首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pancreatic secretory trypsin inhibitor (PSTI) has been thought to be only a secretory trypsin inhibitor of human pancreas, but the serum content of immunoreactive PSTI is elevated without pancreatic disease. Using the peroxidase-antiperoxidase method, immunoreactive cells for PSTI were found in human pancreas, stomach, duodenum, appendix, colon and urinary tract of both fetus and adult, adult gall bladder, and fetal lung. PSTI-immunoreactive cells were identified in fetal pancreas at the tenth gestational week, and in extrapancreatic tissues at the sixteenth (gastrointestinal and urinary tract) and twentieth weeks (lung). PSTI-immunoreactive cells of fetal lung were present in neuroepithelial bodies. Strongly positive cells in fetal duodenum were argyrophilic and resembled endocrine cells. Immunohistochemical study was also performed on tissues associated with inflammatory diseases of gastrointestinal tract. The distribution pattern of immunoreactive cells in the stomach varied in accordance with chronic gastritis. Immunoreactive cells were also found in endocrine micro-nests and in a carcinoid tumor associated with fundic gastritis. These results suggest that PSTI may play some physiological role other than secretory trypsin inhibition of the pancreas.  相似文献   

2.
Leptin, a 16 kilodalton protein-encoded by the ob gene, is involved in the regulation of food intake, body composition, and energy expenditure through a central feedback mechanism. Initially thought to be adipocyte-specific, the ob gene, as well as the leptin receptor, has been found in a variety of other tissues. Relevant to this review, the leptin gene and its receptor have been identified in the stomach, intestine, liver, and pancreas. Recent data also suggest that gut leptin may act locally within the gastrointestinal tract to influence intestinal functions such as nutrient absorption and may have a physiopathological implication. This review emphasises the concept that leptin may be a new gastrointestinal hormone.  相似文献   

3.
Endocrine cells containing peptide YY (PYY) were numerous in the rectum, colon and ileum and few in the duodenum and jejunum of rat, pig and man. No immunoreactive cells could be detected in the pancreas and stomach. Coexistence of PYY and glicentin was revealed by sequential staining of the same section and by staining consecutive semi-thin sections. Since the PYY sequence is not contained in the glucagon/glicentin precursor molecule the results suggest that the PYY cell in the gut expresses two different genes coding for regulatory peptides of two different families.  相似文献   

4.
Orexins are novel neuropeptides that were originally localized in neurons of the hypothalamus and neuronal fibers of the brain. Recently orexin A and its receptor have also been reported in neurons and endocrine cells of the gastrointestinal tract. Because no studies have been done at the embryonic period, we studied the appearance and distribution of orexin A during the development of mouse gastrointestinal tract using immunocytochemical methods. Immunoreactivity to orexin A was detected in neuroendocrine cells of the pyloric region of the stomach at gestational Day 14 and 1 day after in the small intestine. The numbers of immunoreactive cells progressively increased through development until the adult pattern was reached. Staining of reverse-face sections demonstrated that orexin A and serotonin co-localized in some endocrine cells of the mouse stomach and small intestine. These findings suggest that orexin A may be relevant in the growth and maturation of the gastrointestinal tract during intrauterine life.  相似文献   

5.
The gestational time of appearance and distribution of immunoreactive glicentin was compared to that of immunoreactive glucagon in the gastrointestinal tract and endocrine pancreas of human fetuses, aged between 5 and 24 weeks, by an indirect immunoperoxidase method. With the glicentin antiserum No. R 64, the first immunoreactive cells were detected at the 10th week of gestation in the oxyntic mucosa and proximal small intestine, at the 8th week in the ileum and at the 12th week in the colon. In the endocrine pancreas, the first immunoreactive cells were observed as early as 8 weeks within the walls of the primitive pancreatic ductules. At a more advanced stage of development (12 weeks), they were found interspersed among the islet cell clusters and still later (16 weeks) inside the recognizable islets of Langerhans. With the glucagon antiserum No. GB 5667, no immunoreactive cells were demonstrated in the gastrointestinal tract whatever the age of the fetuses. In the endocrine pancreas, the first immunoreactive cells were observed at the 8th week of gestation in the pancreatic parenchyma. The distribution of glucagon-containing cells in the pancreas was similar to that of glicentin immunoreactivity throughout ontogenesis. In the pancreatic islets of one 18-week-old human fetus, the study of consecutive semithin sections treated by both antisera showed that the same cells were labelled. The significance of these findings concerning the role of glicentin as a glucagon precursor is discussed.  相似文献   

