首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonenzymatic glycation of collagen in aging and diabetes   总被引:3,自引:0,他引:3  
Considerable progress has been made in our understanding of nonenzymatic glycation of collagen, and the relationship between glycation of collagen and changes in connective tissue associated with aging and diabetes. Recent studies surveyed in this review suggest the following conclusions: 1. Collagen content of early glycation products does not appear to increase throughout the life span in normal human subjects, although small increases may occur that are linked to glycemic changes. These products are increased, relative to age-matched controls, in experimental diabetes and in diabetes mellitus in collagen from virtually all tissues analyzed. 2. Collagen content of browning products increases with aging and appears to be higher in diabetic subjects than in age-matched controls. Rates of accumulation may be accelerated in subpopulations of diabetic subjects at high risk for developing complications. 3. Increases in early glycation products do not appear to be associated with alterations in collagen solubility, thermal rupture time, or mechanical strength, nor is there an association with most diabetic complications. Alterations in these products may, however, affect conformation, ligand binding, lysyl oxidase-mediated cross-linking, and interactions between collagen and other macromolecules in the extracellular matrix. 4. Increased content of browning products is associated with many physicochemical changes in collagen as well as with long-term complications in diabetes mellitus. 5. Regulatory mechanisms have been identified in vivo that may serve to control or limit the formation of glycation products. 7. Pharmacologic agents have been identified that may be able to reduce collagen content of late glycation products. Despite the progress that has been made in this field, many areas of uncertainty and controversy exist. For example, there is not yet a consensus that the browning products associated with collagen exclusively comprise advanced Maillard products derived from nonenzymatically glycated residues. There is evidence that oxidative reactions involving lipids also play a role in generating fluorophores and chromophores that may alter properties of collagen. Thus, in the extracellular matrix collagen may be continuously modified by at least three very different processes: Maillard reactions, interactions with oxidizing lipids, and enzymatically mediated cross-linking. The interrelationships between these and possibly other posttranslational modifications remain a poorly understood area of great complexity.  相似文献   

2.
Summary Biochemical pathogenesis of the aortic connective tissue diseases (such as, Marfan's syndrome, dissecting aneurysm or aortic aneurysm) was examined by estimating glycoprotein, collagen and elastin contents in the aorta and the intramolecular cross-linking component (isodesmosine) and the intermolecular cross-linking components (cystine, histidinoalanine) in comparison with the control samples obtained from subjects with aortic regurgitation. The elastin content in the aorta and isodesmosine content obtained from the extract of the aortic sample found to be decreased. Ratio of cysteine residues (Cys/Cys-Cys) in the elastin fraction in disease increased. Content of histidinoalanine was found to be decreased. It may be suggested that elastin is maintained in its native nature and shape by intra- and inter-molecular cross-linking bridges, and they are readily denatured by various disease conditions. After elastin was solubilized by elastase, immunoreactive elastin content in those aortic diseases was found to be increased in the human connective tissue. Serum elastase and elastase-like activities tend to increase more than those in the control. These findings may suggest that the change in the structure of elastin would make more susceptible to elastase and other proteolytic enzymes. The reasonable hypothesis may be that molecular defect of fibillin or other constitutional structural glycoproteins produce deficient and functionally incompetent elastin associated microfibrils, and the defect of microfibrils cause to insufficient intra- and inter-molecular cross-links in elastin.  相似文献   

3.
Oxidative deamination of the epsilon-amino group of lysyl residues to form allysine is the initial reaction in the cross-linking of collagen and elastin in vertebrates. The allysyl residues, generated by lysyl oxidase in this reaction, condense with either other allysyl residues or epsilon-amino groups of lysyl or hydroxylysyl to form aldol or Schiff base cross-links. This paper presents evidence that similar allysyl residues and Schiff base cross-links are synthesized in cell envelopes of Escherichia coli. Acid hydrolysis followed by amino acid analysis of envelopes either reduced with NaB[3H]4 or labeled with [14C]lysine and reduced with NaBH4 yielded allysine and two labeled fragments with elution profiles and molecular weights (250 and 330) consistent with Schiff base products derived at least in part from allysine. When [6-3H]lysine-labeled cell envelopes were incubated at 37 degrees C, gradual release of tritiated water occurred. This suggests that an enzymatic reaction catalyzes the deamination of lysine in E. coli membranes and that the higher molecular weight proteins detected in stationary phase or in log phase cell envelopes after NaBH4 reduction occur as a result of formation of Schiff base cross-links.  相似文献   

4.

