首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The E3 ligase c-Cbl ubiquitinates protease-activated receptor 2 (PAR(2)), which is required for post-endocytic sorting of PAR(2) to lysosomes, where degradation arrests signaling. The mechanisms of post-endocytic sorting of ubiquitinated receptors are incompletely understood. Here, we investigated the role of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), in post-endocytic sorting and signaling of PAR(2). In HEK-PAR(2) cells, PAR(2) activating peptide (PAR(2)-AP) induced PAR(2) trafficking from the cell surface to early endosomes containing endogenous HRS, and then to lysosomes. HRS overexpression or knockdown with small interfering RNA caused formation of enlarged HRS-positive endosomes, where activated PAR(2) and c-Cbl accumulated, and PAR(2) failed to traffic to lysosomes. Overexpression of HRS prevented PAR(2)-AP-induced degradation of PAR(2), as determined by Western blotting. Overexpression of HRS mutant lacking an ubiquitin-binding motif similarly caused retention of PAR(2) in enlarged endosomes. Moreover, HRS overexpression or knockdown caused retention of ubiquitin-resistant PAR(2)Delta14K/R in enlarged HRS-containing endosomes, preventing recycling and resensitization of PAR(2)Delta14K/R. HRS overexpression or knockdown similarly prevented lysosomal trafficking and recycling of calcitonin receptor-like receptor, a non-ubiquitinated receptor that traffics to lysosomes after sustained activation and recycles after transient activation. Thus, HRS plays a critically important role in the post-endocytic sorting of single receptors, PAR(2) and CLR, to both degradative and recycling pathways. This sorting role for HRS is independent of its ubiquitin-interacting motif, and it can regulate trafficking of both ubiquitinated and non-ubiquitinated PAR(2) and non-ubiquitinated CLR. The ultimate sorting decision to degradative or recycling pathways appears to occur downstream from HRS.  相似文献   

2.
The sorting of G protein–coupled receptors (GPCRs) to lysosomes is critical for proper signaling and cellular responses. We previously showed that the adaptor protein ALIX regulates lysosomal degradation of protease-activated receptor-1 (PAR1), a GPCR for thrombin, independent of ubiquitin-binding ESCRTs and receptor ubiquitination. However, the mechanisms that regulate ALIX function during PAR1 lysosomal sorting are not known. Here we show that the mammalian α-arrestin arrestin domain–containing protein-3 (ARRDC3) regulates ALIX function in GPCR sorting via ubiquitination. ARRDC3 colocalizes with ALIX and is required for PAR1 sorting at late endosomes and degradation. Depletion of ARRDC3 by small interfering RNA disrupts ALIX interaction with activated PAR1 and the CHMP4B ESCRT-III subunit, suggesting that ARRDC3 regulates ALIX activity. We found that ARRDC3 is required for ALIX ubiquitination induced by activation of PAR1. A screen of nine mammalian NEDD4-family E3 ubiquitin ligases revealed a critical role for WWP2. WWP2 interacts with ARRDC3 and not ALIX. Depletion of WWP2 inhibited ALIX ubiquitination and blocked ALIX interaction with activated PAR1 and CHMP4B. These findings demonstrate a new role for the α-arrestin ARRDC3 and the E3 ubiquitin ligase WWP2 in regulation of ALIX ubiquitination and lysosomal sorting of GPCRs.  相似文献   

