首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 15 毫秒
1.
Mobilities of lipophilic organic solutes in cuticular membranes (CM) isolated from mature leaves of Citrus aurantium L., Citrus grandis L., Hedera helix L., IIex aquifolium L., Ilex paraguariensis St.-Hil., Mains domestica Borkh., Prunus armeniaca L., Primus laurocerasus L., Pyrus communis L., Pyrus pyrifolia (Burm. f.) Nakai, Stephanotis florihunda Brongn. and Strophantus gratus Baill. were measured over a temperature range of 15–78°C. In this range, solute mobilities increased up to 1000-fold, which corresponds to temperature coefficients Q10 of 3 (IAA in P. armeniaca) to 14 (cholesterol in H. helix). For most species, Arrhenius graphs showed good linearity up to 40°C, and up to 78°C for some species, while for others activation energies declined with increasing temperature. However, no distinct phase transitions caused by sudden structural changes in the CM were observed. In three species we examined whether heating to 70°C changed solute mobility irreversibly by comparing Arrhenius graphs for two successive experiments with the same CM. The two graphs were very similar for P. laurocerasus, while mobilities in the second graph were somewhat reduced for C. aurantium and greatly increased (at 25 and 35°C) for H. helix. This indicates rearrangements of at least some wax constituents when heated to high temperatures. The activation energies of diffusion (ED) ranged from 75 to 189 KJ mol?11 depending on species and solute size. Size selectivity and variability between cuticles decreased with increasing temperature, and this is caused by differences in (ED). An excellent correlation between the pre-exponential factor of the Arrhenius equation and ED was observed, which is evidence that organic solutes differing greatly in molecular size (130–349 cm3 mol?1) and cuticle/water partition coefficient (25–108) use similar diffusion paths in the CM of all 12 plant species tested. Diffusion occurs in regions with identical physicochemical properties and differs only in magnitude.  相似文献   

2.
Abstract. Water permeability of cuticular membranes (CM) from the inner bulb scales of Allium cepa has been investigated. CM have a thickness ranging from 0.6 to 1.3 μm. They are composed of a thin (120–200 nm) lamellated cuticle proper and a thicker (300–900 nm) cuticular layer. Permeability coefficients for diffusion of water across these thin membranes are very low (4 × lO−10ms−10). There was no difference in permeability of CM from successive scales of the same onion. Extraction of soluble cuticular lipids (SCL) with chloroform increased permeability by a factor of 1350 to 2050. Preliminary data indicate that only 1 μg cm−10 of SCL are removed by this treatment, hydrocarbons being the main (75%) consistuent. Permeability coefficients of cuticular transpiration were little affected by relative humidity, showing that transport is limited by a hydrophobic barrier that lacks dipoles. However, following extraction, permeability of the membranes depended strongly on humidity due to the presence of polar functional groups in the polymer matrix. Soluble cuticular lipids undergo a phase transition around 47°C. Temperatures higher than that irreversibly increased water permeability.  相似文献   

3.
Two direct but independent approaches were developed to identify the average δ18O value of the water fraction in the chloroplasts of transpiring leaves. In the first approach, we used the δ18O value of CO2 in isotopic equilibrium with leaf water to reconstruct the δ18O value of water in the chloroplasts. This method was based on the idea that the enzyme carbonic anhydrase facilitates isotopic equilibrium between CO2 and H2O predominantly in the chloroplasts, at a rate that is several orders of magnitude faster than the non-catalysed exchange in other leaf water fractions. In the second approach, we measured the δ18O value of O2 from photosynthetic water oxidation in the chloroplasts of intact leaves. Since O2 is produced from chloroplast water irreversibly and without discrimination, the δ18O value of the O2 should be identical to that of chloroplast water. In intact, transpiring leaves of sunflower (Helianthus annuus cv. giant mammoth) under the experimental conditions used, the average δ18O value of chloroplasts water was displaced by 3—10 % (depending on relative humidity and atmospheric composition) below the value predicted by the conventional Craig & Gordon model. Furthermore, this δ18O value was always lower than the δ18O value that was measured for bulk leaf water. Our results have implications for a variety of environmental studies since it is the δ18O value of water in the chloroplasts that is the relevant quantity in considering terrestrial plants influence on the δ18O values of atmospheric CO2 and O2, as well as in influencing the δ18O of plant organic matter.  相似文献   