6.
Summary The distribution of peptide hormone-like immunostaining in the gastrointestinal tract of 11 teleost species was investigated by immunofluorescence.Cells immunoreactive for somatostatin were found in the glandular epithelium of the stomach of four species and in the epithelium of the pyloric appendage of one species. The mid-gut epithelium contained cells reactive with antibodies to glucagon (three species), gastrin (five species), pancreatic polypeptide (five species), and substance P (two species). Cells immunoreactive for met-enkephalin were found in the epithelium of both the mid-gut and the stomach of six species.In six species in which the endocrine pancreas was investigated, insulin-, glucagon-, and somatostatin-like immunoreactivity was observed. Pancreatic polypeptide was definitely localised by immunostaining in cells of the endocrine pancreas of only one out of three species examined.Vasoactive intestinal polypeptide-, neurotensin-, bombesin-, and enkephalin-like immunoreactivity was identified in the gastrointestinal nerve fibres in various species.In view of the considerable species variation found, caution should be exercised in generalising about the peptides present in the gastrointestinal tract of fish.  相似文献   

7.
花臭蛙消化道6种激素阳性细胞的免疫组织化学定位   总被引:4,自引:2,他引:2  
目的应用6种胃肠激素抗血清对花臭蛙(Rana schmackeri)消化道激素阳性细胞进行了免疫组织化学定位。方法SP(Streptavidin peroxidase)免疫组织化学法。结果五羟色胺阳性细胞在消化道各段都有分布,以胃幽门部密度最高,胃体其次,食道和直肠较少;生长抑素阳性细胞主要分布于胃和小肠,其中幽门部较多,食管和直肠未见分布。胃泌素阳性细胞只在十二指肠和空肠两个部位检测到。而胰多肽、胰高血糖素和P-物质阳性细胞在消化道各段均未见其分布。结论花臭蛙消化道这六种内分泌细胞分布与其他两栖类动物比较,既显示了两栖类动物在生活习性及动物消化生理方面消化道激素阳性细胞分布的某些共性,又显示了不同物种在消化道的结构特点、生活环境、食性等方面存在的种间差异。  相似文献   

8.
采用免疫组织化学ABC染色方法研究了神经激肽B受体(NK3r)在小鼠消化道的分布。MK3r样阳性的神经无胞体及神经纤维主要分布在十二指肠,空肠,回肠及结肠的粘膜下层神经丛和肌间神经丛,NK3r样阳性产物在食管,胃和直肠的神经丛中未见分布;NK3r样阳性产物大部分避限于神经细胞表面,也存在于胞和一些轴突内部,并在胞质中较细胞表面染色浅。。统计结果表明NK3r样免疫阳性神经元占肠神经系统神经元总数的0.5-1%,提示小鼠消化道内NK3r样阳性神经元可能参与消化功能的调节。  相似文献   

9.
By employing polyclonal antibodies for retinol-binding protein (RBP), its distribution in the human pancreas and digestive tract mucosa was compared with those of transthyretin (TTR) and various peptide hormones. The materials used included surgically removed pancreas, esophagus, stomach, small and large intestines. Paraffin sections were stained by the indirect immunoenzyme method. The results indicate that RBP-containing cells are found in the pancreas and the gastrointestinal mucosa, but most frequently in the gastric antrum and duodenum. In the pancreas, RBP-containing cells are found in the islets and among acinar and ductal epithelial cells, and consistently stain for chromogranin A. RBP-containing cells in the gastrointestinal mucosa showed typical features of endocrine cells and also stained for chromogranin A. The distribution of TTR in these tissue sites resembled that of RBP, but the immunoreactive intensities of both peptides altered independently. Comparison of the distribution of RBP, TTR, and various gastrointestinal peptide hormones revealed that the distribution of RBP coincided with none of the other peptides, although some of the RBP-containing cells stained for most of the peptides examined and vice versa. These results suggest that RBP may be a consistent component of gastrointestinal endocrine cells.  相似文献   

10.
1. Neuropeptide Y (NPY) immunoreactivity has been localised cytochemically in neuronal somata and fibres in rainbow trout brain, nerve fibres and mucosal epithelial endocrine cells within the gastrointestinal tract and in endocrine cells within pancreatic islets.2. Using a C-terminal specific NPY radioimmunoassay, immunoreactivity was detected in extracts of brain (519 pmol/g), cardiac stomach (37.9 pmol/g), pyloric stomach plus pancreas (37.9 ol/g) and intestine (29.2 pmol/g).3. Gel permeation and reverse-phase HPLC analysis of brain and intestinal extracts resolved a single NPY immunoreactive peptide.  相似文献   

