首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mobilization of the sulfur of cysteine as persulfide is the first step of sulfur transfer into thiamin, molydopterin, 4-thiouridine, biotin and lipoic acid, but then the pathways diverge completely. For the first three compounds, one or several proteinic persulfides are involved, ending in the nucleophilic attack of a sulfur, persulfide, sulfide or thiocarboxylate on a carbonyl equivalent. Several proteins have been newly characterized, revealing homologies between the three biosynthetic routes and evolutionary relationships. In the case of biotin, and very probably of lipoic acid, the sulfur is transferred as sulfide into the [Fe-S] center of the enzyme. This [Fe-S] center is the ultimate sulfur donor, which quenches a carbon radical on the substrate. This radical is produced by homolytic cleavage of a C-H bond by a deoxyadenosyl radical arising from the reduction of S-adenosylmethionine.  相似文献   

2.
We previously showed that biotin synthase in which the (Fe-S) cluster was labelled with 34S by reconstitution donates 34S to biotin [B. Tse Sum Bui, D. Florentin, F. Fournier, O. Ploux, A. Méjean & A. Marquet (1998) FEBS Lett. 440, 226-230]. We therefore proposed that the source of sulfur was very likely the (Fe-S) centre. This depletion of sulfur from the cluster during enzymatic reaction could explain the absence of turnover of the enzyme which means that to restore a catalytic activity, the clusters have to be regenerated. In this report, we show that the NifS protein from Azotobacter vinelandii and C-DES from Synechocystis as well as rhodanese from bovine liver can mobilize the sulfur, respectively, from cysteine and thiosulfate for the formation of a [2Fe-2S] cluster in the apoprotein of Escherichia coli biotin synthase. The reconstituted enzymes were as active as the native enzyme. When [35S]cysteine was used during the reconstitution experiments in the presence of NifS, labelled (Fe35S) biotin synthase was obtained. This enzyme produced [35S]biotin, confirming the results obtained with the 34S-reconstituted enzyme. NifS was also effective in mobilizing selenium from selenocystine to produce an (Fe-Se) cluster. However, though NifS could efficiently reconstitute holobiotin synthase from the apoform, starting from cysteine, these two effectors had no significant effect on the turnover of the enzyme in the in vitro assay.  相似文献   

3.
Biotin synthase (BioB) is an iron-sulfur dimeric enzyme which catalyzes the last step in biotin synthesis. The reaction consists of the introduction of a sulfur atom into dethiobiotin. It is shown here that BioB displays a significant cysteine desulfurase activity, providing it with the ability to mobilize sulfur from free cysteine. This activity is dependent on pyridoxal 5'-phosphate (PLP) and dithiothreitol and proceeds through a protein-bound persulfide. Like other cysteine desulfurases, BioB binds 1 equiv of PLP. By site-directed mutagenesis, two conserved cysteines, Cys97 and Cys128, are shown to be critical for cysteine desulfuration and are good candidates as the site for a persulfide. Since biotin synthase activity is greatly increased by PLP and cysteine, even though it does not exceed 1 nmol of biotin/nmol of monomer, it is proposed that cysteine desulfuration is intimately linked to biotin synthesis. New scenarios for sulfur insertion into dethiobiotin, in which cysteine persulfides play a key role, are discussed.  相似文献   

4.
In Escherichia coli, biotin synthase (bioB gene product) catalyzes the key step in the biotin biosynthetic pathway, converting dethiobiotin (DTB) to biotin. Previous studies have demonstrated that BioB is a homodimer and that each monomer contains an iron-sulfur cluster. The purified BioB protein, however, does not catalyze the formation of biotin in a conventional fashion. The sulfur atom in the iron-sulfur cluster or from the cysteine residues in BioB have been suggested to act as the sulfur donor to form the biotin molecule, and yet unidentified factors were also proposed to be required to regenerate the active enzyme. In order to understand the catalytic mechanism of BioB, we employed an approach involving chemical modification and site-directed mutagenesis. The properties of the modified and mutated BioB species were examined, including DTB binding capability, biotin converting activity, and Fe(2+) content. From our studies, four cysteine residues (Cys 53, 57, 60, and 97) were assigned as the ligands of the iron-sulfur cluster, and Cys to Ala mutations completely abolished biotin formation activity. Two other cysteine residues (Cys 128 and 188) were found to be involved mainly in DTB binding. The tryptophan and histidine residues were suggested to be involved in DTB binding and dimer formation, respectively. The present study also reveals that the iron-sulfur cluster with its ligands are the key components in the formation of the DTB binding site. Based on the current results, a refined model for the reaction mechanism of biotin synthase is proposed.  相似文献   