4.
J. Schönherr  K. Eckl  H. Gruler 《Planta》1979,147(1):21-26
The effect of temperature on water permeability of plant cuticles (astomatous Citrus leaf cuticles) has been investigated. The Arrhenius plot (logarithm of the permeability coefficient vs. 1/temperature) has two linear portions that intersect at 44° C. Evidence is presented to show that this intersection represents the solid/liquid phase transition of cuticular lipids. As the Arrhenius plot has only one phase transition in the temperature range of 5 to 80° C, it appears that all soluble cuticular lipids in the cuticle are present as a homogeneous mixture rather than as individual layers differing in composition. This view is supported by electron spin resonance evidence showing homogenous distribution of spin label fatty acids. The original distribution of soluble cuticular lipids is irreversibly altered by heating cuticular membranes above the transition temperature. This is accompanied by an irreversible increase in water peremeability, demonstrating the importance of the structure of cuticular lipids with regard to cuticular permeability.Abbreviations CM cuticular membranes - MX polymer matrix - SCL soluble cuticular lipids - MES morpholinoethane sulphonic acid - J flux - ESR electron spin resonance - THO tritiated water  相似文献   

5.
Cattle and water buffalo sera labelled with vitamin D3[14C] (300 and 480 individual samples respectively) were subjected to starch gel electrophoresis followed by autoradiography in an attempt to identify a possible polymorphism of the proteins capable of binding this vitamin.
Three phenotypes controlled by two codominant autosomal alleles were identified in cattle while in water buffalo six phenotypes controlled by three codominant autosomal alleles were observed.  相似文献   

6.
The effects of drought stress and season on both allocation of photosynthates to stems and leaves and potential for stem rubber synthesis were studied in guayule ( Parthenium argentatum Gray USDA line 11604). Two-year-old plants grown under field conditions in the Negev desert of Israel were subjected to different irrigation regimes, and water status was assessed by measuring the relative water content (RWC). Undetached plant tips were exposed to a 1 h pulse of 14CO2, followed by a 24 h chase. 14C fixed and translocated to different plants parts and notably 14C incorporation into rubber and resin fractions was determined. The potential of detached branch slices to incorporate [14C]-acetate into rubber was also studied. A higher percentage of fixed 14C was translocated from shoot tips in winter (28–30%) than in summer (15–18%). The percentage of [14C]-acctate incorporated into the rubber fraction by stem slices was maximal in winter (20%) and minimal in summer (3–5%) in both cases in the absence of drought stress. In summer the translocation of photosynthates into stems was inversely related to plant RWC, dropping from 18% three days after irrigation to 3% 14 days later, and the potential of stems to synthesise rubber was high under drought conditions and low in well irrigated plants.  相似文献   

7.
The effect of plant status on net assimilation and translocation of "C-labeled assimilates in cacao (Theobroma cacao L.) was evaluated. As plant water potential (ψ) decreased from −0.5 to −1.0 MPa, neither net assimilation nor the rate of label translocation out of the l4CO,-fed leaf were affected, but as iji fell between −1.0 and −1.5 MPa, net assimilation decreased sharply and label retention increased greatly. Translocation out of source leaves was strongly correlated with net assimilation (r =−0.93). Translocation velocity, assessed by detection of labeled assimilates in sink leaves, was sensitive to plant water deficit, and it declined linearly (r = 0.97) throughout the range of leaf water potentials observed. The results may be explained by reduction in the velocity of assimilate movement within the sieve elements, reduction in supply of labeled assimilates from source leaves, reduction in sink strength or diversion of assimilates to sites of storage or utilization.  相似文献   

8.
9.
The influence of light intensity and phytochrome on the uptake of 14C-kinetin (6-furfurylamino-[8- 14C]-purine) by the plant and the translocation of the phytochrome between the roots, the hypocotyl and the cotyledons were investigated with radish seedlings ( Raphanus sativus L. cv. Saxa Treib) grown in the dark or under white light of high (20,000 lux, 90 W m−2) or low intensity (2,000 lux, 14 W m−2). The highest uptake of labelled kinetin was found in plants grown in continuous darkness. The total uptake of kinetin was decreased by strong light and to a finally higher extent by weak light. Under white light most of the kinetin accumulated in the root, whereas in the dark an enhanced translocation of the phytohormone into the cotyledons was observed. In etiolated radish seedlings, light acting on phytochrome (daily 5 min red or far red light pulses) decreased the translocation of 14C-kinetin into the cotyledons. Under far red light a pronounced uptake of the phytohormone into the roots was found. The data are discussed with regard to the interaction of light and phytohormones on plant development.  相似文献   