Background

Elastin is a vital protein and the major component of elastic fibers which provides resilience to many vertebrate tissues. Elastin's structure and function are influenced by extensive cross-linking, however, the cross-linking pattern is still unknown.

Methods

Small peptides containing reactive allysine residues based on sequences of cross-linking domains of human elastin were incubated in vitro to form cross-links characteristic of mature elastin. The resultant insoluble polymeric biomaterials were studied by scanning electron microscopy. Both, the supernatants of the samples and the insoluble polymers, after digestion with pancreatic elastase or trypsin, were furthermore comprehensively characterized on the molecular level using MALDI-TOF/TOF mass spectrometry.

Results

MS2 data was used to develop the software PolyLinX, which is able to sequence not only linear and bifunctionally cross-linked peptides, but for the first time also tri- and tetrafunctionally cross-linked species. Thus, it was possible to identify intra- and intermolecular cross-links including allysine aldols, dehydrolysinonorleucines and dehydromerodesmosines. The formation of the tetrafunctional cross-link desmosine or isodesmosine was unexpected, however, could be confirmed by tandem mass spectrometry and molecular dynamics simulations.

Conclusions

The study demonstrated that it is possible to produce biopolymers containing polyfunctional cross-links characteristic of mature elastin from small elastin peptides. MALDI-TOF/TOF mass spectrometry and the newly developed software PolyLinX proved suitable for sequencing of native cross-links in proteolytic digests of elastin-like biomaterials.

General significance

The study provides important insight into the formation of native elastin cross-links and represents a considerable step towards the characterization of the complex cross-linking pattern of mature elastin.  相似文献   

5.
Collagen deposits in fibrotic lesions often display elevated levels of hydroxyallysine (pyridinoline) cross-links. The relation between the occurrence of pyridinoline cross-links and the irreversibility of fibrosis suggests that these cross-links contribute to the aberrant accumulation of collagen. Based on its inhibitory effect on lysyl hydroxylase activity minoxidil has been postulated to possess anti-fibrotic properties by limiting the hydroxylysine supply for hydroxyallysine cross-linking. However, to interfere with hydroxyallysine cross-linking specifically lysyl hydroxylation of the collagen telopeptide should be inhibited, a reaction predominantly catalysed by lysyl hydroxylase (LH) 2b. In this study, we demonstrate that minoxidil treatment of cultured fibroblasts reduces LH1>LH2b>LH3 mRNA levels dose-and time-dependently, but has essentially no effect on the total number of pyridinoline cross-links in the collagen matrix. Still the collagen produced in the presence of minoxidil displays some remarkable features: hydroxylation of triple helical lysine residues is reduced to 50% and lysylpyridinoline cross-linking is increased at the expense of hydroxylysylpyridinoline cross-linking. These observations can be explained by our finding that LH1 mRNA levels are the most sensitive to minoxidil treatment, corroborating that LH1 has a preference for triple helical lysine residues as substrate. In addition, the non-proportional increase in cross-links (20-fold) with respect to the decrease in lysyl hydroxylation state of the triple helix (2-fold) even suggests that LH1 preferentially hydroxylates triple helical lysine residues at the cross-link positions. We conclude that minoxidil is unlikely to serve as an anti-fibroticum, but confers features to the collagen matrix, which provide insight into the substrate specificity of LH1.  相似文献   

6.
The development of atherosclerotic lesions and abdominal aortic aneurysms involves degradation and loss of extracellular matrix components, such as collagen and elastin. Releases of the elastin cross-links desmosine (DES) and isodesmosine (IDE) may reflect elastin degradation in cardiovascular diseases. This study investigated the production of soluble elastin cross-linking structures by proteinases implicated in arterial diseases. Recombinant MMP-12 and neutrophil elastase liberated DES and IDE as amino acids from insoluble elastin. DES and IDE were also released from insoluble elastin exposed to monocyte/macrophage cell lines or human primary macrophages derived from peripheral blood monocytes. Elastin oxidized by reactive oxygen species (ROS) liberated more unconjugated DES and IDE than did non-oxidized elastin when incubated with MMP-12 or neutrophil elastase. These results support the exploration of free DES and IDE as biomarkers of elastin degradation.  相似文献   