5.
Cysteine desulfurases are pyridoxal 5′-phosphate-dependent homodimeric enzymes that catalyze the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. The enzymes are capable of donating the persulfide sulfur atoms to a variety of biosynthetic pathways for sulfur-containing biofactors, such as iron–sulfur clusters, thiamin, transfer RNA thionucleosides, biotin, and lipoic acid. The enormous advances in biochemical and structural studies of these biosynthetic pathways over the past decades provide an opportunity for detailed understanding of the nature of the excellent sulfur transfer mechanism of cysteine desulfurases.  相似文献   

6.
Taylor AM  Stoll S  Britt RD  Jarrett JT 《Biochemistry》2011,50(37):7953-7963
Biotin synthase catalyzes the conversion of dethiobiotin (DTB) to biotin through the oxidative addition of sulfur between two saturated carbon atoms, generating a thiophane ring fused to the existing ureido ring. Biotin synthase is a member of the radical SAM superfamily, composed of enzymes that reductively cleave S-adenosyl-l-methionine (SAM or AdoMet) to generate a 5'-deoxyadenosyl radical that can abstract unactivated hydrogen atoms from a variety of organic substrates. In biotin synthase, abstraction of a hydrogen atom from the C9 methyl group of DTB would result in formation of a dethiobiotinyl methylene carbon radical, which is then quenched by a sulfur atom to form a new carbon-sulfur bond in the intermediate 9-mercaptodethiobiotin (MDTB). We have proposed that this sulfur atom is the μ-sulfide of a [2Fe-2S](2+) cluster found near DTB in the enzyme active site. In the present work, we show that formation of MDTB is accompanied by stoichiometric generation of a paramagnetic FeS cluster. The electron paramagnetic resonance (EPR) spectrum is modeled as a 2:1 mixture of components attributable to different forms of a [2Fe-2S](+) cluster, possibly distinguished by slightly different coordination environments. Mutation of Arg260, one of the ligands to the [2Fe-2S] cluster, causes a distinctive change in the EPR spectrum. Furthermore, magnetic coupling of the unpaired electron with (14)N from Arg260, detectable by electron spin envelope modulation (ESEEM) spectroscopy, is observed in WT enzyme but not in the Arg260Met mutant enzyme. Both results indicate that the paramagnetic FeS cluster formed during catalytic turnover is a [2Fe-2S](+) cluster, consistent with a mechanism in which the [2Fe-2S](2+) cluster simultaneously provides and oxidizes sulfide during carbon-sulfur bond formation.  相似文献   

7.
Biotin synthase catalyzes the insertion of a sulfur atom between the saturated C6 and C9 carbons of dethiobiotin. Catalysis requires AdoMet and flavodoxin and generates 5'-deoxyadenosine and methionine, suggesting that biotin synthase is an AdoMet-dependent radical enzyme. Biotin synthase (BioB) is aerobically purified as a dimer of 38.4 kDa monomers that contains 1-1.5 [2Fe-2S](2+) clusters per monomer and can be reconstituted with exogenous iron, sulfide, and reductants to contain up to two [4Fe-4S] clusters per monomer. The iron-sulfur clusters may play a dual role in biotin synthase: a reduced iron-sulfur cluster is probably involved in radical generation by mediating the reductive cleavage of AdoMet, while recent in vitro labeling studies suggest that an iron-sulfur cluster also serves as the immediate source of sulfur for the biotin thioether ring. Consistent with this dual role for iron-sulfur clusters in biotin synthase, we have found that the protein is stable, containing one [2Fe-2S](2+) cluster and one [4Fe-4S](2+) cluster per monomer. In the present study, we demonstrate that this mixed cluster state is essential for optimal activity. We follow changes in the Fe and S content and UV/visible and EPR spectra of the enzyme during a single turnover and conclude that during catalysis the [4Fe-4S](2+) cluster is preserved while the [2Fe-2S](2+) cluster is destroyed. We propose a mechanism for incorporation of sulfur into dethiobiotin in which a sulfur atom is oxidatively extracted from the [2Fe-2S](2+) cluster.  相似文献   