10.
Comparative studies on bilayer systems of saturated phosphatidylcholines and phosphatidylethanolamines revealed a maximum in ionic permeability in phosphatidylcholine bilayers at the temperature of the gel to liquid-crystalline phase transition but such an increase in permeability was not detectable in bilayers of phosphatidylethanolamine. Furthermore, it was found that at the phase transition temperature the phosphatidylcholine bilayers are subject to rapid hydrolysis by pancreatic phospholipase A2 whereas phosphatidylethanolamine bilayers are not. These differences are discussed in view of detailed information on the molecular organization in the gel and liquid crystalline phases of the two phospholipid classes.  相似文献   

11.
Water scarcity and nitrogen shortage are the main constraints on durum wheat productivity. This paper examines the combined effects of a constant water deficit and nitrogen supply (NS) on growth, photosynthesis, stomatal conductance (gs) and transpiration, instantaneous and time‐integrated water use efficiency (WUE) and nitrogen use efficiency (NUE) and carbon isotope discrimination (Δ13C) in durum wheat genotypes grown in pots under greenhouse conditions. Three water levels (40%, 70% and 100% container capacity), two nitrogen doses (high and low N) and four genotypes were assayed in a total of 24 experimental treatments. Water and nitrogen treatments were imposed 2 weeks after plant emergence. The growth, nitrogen content and Δ13C of the shoot and the gas exchange in the flag leaf were determined about 2 weeks after anthesis. As expected, both water and NS had a strong positive effect on growth. However, a reduction in water supply had low effect decreasing photosynthesis and transpiration, Δ13C and NUE and increasing WUE. On the contrary, increasing the level of nitrogen supplied had a significant negative effect on gs, which decreased significantly the ratio of intercellular to ambient CO2 concentrations and Δ13C, and increased both instantaneous and time‐integrated WUE. In addition, a higher N level also negatively affected the instantaneous and time‐integrated NUE. The Δ13C of shoots correlated significantly and negatively with either instantaneous or time‐integrated measurements of WUE. Moreover, within each NS, Δ13C also correlated negatively with the integrated NUE. We concluded that under our experimental conditions, Δ13C gives information about the efficiency with which not just water but also nitrogen are used by the plant. In addition, this study illustrates that a steady water limitation may strongly affect biomass without consistent changes in WUE. The lack of effect of the different water regimes on gas exchange, WUE and Δ13C illustrate the importance of how stress is imposed during growth.  相似文献   

12.
13.
The atmospheric CO2 concentration has increased from the pre-industrial concentration of about 280 μmol mol−1 to its present concentration of over 350 μmol mol−1, and continues to increase. As the rate of photosynthesis in C3 plants is strongly dependent on CO2 concentration, this should have a marked effect on photosynthesis, and hence on plant growth and productivity. The magnitude of photo-synthetic responses can be calculated based on the well-developed theory of photosynthetic response to intercellular CO2 concentration. A simple biochemically based model of photosynthesis was coupled to a model of stomatal conductance to calculate photosynthetic responses to ambient CO2 concentration. In the combined model, photosynthesis was much more responsive to CO2 at high than at low temperatures. At 350 μmol mol−1, photosynthesis at 35°C reached 51% of the rate that would have been possible with non-limiting CO2, whereas at 5°C, 77% of the CO2 non-limited rate was attained. Relative CO2 sensitivity also became smaller at elevated CO2, as CO2 concentration increased towards saturation. As photosynthesis was far from being saturated at the current ambient CO2 concentration, considerable further gains in photosynthesis were predicted through continuing increases in CO2 concentration. The strong interaction with temperature also leads to photosynthesis in different global regions experiencing very different sensitivities to increasing CO2 concentrations.  相似文献   

14.
15.
The intensity and duration of the period of osmotic disturbance during introduction of brook charr into sea water were decreased by introducing the fish according to a gradient of salinity over a period of 6 days. Survival in summer increased from 25 to 90% with the use of a salinity gradient. However, kinetics and levels of activation of the gill Na+, K+-ATPase were not affected by the mode used for introducing brook charr into sea water. Neither was its level of activity modified by the use of a salted diet when the fish were in fresh water. The addition of 8 and 12% of salt to the diet prevented the plasma electrolyte surge of concentrations during the first days in sea water. In very cold water, survival rate was also drastically improved by giving an 8% salted diet during the 6 weeks preceding the introduction into sea water. These results show that both salty diets and exposure to brackish water during 6 days help brook charr face osmotic stress and improve their survival rate when introduced into full-strength sea water. The combined use of these preconditioning strategies might facilitate rearing this species in sea cages or silos.  相似文献   

