首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
番茄的抗病基因Tm22与番茄花叶病毒(ToMV)的移动蛋白MP基因是一对互作的基因,Tm22基因和ToMVMP基因同时在烟草中表达, 并分别获得单一基因整合的纯合转化体植株。病毒接种试验表明,Tm22基因转化体与Tm22番茄对Tobamavirus病毒的特异抗性结果一致;Tm22转基因植株和ToMVMP转基因植株杂交试验及其农杆菌注射试验均证明: (1)Tm22基因与ToMVMP在转基因烟草上保持“基因对基因"的互作关系; (2)在外源乙烯的参与下,ToMV的移动蛋白与Tm22基因编码蛋白的互作能够诱导转化体程序性细胞死亡。这一结果为今后研究Tm22与MP互作的分子机制奠定了基础。  相似文献   

2.
姜国勇  杨仁崔 《病毒学报》2003,19(4):365-370
Tm-2^2基因在烟草上的转化和表达表明,Tm-2^2基因在同科不同属植物体上的功能没有改变。在两种类型的纯合转化体上,Tm-2^2基因编码蛋白能够抗Tobamovirus属5种不同的毒株,并能被ToMV-2a毒株感染而失去抗病性。这个结果表明:移动蛋白上的氨基酸变异能够影响R蛋白对ToMV的应答反应。Tm-2^2基因转化体在不同启动子的调控下,对ToMV-2a毒株感染所表现的症状不同,说明启动子在Tm-2^2基因的抗病反应中具有非常重要的作用。  相似文献   

3.
番茄Tm-22基因是一个受外源乙烯调节的抗病基因   总被引:5,自引:0,他引:5  
姜国勇  杨仁崔 《病毒学报》2004,20(4):359-363
Tm-22基因编码一CC-NBS-LRR抗病蛋白,Tm-22植株的抗病毒反应表现为系统性坏死症状.试验结果表明,Tm-22基因转化体种胚下胚轴的伸长受到外源乙烯的抑制,乙烯的持续性刺激能够诱导H2O2的产生和氧离子自由基(ROS)的猝发,以及PR-1a基因mRNA的转录.可以初步认为Tm-22转化体的抗ToMV反应是一个与乙烯信号转导途径有关的反应.  相似文献   

4.
烟草花叶病毒(TMV)和番茄花叶病毒(ToMV)是烟草花叶病毒属中关系最为密切的病毒, 但它们在含N基因烟草上产生的枯斑大小有明显的差异. 比较了TMV, ToMV及用ToMV运动蛋白基因(MP)精确置换TMV MP后获得的重组病毒T/OMP在不同寄主上的症状差异, 发现T/OMP在含N基因烟草上产生的枯斑大小与ToMV相似. 分析比较TMV, ToMV和T/OMP外壳蛋白和MP在植物体内的积累水平, 发现三者之间没有明显的差异, 而TMV和T/OMP在原生质体中的复制水平也没有差异. 比较TMV, ToMV和T/OMP接种后烟草体内防御相关酶(PAL, POD和PPO)的活性变化, 结果T/OMP和TMV所诱导酶的变化趋势基本一致, 而与ToMV有所差异, 因此认为MP基因功能的差异决定了TMV和ToMV在N基因烟草上枯斑的大小.  相似文献   

5.
通过构建植物表达载体,由农杆菌介导,将望江南核糖体失活蛋白基因cassin转入烟草。PCR和Southern blot杂交结果证明:外源基因已经以单拷贝整合到烟草基因组内,并且在后代发生遗传分离。RT—PCR和Northern blot杂交结果显示:外源基因可以正常转录。用不同浓度的TMV机械摩擦接种转基因T1、T2代各3个自交株系,以非转基因烟草为阴性对照,实验结果表明转基因烟草对TMV表现出不同程度的抗性。  相似文献   

6.
杏鲍菇抗烟草花叶病毒蛋白的筛选   总被引:16,自引:0,他引:16  
采用离子交换层析和凝胶层析方法,从杏鲍菇干样中分离得到多个蛋白组分,经枯斑寄主检测,发现多个蛋白组分都有抗烟草花叶病毒(TMV)的活性,对TMV的抑制率均在70%以上,高者可达99%。其中xb68Ab已得到了纯化,分子量约为23.7kD,在心叶烟和苋色藜上它对TMV侵染的抑制率分别达到99.43%和98.9%。  相似文献   