8.
Iron-sulfur (Fe-S) clusters are key metal cofactors of metabolic, regulatory, and stress response proteins in most organisms. The unique properties of these clusters make them susceptible to disruption by iron starvation or oxidative stress. Both iron and sulfur can be perturbed under stress conditions, leading to Fe-S cluster defects. Bacteria and higher plants contain a specialized system for Fe-S cluster biosynthesis under stress, namely the Suf pathway. In Escherichia coli the Suf pathway consists of six proteins with functions that are only partially characterized. Here we describe how the SufS and SufE proteins interact with the SufBCD protein complex to facilitate sulfur liberation from cysteine and donation for Fe-S cluster assembly. It was previously shown that the cysteine desulfurase SufS donates sulfur to the sulfur transfer protein SufE. We have found here that SufE in turn interacts with the SufB protein for sulfur transfer to that protein. The interaction occurs only if SufC is present. Furthermore, SufB can act as a site for Fe-S cluster assembly in the Suf system. This provides the first evidence of a novel site for Fe-S cluster assembly in the SufBCD complex.  相似文献   

9.
The enzyme cofactor and essential vitamin biotin is biosynthesized in bacteria, fungi, and plants through a pathway that culminates with the addition of a sulfur atom to generate the five-membered thiophane ring. The immediate precursor, dethiobiotin, has methylene and methyl groups at the C6 and C9 positions, respectively, and formation of a thioether bridging these carbon atoms requires cleavage of unactivated CH bonds. Biotin synthase is an S-adenosyl-l-methionine (SAM or AdoMet) radical enzyme that catalyzes reduction of the AdoMet sulfonium to produce 5'-deoxyadenosyl radicals, high-energy carbon radicals that can directly abstract hydrogen atoms from dethiobiotin. The available experimental and structural data suggest that a [2Fe-2S](2+) cluster bound deep within biotin synthase provides a sulfur atom that is added to dethiobiotin in a stepwise reaction, first at the C9 position to generate 9-mercaptodethiobiotin, and then at the C6 position to close the thiophane ring. The formation of sulfur-containing biomolecules through a radical reaction involving an iron-sulfur cluster is an unprecedented reaction in biochemistry; however, recent enzyme discoveries suggest that radical sulfur insertion reactions may be a distinct subgroup within the burgeoning Radical SAM superfamily. This article is part of a Special Issue entitled: Radical SAM enzymes and Radical Enzymology.  相似文献   

10.
IscS catalyzes the fragmentation of l-cysteine to l-alanine and sulfane sulfur in the form of a cysteine persulfide in the active site of the enzyme. In Escherichia coli IscS, the active site cysteine Cys(328) resides in a flexible loop that potentially influences both the formation and stability of the cysteine persulfide as well as the specificity of sulfur transfer to protein substrates. Alanine-scanning substitution of this 14 amino acid region surrounding Cys(328) identified additional residues important for IscS function in vivo. Two mutations, S326A and L333A, resulted in strains that were severely impaired in Fe-S cluster synthesis in vivo. The mutant strains were deficient in Fe-S cluster-dependent tRNA thionucleosides (s(2)C and ms(2)i(6)A) yet showed wild type levels of Fe-S-independent thionucleosides (s(4)U and mnm(5)s(2)U) that require persulfide formation and transfer. In vitro, the mutant proteins were similar to wild type in both cysteine desulfurase activity and sulfur transfer to IscU. These results indicate that residues in the active site loop can selectively affect Fe-S cluster biosynthesis in vivo without detectably affecting persulfide delivery and suggest that additional assays may be necessary to fully represent the functions of IscS in Fe-S cluster formation.  相似文献   

11.
Biotin synthase is an adenosylmethionine-dependent radical enzyme that catalyzes the substitution of sulfur for hydrogen at the saturated C6 and C9 positions in dethiobiotin. The structure of the biotin synthase monomer is an (alpha/beta)(8) barrel that contains one [4Fe-4S](2+) cluster and one [2Fe-2S](2+) cluster that encapsulate the substrates AdoMet and dethiobiotin. The air-sensitive [4Fe-4S](2+) cluster and the reductant-sensitive [2Fe-2S](2+) cluster have unique coordination environments that include close proximity to AdoMet and DTB, respectively. The relative positioning of these components, as well as several conserved protein residues, suggests at least two potential catalytic mechanisms that incorporate sulfur from either the [2Fe-2S](2+) cluster or a cysteine persulfide into the biotin thiophane ring. This review summarizes an accumulating consensus regarding the physical and spectroscopic properties of each FeS cluster, and discusses possible roles for the [4Fe-4S](2+) cluster in radical generation and the [2Fe-2S](2+) cluster in sulfur incorporation.  相似文献   