16.
The effects of guanyl nucleotides on the binding of [3H]flunitrazepam to rat hippocampal synaptic membranes were studied. In equilibrium binding studies, gamma-amino-n-butyric acid (GABA) increased and GTP decreased the binding affinity of [3H]flunitrazepam; GTP also caused a decrease in binding capacity. The effect, however, is variable. In studies of the dissociation kinetics of [3H]flunitrazepam using diazepam and the antagonist Ro 15-1788 as the displacers, there was evidence of two dissociation rate constants. GTP increased both the fast- and slow-dissociation rate constants and increased the ratio of the slow-dissociation binding state. The effect of GTP was mimicked by its nonhydrolyzable analogue 5'-guanylylimidodiphosphate but not by ATP and occurred when diazepam, but not when Ro 15-1788, was used as the displacer. GABA antagonized the effect of GTP on the dissociation of [3H]flunitrazepam. The nature of the benzodiazepine receptor, its actions, and the possible role of cyclic AMP as a second messenger are discussed.  相似文献   

17.
1. The gelatinous cyanobacterial Collema tenax is a dominant lichen of biotic soil crusts in the western United States. In laboratory experiments, we studied CO2 exchange of this species as dependent on water content (WC), light and temperature. Results are compared with performance of green-algal lichens of the same site investigated earlier.
2. As compared with published data, photosynthetic capacity of C. tenax is higher than that of other cyanobacterial and green-algal soil-crust species studied. At all temperatures and photon flux densities of ecological relevance, net photosynthesis (NP) shows a strong depression at high degrees of hydration; maximal apparent quantum-use efficiency of CO2 fixation is also reduced. Water requirements (moisture compensation point, WC for maximal NP) are higher than that of the green-algal lichens. Collema tenax exhibits extreme 'sun plant' features and is adapted to high thallus temperatures.
3. Erratic rain showers are the main source of moisture for soil crusts on the Colorado Plateau, quickly saturating the lichens with liquid water. High water-holding capacity of C. tenax ensures extended phases of favourable hydration at conditions of high light and temperature after the rain for substantial photosynthetic production. Under such conditions the cyanobacterial lichen appears superior over its green-algal competitors, which seem better adapted to habitats with high air humidity, dew or fog as prevailing source of moisture.  相似文献   

18.
Doubling of the current atmospheric CO2 concentration, and an increase in global mean annual temperatures of 1.5–6 °C, have been predicted to occur by the end of this century. Whilst the separate effects of CO2 and temperature on plant–insect interactions have been examined in a number of studies, few have investigated their combined impact. We carried out a factorial experiment to explore the effect of a doubling of CO2 concentration and a 3 °C temperature increase on the development of a complete generation of the leaf‐miner, Dialectica scalariella, in the host plant Paterson's Curse, Echium plantagineum. Elevated CO2 increased biomass, reduced leaf N and increased C:N ratios in the host plants. Leaf thickness also increased under elevated CO2, but only in the high‐temperature treatment. Female D. scalariella did not discriminate between plants grown at the different CO2 levels when ovipositing, despite the reduction in foliage quality under elevated CO2. Overall, the negative response of D. scalariella to elevated CO2 was greater than for many species of free‐living insects, presumably because of the limited mobility imposed by the leaf‐mining habit. Development was accelerated at the high temperature and slowed under elevated CO2. The net result was a reduction in development time of ~14 days in the elevated CO2/high temperature treatment, compared to the ambient CO2/low temperature treatment. Larval survivorship and adult moth weight were both affected by a significant interaction between CO2 and temperature. At the low temperature, CO2 had little effect on survivorship, but at the high temperature, survivorship was significantly reduced under elevated CO2. Similarly, elevated CO2 had a stronger negative effect on adult moth weight when combined with the high‐temperature treatment. A possible explanation for these results is that the high temperature accelerated insect development to such an extent that the larvae did not have sufficient feeding time to compensate for the poorer quality of the foliage. The frequency with which interactions between CO2 and temperature affected both plant and insect performance in this study highlights the need for caution when predicting the effects of future climate change on plant–insect interactions from single‐factor experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号