7.
The protein composition in the extracellular matrix of cultured neonatal rat aortic smooth muscle cells has been monitored over time in culture. The influence of ascorbate on insoluble elastin and collagen has been described. In the absence of ascorbate, the cells accumulate an insoluble elastin component which can account for as much as 50% of the total protein in the extracellular matrix. In the presence of ascorbate, the amount of insoluble collagen increases, while the insoluble elastin content is significantly less. When ascorbate conditions are varied at different times during the culture, the extracellular matrices are altered with respect to collagen and elastin ratios. The decrease in elastin accumulation in the presence of ascorbate may be explained by an overhydroxylation of tropoelastin. Approximately 1/3 of the prolyl residues in the soluble elastin fractions isolated from cultures grown in the presence of ascorbate are hydroxylated. Since the insoluble elastin accumulated in these cultures contain the unique lysine-derived cross-links in amounts comparable to aortic tissue, this culture system proves ideal for studying the influence of extracellular matrix elastin on cell growth and metabolism.  相似文献   

8.
The hallmark of fibrotic processes is an excessive accumulation of collagen. The deposited collagen shows an increase in pyridinoline cross-links, which are derived from hydroxylated lysine residues within the telopeptides. This change in cross-linking is related to irreversible accumulation of collagen in fibrotic tissues. The increase in pyridinoline cross-links is likely to be the result of increased activity of the enzyme responsible for the hydroxylation of the telopeptides (telopeptide lysyl hydroxylase, or TLH). Although the existence of TLH has been postulated, the gene encoding TLH has not been identified. By analyzing the genetic defect of Bruck syndrome, which is characterized by a pyridinoline deficiency in bone collagen, we found two missense mutations in exon 17 of PLOD2, thereby identifying PLOD2 as a putative TLH gene. Subsequently, we investigated fibroblasts derived from fibrotic skin of systemic sclerosis (SSc) patients and found that PLOD2 mRNA is highly increased indeed. Furthermore, increased pyridinoline cross-link levels were found in the matrix deposited by SSc fibroblasts, demonstrating a clear link between mRNA levels of the putative TLH gene (PLOD2) and the hydroxylation of lysine residues within the telopeptides. These data underscore the significance of PLOD2 in fibrotic processes.  相似文献   

9.
The elastin content of the chick thoracic aorta increases 2--3-fold during the first 3 weeks post-hatching. The deposition of elastin requires the covalent cross-linking of tropoelastin by means of lysine-derived cross-links. This process is sensitive to dietary copper intake, since copper serves as cofactor for lysyl oxidase, the enzyme that catalyses the oxidative deamination of the lysine residues involved in cross-link formation. Disruption of cross-linking alters tissue concentrations of both elastin and tropoelastin and results in a net decrease in aortic elastin content. Autoregulation of tropoelastin synthesis by changes in the pool sizes of elastin or tropoelastin has been suggested as a possible mechanism for the diminished aortic elastin content. Consequently, dietary copper deficiency was induced to study the effect of impaired elastin cross-link formation on tropoelastin synthesis. Elastin in aortae from copper-deficient chicks was only two-thirds to one-half the amount measured in copper-supplemented chicks, whereas copper-deficient concentrations of tropoelastin in aorta were at least 5-fold higher than normal. In spite of these changes, however, increased amounts of tropoelastin, copper deficiency and decreased amounts of elastin did not influence the amounts of functional elastin mRNA in aorta. Likewise, the production of tropoelastin in aorta explants was the same whether the explants were taken from copper-sufficient or -deficient birds. The lower accumulation of elastin in aorta from copper-deficient chicks appeared to be due to extracellular proteolysis, rather than to a decrease in the rate of synthesis. Electrophoresis of aorta extracts, followed by immunological detection of tropoelastin-derived products, indicated degradation products in aortae from copper-deficient birds. In extracts of aortae from copper-sufficient chicks, tropoelastin was not degraded and appeared to be incorporated into elastin without further proteolytic processing.  相似文献   

