeri分别在S6细菌和古菌群落中占优势。S6与G.metallireducens共培养后铁还原和产甲烷能力未明显增加,Clostridium spp.可能与G.metallireducens类似,将电子直接传递给产甲烷菌M.barkeri产甲烷。此外,电化学检测发现,在用透析袋包裹电极阻碍微生物与电极表面通过直接接触形成生物膜的条件下,电流密度显著降低,并且循环伏安扫描无明显氧化还原峰。【结论】产甲烷分离物S6中存在直接电子传递途径。本工作提出在产甲烷分离物中占优势的革兰氏阳性菌Clostridium spp.和M.barkeri之间可能存在种间直接电子传递。  相似文献   

19.
The population dynamics of Archaea after flooding of an Italian rice field soil were studied over 17 days. Anoxically incubated rice field soil slurries exhibited a typical sequence of reduction processes characterized by reduction of nitrate, Fe(3+), and sulfate prior to the initiation of methane production. Archaeal population dynamics were followed using a dual approach involving molecular sequence retrieval and fingerprinting of small-subunit (SSU) rRNA genes. We retrieved archaeal sequences from four clone libraries (30 each) constructed for different time points (days 0, 1, 8, and 17) after flooding of the soil. The clones could be assigned to known methanogens (i.e., Methanosarcinaceae, Methanosaetaceae, Methanomicrobiaceae, and Methanobacteriaceae) and to novel euryarchaeotal (rice clusters I, II, and III) and crenarchaeotal (rice clusters IV and VI) lineages previously detected in anoxic rice field soil and on rice roots (R. Grosskopf, S. Stubner, and W. Liesack, Appl. Environ. Microbiol. 64:4983-4989, 1998). During the initiation of methanogenesis (days 0 to 17), we detected significant changes in the frequency of individual clones, especially of those affiliated with the Methanosaetaceae and Methanobacteriaceae. However, these findings could not be confirmed by terminal restriction fragment length polymorphism (T-RFLP) analysis of SSU rDNA amplicons. Most likely, the fluctuations in sequence composition of clone libraries resulted from cloning bias. Clonal SSU rRNA gene sequences were used to define operational taxonomic units (OTUs) for T-RFLP analysis, which were distinguished by group-specific TaqI restriction sites. Sequence analysis showed a high degree of conservation of TaqI restriction sites within the different archaeal lineages present in Italian rice field soil. Direct T-RFLP analysis of archaeal populations in rice field soil slurries revealed the presence of all archaeal lineages detected by cloning with a predominance of terminal restriction fragments characteristic of rice cluster I (389 bp), Methanosaetaceae (280 bp), and Methanosarcinaceae/rice cluster VI (182 bp). In general, the relative gene frequency of most detected OTUs remained rather constant over time during the first 17 days after flooding of the soil. Most minor OTUs (e.g., Methanomicrobiaceae and rice cluster III) and Methanosaetaceae did not change in relative frequency. Rice cluster I (37 to 30%) and to a lesser extent rice cluster IV as well as Methanobacteriaceae decreased over time. Only the relative abundance of Methanosarcinaceae (182 bp) increased, roughly doubling from 15 to 29% of total archaeal gene frequency within the first 11 days, which was positively correlated to the dynamics of acetate and formate concentrations. Our results indicate that a functionally dynamic ecosystem, a rice field soil after flooding, was linked to a relatively stable archaeal community structure.  相似文献   

20.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号