3.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl channel expressed in the apical membrane of fluid-transporting epithelia. The apical membrane density of CFTR channels is determined, in part, by endocytosis and the postendocytic sorting of CFTR for lysosomal degradation or recycling to the plasma membrane. Although previous studies suggested that ubiquitination plays a role in the postendocytic sorting of CFTR, the specific ubiquitin ligases are unknown. c-Cbl is a multifunctional molecule with ubiquitin ligase activity and a protein adaptor function. c-Cbl co-immunoprecipitated with CFTR in primary differentiated human bronchial epithelial cells and in cultured human airway cells. Small interfering RNA-mediated silencing of c-Cbl increased CFTR expression in the plasma membrane by inhibiting CFTR endocytosis and increased CFTR-mediated Cl currents. Silencing c-Cbl did not change the expression of the ubiquitinated fraction of plasma membrane CFTR. Moreover, the c-Cbl mutant with impaired ubiquitin ligase activity (FLAG-70Z-Cbl) did not affect the plasma membrane expression or the endocytosis of CFTR. In contrast, the c-Cbl mutant with the truncated C-terminal region (FLAG-Cbl-480), responsible for protein adaptor function, had a dominant interfering effect on the endocytosis and plasma membrane expression of CFTR. Moreover, CFTR and c-Cbl co-localized and co-immunoprecipitated in early endosomes, and silencing c-Cbl reduced the amount of ubiquitinated CFTR in early endosomes. In summary, our data demonstrate that in human airway epithelial cells, c-Cbl regulates CFTR by two mechanisms: first by acting as an adaptor protein and facilitating CFTR endocytosis by a ubiquitin-independent mechanism, and second by ubiquitinating CFTR in early endosomes and thereby facilitating the lysosomal degradation of CFTR.  相似文献   

4.
Nerve growth factor (NGF) binding to its receptor TrkA, which belongs to the family of receptor tyrosine kinases (RTKs), is known to induce its internalization, endosomal trafficking and subsequent lysosomal degradation. The Cbl family of ubiquitin ligases plays a major role in mediating ubiquitination and degradation of RTKs. However, it is not known whether Cbl participates in mediating ubiquitination of TrkA. Here we report that c-Cbl mediates ligand-induced ubiquitination and degradation of TrkA. TrkA ubiquitination and degradation required direct interactions between c-Cbl and phosphorylated TrkA. c-Cbl and ubiquitinated TrkA are found in a complex after NGF stimulation and are degraded in lysosomes. Taken together, our data demonstrate that c-Cbl can induce downregulation of NGF-TrkA complexes through ubiquitination and degradation of TrkA.  相似文献   

5.
The sorting of signaling receptors within the endocytic system is important for appropriate cellular responses. After activation, receptors are trafficked to early endosomes and either recycled or sorted to lysosomes and degraded. Most receptors trafficked to lysosomes are modified with ubiquitin and recruited into an endosomal subdomain enriched in hepatocyte growth factor-regulated tyrosine kinase substrate (HRS), a ubiquitin-binding component of the endosomal-sorting complex required for transport (ESCRT) machinery, and then sorted into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs)/lysosomes. However, not all receptors use ubiquitin or the canonical ESCRT machinery to sort to MVBs/lysosomes. This is exemplified by protease-activated receptor-1 (PAR1), a G protein-coupled receptor for thrombin, which sorts to lysosomes independent of ubiquitination and HRS. We recently showed that the adaptor protein ALIX binds to PAR1, recruits ESCRT-III, and mediates receptor sorting to ILVs of MVBs. However, the mechanism that initiates PAR1 sorting at the early endosome is not known. We now report that the adaptor protein complex-3 (AP-3) regulates PAR1 ubiquitin-independent sorting to MVBs through an ALIX-dependent pathway. AP-3 binds to a PAR1 cytoplasmic tail-localized tyrosine-based motif and mediates PAR1 lysosomal degradation independent of ubiquitination. Moreover, AP-3 facilitates PAR1 interaction with ALIX, suggesting that AP-3 functions before PAR1 engagement of ALIX and MVB/lysosomal sorting.  相似文献   