10.
Amiodarone is a Class III antiarrhythmic agent that has been implicated as a cause of human pulmonary fibrosis. Pulmonary fibrosis is associated with increased levels of connective tissue proteins such as collagen and elastin. The purpose of this investigation was to determine whether elastin synthesis would be altered by in vitro amiodarone administration. Primary hamster lung cell cultures were utilized. Cultures were treated with 2, 10, and 20 micrograms/ml amiodarone. Following treatment, elastin synthesis was monitored by a biochemical tracer assay based on the presence of the cross-linking amino acids: desmosine/isodesmosine. These cross-links are found only in elastin. Addition of [14C] lysine to cultures results in uptake of the radiolabel into the cross-links. Cross-links were isolated and identified using chromatography and electrophoresis. At all doses of amiodarone, elastin synthesis was seen to increase above control levels. Light and electron microscopy confirmed the presence of an extracellular matrix. The morphologic studies also revealed the presence of cytoplasmic inclusion bodies and vacuoles that are often associated with cationic, amphiphilic drugs such as amiodarone.  相似文献   

11.
1. The preparative Edman degradation of desmosine-containing peptides permitted the isolation of peptides C-terminal to the desmosine cross-links in bovine, porcine and human aortic elastin as well as bovine ligamentum nuchae elastin. This identifies the lysines in the tropoelastin which give rise to the desmosine cross-links. 2. The sequences from bovine aortic elastin were identical with those obtained from bovine ligamentum nuchae elastin but differed from those obtained from the other species. The most striking difference involves the occurrence of phenylalanine in bovine elastin and tyrosine in porcine and human elastin C-terminal to the desmosine cross-links. 3. The sequences of the C-terminal peptides were found to fall into two distinct classes, one starting with hydrophobic residues, the other starting with alanine. It is proposed that thehydrophobic residue prevents the enzymic oxidative deamination of the adjacent lysine e-amino group and this then contributes the nitrogen to the pyridinium ring of the cross-links.  相似文献   

12.
During in vivo maturation, and also during in vitro incubation with physiological buffers, native collagen fibers display a progressive increase in tensile strength and insolubility. Paralleling these physiologically important changes is a progressive loss of the reducible cross-links which initially join the triple-chained subunits of collagen fibers. Although there is evidence suggesting that the reducible cross-links are gradually transformed into more stable, nonreducible cross-links during maturation, the nature of the transformation process and the structure of the stable "mature" cross-links has remained a mystery. In order to test the possibility that cross-link transformation involves addition of a nucleophilic amino acid residue to the reducible cross-links, histidine, arginine, glutamate, aspartate, lysine, and hydroxylysine residues were chemically modified, and the effect of each modification procedure on the in vitro transformation of reducible cross-links was ascertained. The results of these experiments indicated that destruction of histidine, arginine, glutamate, and aspartate residues has no measurable effect on the rate and extent of reducible cross-link transformation in hard tissue collagens. In contrast, modification of lysine and hydrocylysine residues with a wide variety of specific reagents completely blocks the transformation of reducible cross-links. Removal of the reversible blocking groups from lysine and hydroxlylysine residues then allows the transformation to proceed normally. These results indicate that collagen maturation involves nucleophilic addition of lysine and/or hydroxylysine residues to the electrophilic double bond of the reducible cross-links, yielding derivatives which are not only more stable but also capable of cross-linking more collagen molecules than their reducible precursors.  相似文献   

13.
The accumulation of glycation derived cross-links has been widely implicated in extracellular matrix damage in aging and diabetes, yet little information is available on the cross-linking sites in proteins and the intra- versus intermolecular character of cross-linking. Recently, glucosepane, a 7-membered heterocycle formed between lysine and arginine residues, has been found to be the single major cross-link known so far to accumulate during aging. As an approach toward identification of glucose derived cross-linking sites, we have preglycated ribonuclease A first for for 14 days with 500 mM glucose, followed by a 4-week incubation in absence of glucose. MALDI-TOF analysis of tryptic digests revealed the presence of Amadori products (Delta m/ z = 162) at K1, K7, K37 and K41, in accordance with previous studies. In addition, K66, K98 and K104 were also modified by Amadori products. Intramolecular glucosepane cross-links were observed at K41-R39 and K98-R85. Surprisingly, the only intermolecular cross-link observed was the 3-deoxyglucosone-derived DODIC at K1-R39. The identity of cross-linked peptides was confirmed by sequencing with tandem mass spectrometry. Recombinant ribonuclease A mutants R39A, R85A, and K91A were produced, purified, and glycated to further confirm the importance of these sites on protein cross-linking. These data provide the first documentation that both intramolecular and intermolecular cross-links form in glucose-incubated proteins.  相似文献   