7.
通过土壤农杆菌(Agrobacterium tumefaciens)介导将黄瓜花叶病毒外壳蛋白(CMV CP)的cDNA成功地引入番茄(Lycopersicon esculentum)植株中,并得到转基因植株。用强致病力CMV株系接种后,表达CMV外壳蛋白的转基因植株表现出对CMV侵染的抗性。转基因植株RI代的抗性基因以接近3:1比例分离。对R_1代接种CMV后,表达CMV CP的植株病症减轻,发病率、病情指数及病毒积累量明显低于对照。病症出现推迟1个多月。  相似文献   

8.
用T-DNA区携有嵌合的烟草花叶病毒外壳蛋白基因和卡那霉素抗性基因(NPTⅡ)的土壤农杆菌株pACK403和pACK404与烟草品种SRl和斯佩特G-28单倍体无菌菌叶碟片进行共培养转化。转化后的叶碟片在含有头孢噻肟钠500毫克/升和卡那霉索300毫克/升的培养基上诱导芽,在含有头孢噻肟钠500毫克/升和卡那霉素100毫克/升的培养基上诱导生根。Nopaline测定,烟草花叶病毒外壳蛋白基因的表达检测、转化烟株对烟草花叶病毒侵染抗性的检测结果证明:用这种方法能可靠地将外源基因导入烟草,并能在转化烟株中表达。再生得到的转化烟株在烟草花叶病毒强感染情况下能延迟病症表现4—25天。  相似文献   

9.
烟草花叶病在云南烟区普遍流行。通过ELISA和RNA斑点杂交法,我们已证明云南烟区烟草花叶病毒外壳蛋白和已知RNA序列的普通烟草花叶病毒OM株同源。我们拟根据交叉保护原理,通过植物基因工程手段来培育抗烟草花叶病的烟草新品种。为此,对OM株外壳蛋白基因进行了下述重组工作。 首先,我们对OM株外壳蛋白基因工作,得到C-DNA株pCK501。然后,切取其中带外壳蛋白基因的667bp Hinf Ⅰ片段,导入带花椰菜花叶病毒35S启动子和3′未端质粒pDH51的聚核苷酸接头中,组成带烟草花叶病毒外壳蛋白基因的嵌合基因的重组质粒pCK401。又把整个嵌合基因导入pGV1103 neo,和嵌合的新霉素磷酸转移酶Ⅱ(NPTⅡ)基因及新霉素磷酸转移酶Ⅰ(NPT Ⅰ)基因相连接,组成中间载体pCK403。最后在大肠杆菌GJ23帮助下,把pCK403导入土壤杆菌,和土壤杆菌中原有的去了致瘤基因的Ti载体pGV3850的T-DNA区pBR322片段进行同源重组,把嵌合基因导入Ti质粒的T-DNA区,得到pACK403。  相似文献   

10.
植物病毒侵染宿主植物的一个重要过程是通过它在宿主体内的转移和传播,产生病害。植物病毒在宿主体内的转移主要有两种方式,一种是通过植物维管组织进行的系统转移,另一种是植物病毒在宿主细胞之间的转移,这种转移是通过植物细胞的胞间连丝实现的。实验表明,病毒自身编码的一种蛋白参与了这个转移过程,对烟草花叶病毒(TMV)而言,这种蛋白就是分子量为30kDa的运动蛋白。  相似文献   

11.
Nicotiana benthamiana plants were transformed with the movement protein (MP) gene of tobacco mosaic virus (TMV), usingAgrobacterium-mediated transformation. Plants regenerated from the transformed cells accumulated 30-kDa MP and complemented the activity of TMV MP when infected with chimeric TMVs containing defective MR These transgenic plants displayed stunting, pale-green leaves, and starch accumulations, indicating that TMV MP altered the carbon partitioning for leaves involved in TMV cell-to-cell movement.  相似文献   