12.
The isc and suf operons in Escherichia coli represent alternative genetic systems optimized to mediate the essential metabolic process of iron-sulfur cluster (Fe-S) assembly under basal or oxidative-stress conditions, respectively. Some of the proteins in these two operons share strong sequence homology, e.g. the cysteine desulfurases IscS and SufS, and presumably play the same role in the oxygen-sensitive assembly process. However, other proteins in these operons share no significant homology and occur in a mutually exclusive manner in Fe-S assembly operons in other organisms (e.g. IscU and SufE). These latter proteins presumably play distinct roles adapted to the different assembly mechanisms used by the two systems. IscU has three invariant cysteine residues that function as a template for Fe-S assembly while accepting a sulfur atom from IscS. SufE, in contrast, does not function as an Fe-S assembly template but has been suggested to function as a shuttle protein that uses a persulfide linkage to a single invariant cysteine residue to transfer a sulfur atom from SufS to an alternative Fe-S assembly template. Here, we present and analyze the 2.0A crystal structure of E.coli SufE. The structure shows that the persulfide-forming cysteine occurs at the tip of a loop with elevated B-factors, where its side-chain is buried from solvent exposure in a hydrophobic cavity located beneath a highly conserved surface. Despite the lack of sequence homology, the core of SufE shows strong structural similarity to IscU, and the sulfur-acceptor site in SufE coincides with the location of the cysteine residues mediating Fe-S cluster assembly in IscU. Thus, a conserved core structure is implicated in mediating the interactions of both SufE and IscU with the mutually homologous cysteine desulfurase enzymes present in their respective operons. A similar core structure is observed in a domain found in a variety of Fe-S cluster containing flavoenzymes including xanthine dehydrogenase, where it also mediates interdomain interactions. Therefore, the core fold of SufE/IscU has been adapted to mediate interdomain interactions in diverse redox protein systems in the course of evolution.  相似文献   

13.
Biotin synthase, a member of the "radical-SAM" family, produces biotin by inserting a sulfur atom between C-6 and C-9 of dethiobiotin. Each of the two saturated carbon atoms is activated through homolytic cleavage of a C-H bond by a deoxyadenosyl radical, issued from the monoelectronic reduction of S-adenosylmethionine (SAM or AdoMet). An important unexplained observation is that the enzyme produces only 1 mol of biotin per enzyme monomer. Some possible reasons for this absence of multiple turnovers are considered here, in connection with the postulated mechanisms. There is a general agreement among several groups that the active form of biotin synthase contains one (4Fe-4S)(2+,1+) center, which mediates the electron transfer to AdoMet, and one (2Fe-2S)(2+) center, which is considered the sulfur source [Ugulava, N. B., Sacanell, C. J., and Jarrett, J. T. (2001) Biochemistry 40, 8352-8358; Tse Sum Bui, B., Benda, R., Schunemann, V., Florentin, D., Trautwein, A. X., and Marquet, A. (2003) Biochemistry 42, 8791-8798; Jameson, G. N. L., Cosper, M. M., Hernandez, H. L., Johnson, M. K., and Huynh, B. H. (2004) Biochemistry 43, 2022-2031]. An alternative hypothesis considers that biotin synthase has a pyridoxal phosphate (PLP)-dependent cysteine desulfurase activity, producing a persulfide which could be the sulfur donor. The absence of turnover was explained by the inhibition due to deoxyadenosine, an end product of the reaction [Ollagnier-de Choudens, S., Mulliez, E., and Fontecave, M. (2002) FEBS Lett. 535, 465-468]. In this work, we show that our purified enzyme has no cysteine desulfurase activity and the required sulfide has to be added as Na(2)S. It cannot be replaced by cysteine, and consistently, PLP has no effect. We observed that deoxyadenosine does not inhibit the reaction either. On the other hand, if the (2Fe-2S)(2+) center is the sulfur source, its depletion after reaction could explain the absence of turnover. We found that after addition of fresh cofactors, including Fe(2+) and S(2)(-), either to the assay when one turn is completed or after purification of the reacted enzyme by different techniques, only a small amount of biotin (0.3-0.4 equiv/monomer) is further produced. This proves that an active enzyme cannot be fully reconstituted after one turn. When 9-mercaptodethiobiotin, which already contains the sulfur atom of biotin, is used as the substrate, the same turnover of one is observed, with similar reaction rates. We postulate that the same intermediate involving the (2Fe-2S) cluster is formed from both substrates, with a rate-determining step following the formation of this intermediate.  相似文献   