14.
The nonenzymatic glycation of basement membrane proteins, such as fibronectin and type IV collagen, occurs in diabetes mellitus. These proteins are nonenzymatically glycated in vivo and can also be nonenzymatically glycated in vitro. After 12 days of incubation at 37 degrees C with 500 mM glucose, purified samples of human plasma fibronectin and native type IV collagen showed a 13.0- and 4.2-fold increase, respectively, in glycated amino acid levels in comparison to control samples incubated in the absence of glucose. Gelatin (denatured calfskin collagen) was glycated 22.3-fold under the same conditions. Scatchard analyses were performed on the binding of radiolabeled fibronectin to gelatin or type IV collagen. It was found that there is a 3-fold reduction in the affinity of fibronectin to type IV collagen due to the nonenzymatic glycation of fibronectin. The dissociation constant (KD) for the binding of control fibronectin to type IV collagen was 9.6 X 10(-7) M while the KD for glycated fibronectin and type IV collagen was 2.9 X 10(-6) M. This was similar to the 2.7-fold reduction in the affinity of fibronectin for gelatin found as a result of the nonenzymatic glycation of fibronectin (KD of 4.5 X 10(-7) M for the interaction of control fibronectin with gelatin vs. KD of 1.2 X 10(-6) M for the interaction of nonenzymatically glycated fibronectin with gelatin). The molecular association of control fibronectin or its glycated counterpart with [3H]heparin was also determined. Scatchard analyses of this interaction showed no difference between control fibronectin and glycated fibronectin in [3H]heparin binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Lysyl oxidase (LOX) is an enzyme responsible for the cross-linking of collagen and elastin both in vitro and in vivo. The unique functions of the individual members of this multigene family have been difficult to ascertain because of highly conserved catalytic domains and overlapping tissue expression patterns. To address this problem of functional and structural redundancy and to determine the role of LOX in the development of tissue integrity, Lox gene expression was deleted by targeted mutagenesis in mice. Lox-targeted mice (LOX(-/-)) died soon after parturition, exhibiting cardiovascular instability with ruptured arterial aneurysms and diaphragmatic rupture. Microscopic analysis of the aorta demonstrated fragmented elastic fiber architecture in homozygous mutant null mice. LOX activity, as assessed by desmosine (elastin cross-link) analysis, was reduced by approximately 60% in the aorta and lungs of homozygous mutant animals compared with wild type mice. Immature collagen cross-links were decreased but to a lesser degree than elastin cross-links in LOX(-/-) mice. Thus, lysyl oxidase appears critical during embryogenesis for structural stability of the aorta and diaphragm and connective tissue development.  相似文献   

16.
High-molecular-mass aggregates were made soluble from insoluble collagens of bovine Achilles tendon and rat tail tendon by limited thermal hydrolysis. These polymeric collagen aggregates were cross-linked by 390-nm-fluorescent 3-hydroxy-pyridinium residues (excited at 325 nm) in the former tendon and by unknown non-fluorescent residues in the latter. With the solubilized insoluble-collagens from both tendons, as well as with acid-soluble collagen from rat tail tendon, other 350-385-nm fluorescence intensities (excited at 300 nm) were found to be higher in monomeric chains than in dimeric and polymeric chains. Low levels of ozone inhibited fibril formation of acid-soluble collagen particularly from young rat tail tendon, reacting with tyrosine residues and the 350-385-nm fluorophores. Aldehyde groups, involved in cross-linking, were not effectively modified by ozone. beta-Components (alpha-chain dimers) were not efficiently dissociated even by higher doses of ozone compared to gamma-components (alpha-chain trimers). Polymeric chain aggregates from bovine Achilles tendon collagen, whose 3-hydroxy-pyridinium cross-links are cleaved by ozone, were more readily dissociated by ozone than those from rat tail tendon collagen. Ultraviolet (300-nm) light, which destroyed the 350-385-nm fluorophores, inhibited fibril formation less effectively than ultraviolet (275-nm) light, which is absorbed by tyrosine residues, and did not dissociate collagen polymers from rat tail tendon. On the other hand, ultraviolet (320-nm) light, absorbed by 3-hydroxy-pyridinium cross-links which were rapidly photolyzed, partially dissociated polymeric collagen aggregates from bovine Achilles tendon after subsequent heating.  相似文献   