11.
Dopamine (DA) is regarded as an important modulator of enteric function. Recent experiments have suggested that newly cloned DA receptor subtypes are widely expressed in peripheral organs, including the gastrointestinal tract. In the present studies, the D(1A) receptor subtype was identified in rat gut regions through localization of receptor protein by means of light microscopic immunohistochemistry and Western blot analysis and receptor mRNA by RT-PCR and in situ amplification and hybridization (3SR in situ). D(1A) receptor immunoreactivity was shown to have a diverse distribution in the gastrointestinal tract, being present in the gastroesophageal junction, stomach, pylorus, small intestine, and colon. The receptor has a transmural distribution present in both epithelial and muscle layers as well as in blood vessels and lamina propria cells of different gastrointestinal regions. Western blot analysis demonstrated a single 50-kDa band for esophagus, stomach, duodenum, jejunum, and colon. The in situ hybridization signal was localized to the same sites revealed by D(1A) receptor immunoreactivity. RT-PCR revealed an appropriate sized signal in similar regions. This study is the first to identify expression of the central D(1A) receptor throughout the normal mammalian gastrointestinal tract.  相似文献   

12.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

13.
牛蛙胃肠胰系统内分泌细胞的免疫组织化学鉴定与定位   总被引:3,自引:0,他引:3  
应用过氧化物酶标记的链霉卵白素(S-P)免疫组织化学方法对牛蛙(Rana catesbeiana)胃肠胰系统5种内分泌细胞进行了鉴定与定位.在消化道中检测到了5-羟色胺(5-HT)、生长抑素(SS)、胃泌素(Gas)和胰高血糖素(Glu)细胞.5-HT细胞主要分布于胃幽门部和空肠,食道中偶见.SS细胞主要分布于胃,幽门部较密集,小肠各段少量,直肠和食道偶见.Gas细胞主要分布于小肠各段,胃和直肠中偶见,食道中未检测到.Glu细胞主要分布于胃和直肠,小肠各段偶见,食道中未检测到.在胰腺中检测出了5-HT、SS、Gas、Glu和胰多肽(PP)细胞.SS、Glu和PP细胞数量较多,成簇分布于胰岛中,5-HT和Gas细胞少量,散在分布于胰腺腺泡之间.胃腺部和胰腺内分泌细胞多呈圆形、椭圆形或形态不规则,有的可见明显胞突伸向邻近细胞,胃肠道上皮中的内分泌细胞多呈梭形、楔形或锥形,有的可见明显胞突伸向消化腔.与其它两栖动物相比,牛蛙胃肠胰系统内分泌细胞的存在与分布有一些共性,也存在着种间差异.  相似文献   

14.
Leptin   总被引:39,自引:0,他引:39  
Leptin is an adipocyte hormone that signals nutritional status to the central nervous system (CNS) and peripheral organs. Leptin is also synthetized in the placenta and in gastrointestinal tract, although its role in these tissues is not yet clear. Circulating concentrations of leptin exhibit pulsatility and circadian rhythmicity. The levels of plasma leptin vary directly with body mass index and percentage body fat, and leptin contributes to the regulation of body weight. Leptin plasma concentrations are also influenced by metabolic hormones, sex, and body energy requirements. Defects in the leptin signaling pathway result in obesity in animal models. Only a few obese humans have been identified with mutations in the leptin gene or in the leptin receptor; however, most cases of obesity in humans are associated with high leptin levels. Thus, in humans obesity may represent a state of leptin resistance. Minute-to-minute fluctuations in peripheral leptin concentrations influence the activity of the hypothalamic-pituitary-ovarian and hypothalamic-pituitary-adrenal axes, indicating that leptin may be a modulator of reproduction, stress-related endocrine function, and behavior. This suggests potential roles for leptin or its antagonists in the diagnosis, pathophysiology and treatment of several human diseases.  相似文献   

15.
目的 应用6种胃肠激素抗血清对胡子鲶(Clarias fuscas)和瓦氏黄颡鱼(Pelteobagrus vachelli Richardson)消化道内分泌细胞进行了免疫组织化学比较.方法 应用链霉亲和素-生物素-过氧化物酶复合物技术(streptavidin biotin-peroxidase complex method,SABC法)免疫组织化学方法.结果 除胡子鲶后肠外,五羟色胺细胞在两种鱼的消化道各段均有分布,其中贲门部或幽门部密度最高,前中肠次之,食道最少;胡子鲶消化道中生长抑素细胞主要分布于胃贲门部和胃部,食管、胃幽门及肠道内未见分布,而瓦氏黄颡主要分布于食管和胃部,肠道内未见分布;胃泌素细胞在胡子鲶消化道内只在肠内检测到,瓦氏黄颡只在幽门胃和前肠两个部位检测到;胰多肽细胞只在瓦氏黄颡的幽门胃和前肠两个部位有分布;胰高血糖素和P-物质两种细胞在两种鱼的消化道各段均未见其分布.结论 两种有胃鱼消化道中六种内分泌细胞的分布既有一定的共性,体现了两者消化生理的共同点;同时又存在较大的种间差异,与各自食性及生活环境相适应.  相似文献   