14.
A Pandey  H Yoon  ER Lyver  A Dancis  D Pain 《Mitochondrion》2012,12(5):539-549
Cysteine desulfurases generate a covalent persulfide intermediate from cysteine, and this activated form of sulfur is essential for the synthesis of iron-sulfur (Fe-S) clusters. In yeast mitochondria, there is a complete machinery for Fe-S cluster synthesis, including a cysteine desulfurase, Nfs1p. Here we show that following supplementation of isolated mitochondria with [(35)S]cysteine, a radiolabeled persulfide could be detected on Nfs1p. The persulfide persisted under conditions that did not permit Fe-S cluster formation, such as nucleotide and/or iron depletion of mitochondria. By contrast, under permissive conditions, the radiolabeled Nfs1p persulfide was greatly reduced and radiolabeled aconitase was formed, indicating transfer of persulfide to downstream Fe-S cluster recipients. Nfs1p in mitochondria was found to be relatively more resistant to inactivation by N-ethylmaleimide (NEM) as compared with a prokaryotic cysteine desulfurase. Mitochondria treated with NEM (1mM) formed the persulfide on Nfs1p but failed to generate Fe-S clusters on aconitase, likely due to inactivation of downstream recipient(s) of the Nfs1p persulfide. Thus the Nfs1p-bound persulfide as described here represents a precursor en route to Fe-S cluster synthesis in mitochondria.  相似文献   

15.
Bacterial cysteine desulfurases: their function and mechanisms   总被引:10,自引:0,他引:10  
Cysteine desulfurase is a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme that catalyzes the conversion of L-cysteine to L-alanine and sulfane sulfur via the formation of a protein-bound cysteine persulfide intermediate on a conserved cysteine residue. Increased evidence for the functions of cysteine desulfurases has revealed their important roles in the biosyntheses of Fe-S clusters, thiamine, thionucleosides in tRNA, biotin, lipoic acid, molybdopterin, and NAD. The enzymes are also proposed to be involved in cellular iron homeostasis and in the biosynthesis of selenoproteins. The mechanisms for sulfur mobilization mediated by cysteine desulfurases are as yet unknown, but enzymes capable of providing a variety of biosynthetic pathways for sulfur/selenium-containing biomolecules are probably applicable to the production of cofactors and the bioconversion of useful compounds.  相似文献   

16.
Biotin synthase (BioB) converts dethiobiotin into biotin by inserting a sulfur atom between C6 and C9 of dethiobiotin in an S-adenosylmethionine (SAM)-dependent reaction. The as-purified recombinant BioB from Escherichia coli is a homodimeric molecule containing one [2Fe-2S](2+) cluster per monomer. It is inactive in vitro without the addition of exogenous Fe. Anaerobic reconstitution of the as-purified [2Fe-2S]-containing BioB with Fe(2+) and S(2)(-) produces a form of BioB that contains approximately one [2Fe-2S](2+) and one [4Fe-4S](2+) cluster per monomer ([2Fe-2S]/[4Fe-4S] BioB). In the absence of added Fe, the [2Fe-2S]/[4Fe-4S] BioB is active and can produce up to approximately 0.7 equiv of biotin per monomer. To better define the roles of the Fe-S clusters in the BioB reaction, M?ssbauer and electron paramagnetic resonance (EPR) spectroscopy have been used to monitor the states of the Fe-S clusters during the conversion of dethiobiotin to biotin. The results show that the [4Fe-4S](2+) cluster is stable during the reaction and present in the SAM-bound form, supporting the current consensus that the functional role of the [4Fe-4S] cluster is to bind SAM and facilitate the reductive cleavage of SAM to generate the catalytically essential 5'-deoxyadenosyl radical. The results also demonstrate that approximately (2)/(3) of the [2Fe-2S] clusters are degraded by the end of the turnover experiment (24 h at 25 degrees C). A transient species with spectroscopic properties consistent with a [2Fe-2S](+) cluster is observed during turnover, suggesting that the degradation of the [2Fe-2S](2+) cluster is initiated by reduction of the cluster. This observed degradation of the [2Fe-2S] cluster during biotin formation is consistent with the proposed sacrificial S-donating function of the [2Fe-2S] cluster put forth by Jarrett and co-workers (Ugulava et al. (2001) Biochemistry 40, 8352-8358). Interestingly, degradation of the [2Fe-2S](2+) cluster was found not to parallel biotin formation. The initial decay rate of the [2Fe-2S](2+) cluster is about 1 order of magnitude faster than the initial formation rate of biotin, indicating that if the [2Fe-2S] cluster is the immediate S donor for biotin synthesis, insertion of S into dethiobiotin would not be the rate-limiting step. Alternatively, the [2Fe-2S] cluster may not be the immediate S donor. Instead, degradation of the [2Fe-2S] cluster may generate a protein-bound polysulfide or persulfide that serves as the immediate S donor for biotin production.  相似文献   