12.
We have cloned and sequenced six RAPD fragments tightly linked to the Tm-1 gene which confers tomato mosaic virus (ToMV) resistance in tomato. The terminal ten bases in each of these clones exactly matched the sequence of the primer for amplifying the corresponding RAPD marker, except for one in which the 5-endmost two nucleotides were different from those of the primer. These RAPD clones did not cross-hybridize with each other, suggesting that they were derived from different loci. From Southern-hybridization experiments, five out of the six RAPD clones were estimated to be derived from middle- or high-repetitive sequences, but not from any parts of the ribosomal RNA genes (rDNA), which are known to be tightly linked with the Tm-1 locus. The remaining clone appeared to be derived from a DNA family consisting of a few copies. These six RAPD fragments were converted to sequence characterized amplified region (SCAR) markers, each of which was detectable using a pair of primers having the same sequence as that at either end of the corresponding RAPD clone. All pairs of SCAR primers amplified distinct single bands whose sizes were the same as those of the RAPD clones. In four cases, the SCAR markers were present in the line with Tm-1 but absent in the line without it, as were the corresponding RAPD markers. In the two other cases, the products of the same size were amplified in both lines. When these SCAR products were digested with different restriction endonucleases which recognize 4-bp sequences, however, polymorphisms in fragment length were found between the two lines. These co-dominant markers are useful for differentiating heterozygotes from both types of homozygote.  相似文献   

13.
The Tm-2 gene and its alleles conferring tomato mosaic virus resistance in tomato originate from Lycopersicon peruvianum, a wild relative of tomato. DNA fragments of several RAPD markers tightly linked with the Tm-2 locus in tomato were successfully cloned and sequenced. Subsequently, the 24-mer oligonucleotide primer pairs of the SCAR markers corresponding to the RAPD markers were designed based on the 5’-endmost sequences. A fragment of the same size as that of a SCAR marker was amplified in the ToMV-susceptible tomato line with no Tm-2, but the digests of the PCR fragments by AccI exhibited polymorphism in fragment length between the two lines. We chose three SCAR markers and three RAPD markers tightly linked with the Tm-2 locus, and examined whether the same-sized fragments corresponding to these markers were also present in three other lines carrying Tm-2a or one of the other Tm-2 alleles. The fragments corresponding to the three SCAR markers were present in all of the three lines, but the other markers (three RAPDs ) were absent in one or two lines, suggesting that the three SCAR markers are closer to Tm-2 than the other markers. Comparison of the nucleotide sequences of these fragments revealed that they are all homologous to the corresponding SCAR markers. Received: 8 November 1999 / Accepted: 15 November 1999  相似文献   

14.
Tomato cultivars containing the Tm-22 resistance gene have been widely known to resist tobacco mosaic virus (TMV) and tomato mosaic virus. Tomato brown rugose fruit virus (ToBRFV), a new emerging tobamovirus, can infect tomato plants carrying the Tm-22 gene. However, the virulence determinant of ToBRFV that overcomes the resistance conferred by the Tm-22 gene remains unclear. In this study, we substituted the movement protein (MP) encoding sequences between ToBRFV and TMV infectious clones and conducted infectivity assays. The results showed that MP was the virulence determinant for ToBRFV to infect Tm-22 transgenic Nicotiana benthamiana plants and Tm-22-carrying tomato plants. A TMV MP chimera with amino acid residues 60–186 of ToBRFV MP failed to induce hypersensitive cell death in the leaves of Tm-22 transgenic N. benthamiana plants. Chimeric TMV containing residues 60–186 of ToBRFV MP could, but chimeric ToBRFV containing 61–187 residues of TMV MP failed to infect Tm-22 transgenic N. benthamiana plants, indicating that 60–186 residues of MP were important for ToBRFV to overcome Tm-22 gene-mediated resistance. Further analysis showed that six amino acid residues, H67, N125, K129, A134, I147, and I168 of ToBRFV MP, were critical in overcoming Tm-22-mediated resistance in transgenic N. benthamiana plants and tomato plants. These results increase our understanding of the mechanism by which ToBRFV overcomes Tm-22-mediated resistance.  相似文献   