6.
The sorting of signaling receptors to lysosomes is an essential regulatory process in mammalian cells. During degradation, receptors are modified with ubiquitin and sorted by endosomal sorting complex required for transport (ESCRT)-0, -I, -II, and -III complexes into intraluminal vesicles (ILVs) of multivesicular bodies (MVBs). However, it remains unclear whether a single universal mechanism mediates MVB sorting of all receptors. We previously showed that protease-activated receptor 1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is internalized after activation and sorted to lysosomes independent of ubiquitination and the ubiquitin-binding ESCRT components hepatocyte growth factor-regulated tyrosine kinase substrate and Tsg101. In this paper, we report that PAR1 sorted to ILVs of MVBs through an ESCRT-III-dependent pathway independent of ubiquitination. We further demonstrate that ALIX, a charged MVB protein 4-ESCRT-III interacting protein, bound to a YPX(3)L motif of PAR1 via its central V domain to mediate lysosomal degradation. This study reveals a novel MVB/lysosomal sorting pathway for signaling receptors that bypasses the requirement for ubiquitination and ubiquitin-binding ESCRTs and may be applicable to a subset of GPCRs containing YPX(n)L motifs.  相似文献   

7.
EGF, but not TGF alpha, efficiently induces degradation of the EGF receptor (EGFR). We show that EGFR was initially polyubiquitinated to the same extent upon incubation with EGF and TGF alpha, whereas the ubiquitination was more sustained by incubation with EGF than with TGF alpha. Consistently, the ubiquitin ligase c-Cbl was recruited to the plasma membrane upon activation of the EGFR with EGF and TGF alpha, but localized to endosomes only upon activation with EGF. EGF remains bound to the EGFR upon endocytosis, whereas TGF alpha dissociates from the EGFR. Therefore, the sustained polyubiquitination is explained by EGF securing the kinase activity of endocytosed EGFR. Overexpression of the dominant negative N-Cbl inhibited ubiquitination of the EGFR and degradation of EGF and EGFR. This demonstrates that EGF-induced ubiquitination of the EGFR as such is important for lysosomal sorting. Both lysosomal and proteasomal inhibitors blocked degradation of EGF and EGFR, and proteasomal inhibitors inhibited translocation of activated EGFR from the outer limiting membrane to inner membranes of multivesicular bodies (MVBs). Therefore, lysosomal sorting of kinase active EGFR is regulated by proteasomal activity. Immuno-EM showed the localization of intact EGFR on internal membranes of MVBs. This demonstrates that the EGFR as such is not the proteasomal target.  相似文献   

8.
G protein–coupled receptor (GPCR) sorting into the degradative pathway is important for limiting the duration and magnitude of signaling. Agonist activation of the GPCR CXCR4 induces its rapid ubiquitination and sorting to lysosomes via the endosomal sorting complex required for transport (ESCRT) pathway. We recently reported that ESCRT-0 ubiquitination is linked to the efficiency with which CXCR4 is sorted for lysosomal degradation; however mechanistic insight is lacking. Here we define a novel role for the really interesting new gene–domain E3 ubiquitin ligase deltex-3-like (DTX3L) in regulating CXCR4 sorting from endosomes to lysosomes. We show that DTX3L localizes to early endosomes upon CXCR4 activation and interacts directly with and inhibits the activity of the E3 ubiquitin ligase atrophin-1 interacting protein 4. This serves to limit the extent to which ESCRT-0 is ubiquitinated and is able to sort CXCR4 for lysosomal degradation. Therefore we define a novel role for DTX3L in GPCR endosomal sorting and reveal an unprecedented link between two distinct E3 ubiquitin ligases to control the activity of the ESCRT machinery.  相似文献   