16.
Antisera against 5 different regions of the entire prosomatostatin molecule were used for immunohistochemical mapping of prosomatostatin-containing structures in the pig gastrointestinal tract, and for radioimmunological and chromatographical analysis of the products of prosomatostatin in extracts of ileal mucosa. The latter showed that the antisera were capable of identifying components containing N-terminal as well as C-terminal parts of prosomatostatin. Endocrine cells were identified with all antisera in most parts of the gastrointestinal tract, and varicose nerve fibres were observed in all parts of the small intestine but not in the stomach and the colon. The colon contained very few immunoreactive structures. Immunoreactive nerve cell bodies were found in the submucous plexus of the small intestine. All immunoreactive endocrine cells in the stomach and the duodenum and all immunoreactive nerves were stained by all 5 antisera whereas the small intestinal endocrine cells did not stain for the most N-terminal region of prosomatostatin. The results suggest that all gastrointestinal somatostatin is derived from the same precursor molecule, which, however, in the small intestinal endocrine cells is processed differently from that of the other tissues.  相似文献   

17.
日本林蛙胃肠道内分泌细胞的免疫组织化学   总被引:18,自引:4,他引:14  
应用7种胃肠激素抗血清对日本林蛙胃肠道内分泌细胞的形态和分布进行了免疫组织化学研究。5-羟色胺(5-HT)免疫活性(-IR)细胞分布于胃肠道各段,其在胃肠道中的分布密度为:十二指肠、空肠处最高,胃中各段居中,回肠和直肠处最低。生长抑素(sS)-IR细胞分布于胃贲门至空肠的胃肠道段,其分布密度自前向后呈递减趋势。胃泌素(Gas)-IR细胞在十二指肠和空肠处有少量分布。高血糖素(Glu)-IR细胞仅见胃体部位较少分布。P_物质(SP)-IR细胞在回肠和直肠中有分布。胃肠道各段均未检出胰多肽(PP)-IR细胞和胰岛素(Ins)-IR细胞。与其它动物相比较,对日本林蛙胃肠道内分泌细胞的分布型进行了讨论。  相似文献   

18.
Summary The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

19.
The aim of this study was to localize cells immunoreactive for glutamate decarboxylase (GAD), the enzyme of GABA synthesis, in pyloric and oxyntic regions of the rat stomach as well as in the rat and mouse pancreas. GAD immunocytochemistry was carried out on polyethylene glycol or cryostat sections of alkaline paraformaldehyde fixed tissue, with simultaneous immunolabelling of various gastro-pancreatic hormones for topographical comparison. In the rat stomach, nerve fibers displaying intense GAD-like immunoreactivity were seen in the myenteric plexus, the circular muscular layer, the submucosa and the lamina propria of the mucosa. But, they were absent from the submucous plexus. Colchicine treatment of the rats allowed to detect some labelled perikarya in the myenteric plexus suggesting that the GABAergic innervation is at least partly intrinsic to the stomach. In the oxyntic and pyloric mucosa, endocrine cells appeared immunostained for GAD. However, the nature of their hormones remained unknown since double immunodetections revealed that they were immunoreactive neither for gastrin nor for somatostatin. In the rat and mouse pancreas, GAD-like immunoreactivity was found in islet cells which corresponded only to insulin-secreting cells. Somatostatin-, glucagon- and pancreatic polypeptide-immunopositive cells were devoid of GAD immunolabelling. No GAD-like immunoreactivity was detected in the exocrine tissue and innervation. These results strenghten the hypothesis that GABA is not only a neurotransmitter in the stomach but that it could also be an endocrine or paracrine factor in the stomach and pancreas.  相似文献   

20.
The distribution of vasoactive intestinal polypeptide (VIP) containing nervous elements in the chicken pancreas was immunohistochemically investigated by light microscopy. Strongly VIP immunoreactive ganglia existed in the interlobular connective tissue. Ganglion containing both VIP immunoreactive and non-immunoreactive nerve cells was occasionally observed in the connective tissue. Almost all the ganglion cells also showed acetylcholinesterase (AChE) activity. No extrapancreatic nerve bundles containing VIP immunoreactive nerve fibres were detected. VIP immunoreactive nerve fibres formed plexuses in the subepithelial layer of secretory ducts and the muscle layer of small arteries. The distribution pattern of VIP immunoreactive nerve fibers was similar to that of AChE-positive nerve fibers on adjacent sections. The exocrine pancreas received a rich supply of varicose nerve fibers showing VIP immunoreactivity. B-islets also were richly innervated by VIP immunoreactive varicose nerve fibers, whereas A-islets, only poorly. These observations suggest that VIP containing nerves in the chicken pancreas have an intrinsic origin, are probably derived from VIP immunoreactive, intrapancreatic ganglion cells and innervate secretory ducts, arteries, acinar cells and B-islets, and that VIP must coexist with acetylcholine in the nervous elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号