15.
Summary Cell-to-cell communication in plants occurs through plasmodesmata, cytoplasmic channels that traverse the cell wall between neighboring cells. Plasmodesmata are also exploited by many viruses as an avenue for spread of viral progeny. In the case of tobacco mosaic virus (TMV), a virally-encoded movement protein (MP) enables the virus to move through plasmodesmata during infection. We have used thin section electron microscopy and immunocytochemistry to examine the structure of plasmodesmata in transgenic tobacco plants expressing the TMV MP. We observed a change in structure of the plasmodesmata as the leaves age, both in control and MP expressing [MP(+)] plants. In addition, the plasmodesmata of older cells of MP(+) plants accumulate a fibrous material in the central cavity. The presence of the fibers is correlated with the ability to label plasmodesmata with anti-MP antibodies. The developmental stage of leaf tissue at which this material is observed is the stage at which an increase in the size exclusion limit of the plasmodesmata can be measured in MP(+) plants. Using cell fractionation and aqueous phase partitioning studies, we identified the plasma membrane and cell wall as the compartments with which the MP stably associates. The nature of the interaction between the MP and the plasma membrane was studied using sodium carbonate and Triton X-100 washes. The MP behaves as an integral membrane protein. Identifying the mechanism by which the MP associates with plasma membrane and plasmodesmata will lead to a better understanding of how the MP alters the function of the plasmodesmata.Abbreviations MP movement protein - TMV tobacco mosaic virus  相似文献   

16.
17.
18.
Transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) plants expressing wild-type or mutant forms of the 30-kDa movement protein of tobacco mosaic virus (TMV-MP) were employed to study the effects of the TMV-MP on carbon metabolism in source leaves. Fully expanded source leaves of transgenic plants expressing the TMV-MP were found to retain more newly fixed 14C compared with control plants. Analysis of 14C-export from young leaves of TMV-MP plants, where the MP is yet to influence plasmodesmal size exclusion limit, indicated a similar pattern, in that daytime 14C export was slower in TMV-MP plants as compared to equivalent-aged leaves on control plants. Pulse-chase experiments were used to monitor radioactivity present in the different carbohydrate fractions, at specified intervals following 14CO2 labeling. These studies established that the-TMV-MP can cause a significant adjustment in short-term 14-C-photosynthate storage and export. That these effects of the TMV-MP on carbon metabolism and phloem function were not attributable to the effect of this protein on plasmodesmal size exclusion limits, per se, was established using transgenic tobacco plants expressing temperature-sensitive and C-terminal deletion mutant forms of the TMV-MP. Collectively, these studies establish the pleiotropic nature of the TMV-MP in transgenic tobacco, and the results are discussed in terms of potential sites of interaction between the TMV-MP and endogenous processes involved in regulating carbon metabolism and export.Abbreviations MP movement protein - SEL size exclusion limit - TMV tobacco mosaic virus - ts temperature sensitive This work was supported by United State-Israel Binational Agricultural Research Development Fund grant No. 90-00070 (S.W. and W.J.L). We thank Roger N. Beachy for generously providing some of the transgenic plant lines employed in this study. This paper is a contribution from the Uri Kinamon Laboratory. A.A.O. was supported by a scholarship from the Kinamon Foundation.  相似文献   

19.
In addition to its influence on plasmodesmal function, tobacco mosaic virus movement protein (TMV‐MP) causes an alteration in carbon metabolism in source leaves and in resource partitioning among the various plant organs. The present study was aimed at characterizing the influence of cucumber mosaic virus (CMV)‐MP on carbohydrate metabolism and transport in both tobacco and melon plants. Transgenic tobacco plants expressing the CMV‐MP had reduced levels of soluble sugars and starch in their source leaves and a significantly reduced root‐to‐shoot ratio in comparison with control plants. A novel virus‐vector system was employed to express the CMV‐coat protein (CP), the CMV‐MP or the TMV‐MP in melon plants. This set of experiments indicated that the viral MPs cause a significant elevation in the proportion of sucrose in the phloem sap collected from petioles of source leaves, whereas this sugar was at very low levels or even absent from the sap of control melon plants. The mode by which the CMV‐MP exerts its effect on phloem‐sap sugar composition is discussed in terms of possible alterations in the mechanism of phloem loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号