17.
18.
IscS from Escherichia coli is a cysteine desulfurase that has been shown to be involved in Fe-S cluster formation. The enzyme converts L-cysteine to L-alanine and sulfane sulfur (S(0)) in the form of a cysteine persulfide in its active site. Recently, we reported that IscS can donate sulfur for the in vitro biosynthesis of 4-thiouridine (s(4)U), a modified nucleotide in tRNA. In addition to IscS, s(4)U synthesis in E. coli also requires the thiamin biosynthetic enzyme ThiI, Mg-ATP, and L-cysteine as the sulfur donor. We now report evidence that the sulfane sulfur generated by IscS is transferred sequentially to ThiI and then to tRNA during the in vitro synthesis of s(4)U. Treatment of ThiI with 5-((2-iodoacetamido)ethyl)-1-aminonapthalene sulfonic acid (I-AEDANS) results in irreversible inhibition, suggesting the presence of a reactive cysteine that is required for binding and/or catalysis. Both ATP and tRNA can protect ThiI from I-AEDANS inhibition. Finally, using gel shift and protease protection assays, we show that ThiI binds to unmodified E. coli tRNA(Phe). Together, these results suggest that ThiI is a recipient of S(0) from IscS and catalyzes the ultimate sulfur transfer step in the biosynthesis of s(4)U.  相似文献   

19.
Iron-sulfur [Fe-S] clusters are ubiquitous ancient prosthetic groups that are required to sustain fundamental life processes. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Different types of [Fe-S] cluster assembly systems have been discovered. All of them have in common the requirement of a cysteine desulfurase and the participation of [Fe-S] scaffold proteins. The purpose of this review is to discuss various aspects of the molecular mechanisms of [Fe-S] cluster assembly in living organisms: (i) mechanism of sulfur donor enzymes, namely the cysteine desulfurases; (ii) mechanism by which clusters are preassembled on scaffold proteins and (iii) mechanism of [Fe-S] cluster transfer from scaffold to target proteins.  相似文献   

20.
Cysteine desulfurase plays a principal role in the assembly of iron-sulfur clusters by mobilizing the sulfur atom of L-cysteine. The active site cysteine residue of the enzyme attacks the sulfur atom of L-cysteine to form a cysteine persulfide residue, and the substrate-derived sulfur atom of this residue is incorporated into iron-sulfur clusters. Escherichia coli has three cysteine desulfurases named IscS, CsdB and CSD. We found that each of them facilitates the formation of the iron-sulfur cluster of ferredoxin in vitro. Since IscU, an iron-sulfur protein of E. coli, is believed to function as a scaffold for the cluster assembly in vivo, we examined whether IscS, CsdB and CSD interact with IscU to deliver the sulfur atom to IscU. By surface plasmon resonance analysis, we found that only IscS interacts with IscU. We isolated the IscS/IscU complex, determined the residues involved in the formation of the complex, and obtained data suggesting that the sulfur transfer from IscS to IscU is initiated by the attack of Cys63 of IscU on the S gamma atom of the cysteine persulfide residue transiently produced on IscS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号