17.
Extracellular matrix (ECM) remodeling occurs in response to various cardiac insults including infarction, pressure overload and dilated myopathies. Each type of remodeling necessitates distinct types of ECM turnover and deposition yet an increase in myocardial fibrillar collagen content is appreciated as a contributing feature to cardiac dysfunction in each of these pathologies. In addition, aging, is also associated with increases in cardiac collagen content. The importance of characterizing differences in ECM composition and processes used by cardiac fibroblasts in the assembly of fibrotic collagen accumulation is critical for the design of strategies to reduce and ultimately regress cardiac fibrosis. Collagen cross-linking is one factor that influences collagen deposition and insolubility with direct implications for tissue properties such as stiffness. In this review, three different types of collagen cross-links shown to be important in cardiac fibrosis will be discussed; those catalyzed by lysyl oxidases, those catalyzed by transglutaminases, and those that result from non-enzymatic modification by the addition of advanced glycation end products. Insight into cellular mechanisms that govern collagen cross-linking in the myocardium will provide novel pathways for exploring new treatments to treat diseases associated with cardiac fibrosis.  相似文献   

18.
All the desmosine-containing elastolytic peptides of bovine ligamentum-nuchae elastin have now been examined for amino acid sequences C-terminal to the cross-links. In addition, amino acid residues C-terminal to lysine residues in bovine tropoelastin were also examined. No tyrosine C-terminal to cross-links in bovine elastin or C-terminal to lysine in tropoelastin was detected. Apparently all the tyrosine residues C-terminal to lysine residues in pig tropoelastin are replaced with phenylalanine in bovine tropoelastin. All the data presented are consistent with the scheme proposed for the formation of desmosine and isodesmosine cross-links of elastin by Gerber & Anwar [(1975) Biochem. J. 149, 685--695].  相似文献   

19.
The cranial skeleton of the lamprey, a primitive vertebrate, consists of cartilaginous structures that differ from vertebrate cartilages in having a noncollagenous extracellular matrix. Novel matrix proteins found in these cartilages include lamprin in the annular cartilage and an unidentified protein in the branchial cartilages. Both show biochemical similarities to elastin. The inextractability of these proteins, even to chemical cleavage by cyanogen bromide, indicates a polymer with extensive covalent cross-linking. Here we report on the type of cross-linking. Lysyl pyridinoline was found in high concentration in the elastin-like protein of lamprey branchial cartilage at a ratio of 7:1 to hydroxylysyl pyridinoline, the form that dominates in vertebrate collagens. Both forms of pyridinoline cross-link were absent from annular cartilage and desmosine cross-links, which are characteristic of vertebrate elastin, were not detected in either form of lamprey cartilage. Pyridinoline cross-links are considered to be characteristic of collagen, so their presence in an elastin-like protein in a primitive cartilage poses evolutionary questions about the tissue, the protein, and the cross-linking mechanism.  相似文献   

20.
A collagen-like insoluble protein containing the elastin cross-links (desmosine and isodesmosine) has been isolated from Descemet's membrane. Recently type VIII collagen (endothelial collagen) has been shown to be a major constituent of this membrane. Biochemical studies suggest that these two proteins are unrelated. The cyanogen bromide peptide maps show negligible similarity. Antiserum raised against oxalic acid digests of elastin (alpha-elastin) did not react against an oxalic acid digests of type VIII collagen but did show some reaction against the cross-linked preparation. Immunofluorescent localization has demonstrated the presence of type VIII collagen in trachea but a desmosine cross-linked collagen could not be isolated from this tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号