9.
c-Cbl is the E3 ubiquitin ligase that ubiquitinates the epidermal growth factor (EGF) receptor (EGFR). On the basis of localization, knockdown, and in vitro activity analyses, we have identified the E2 ubiquitin-conjugating enzyme that cooperates with c-Cbl as Ubc4/5. Upon EGF stimulation, both Ubc4/5 and c-Cbl were relocated to the plasma membrane and then to Hrs-positive endosomes, strongly suggesting that EGFR continues to be ubiquitinated after internalization. Our time-course experiment showed that EGFR undergoes polyubiquitination, which seemed to be facilitated during the transport to Hrs-positive endosomes. Use of a conjugation-defective ubiquitin mutant suggested that receptor polyubiquitination is required for efficient interaction with Hrs and subsequent sorting to lysosomes. Abrupt inhibition of the EGFR kinase activity resulted in dissociation of c-Cbl from EGFR. Concomitantly, EGFR was rapidly deubiquitinated and its degradation was delayed. We propose that sustained tyrosine phosphorylation of EGFR facilitates its polyubiquitination in endosomes and counteracts rapid deubiquitination, thereby ensuring Hrs-dependent lysosomal sorting.  相似文献   

10.
Protease-activated receptor 1 (PAR1) is a G protein–coupled receptor (GPCR) for thrombin and promotes inflammatory responses through multiple pathways including p38 mitogen-activated protein kinase signaling. The mechanisms that govern PAR1-induced p38 activation remain unclear. Here, we define an atypical ubiquitin-dependent pathway for p38 activation used by PAR1 that regulates endothelial barrier permeability. Activated PAR1 K63-linked ubiquitination is mediated by the NEDD4-2 E3 ubiquitin ligase and initiated recruitment of transforming growth factor-β–activated protein kinase-1 binding protein-2 (TAB2). The ubiquitin-binding domain of TAB2 was essential for recruitment to PAR1-containing endosomes. TAB2 associated with TAB1, which induced p38 activation independent of MKK3 and MKK6. The P2Y1 purinergic GPCR also stimulated p38 activation via NEDD4-2–mediated ubiquitination and TAB1–TAB2. TAB1–TAB2-dependent p38 activation was critical for PAR1-promoted endothelial barrier permeability in vitro, and p38 signaling was required for PAR1-induced vascular leakage in vivo. These studies define an atypical ubiquitin-mediated signaling pathway used by a subset of GPCRs that regulates endosomal p38 signaling and endothelial barrier disruption.  相似文献   

11.
Ubiquitination of cytokine receptors controls intracellular receptor routing and signal duration, but the underlying molecular determinants are unclear. The suppressor of cytokine signaling protein SOCS3 drives lysosomal degradation of the granulocyte colony-stimulating factor receptor (G-CSFR), depending on SOCS3-mediated ubiquitination of a specific lysine located in a conserved juxtamembrane motif. Here, we show that, despite ubiquitination of other lysines, positioning of a lysine within the membrane-proximal region is indispensable for this process. Neither reallocation of the motif nor fusion of ubiquitin to the C-terminus of the G-CSFR could drive lysosomal routing. However, within this region, the lysine could be shifted 12 amino acids toward the C-terminus without losing its function, arguing against the existence of a linear sorting motif and demonstrating that positioning of the lysine relative to the SOCS3 docking site is flexible. G-CSFR ubiquitination peaked after endocytosis, was inhibited by methyl-β-cyclodextrin as well as hyperosmotic sucrose and severely reduced in internalization-defective G-CSFR mutants, indicating that ubiquitination mainly occurs at endosomes. Apart from elucidating structural and spatio-temporal aspects of SOCS3-mediated ubiquitination, these findings have implications for the abnormal signaling function of G-CSFR mutants found in severe congenital neutropenia, a hematopoietic disorder with a high leukemia risk.  相似文献   

12.
Endocytosis and targeting of growth factor receptors for lysosomal degradation have been associated with ubiquitination of the intracellular part of the receptors. To elucidate the role of receptor ubiquitination in internalization and sorting of fibroblast growth factor receptor (FGFR), we constructed several mutants of FGFR1 in which lysines, potential ubiquitination sites, were substituted for arginines. Substitution of all lysine residues in the intracellular part of FGFR1 resulted in inactivation of the tyrosine kinase domain of the receptor. However, several multilysine FGFR1 mutants, where up to 26 of 29 lysines in the intracellular part of the receptor were mutated, retained tyrosine kinase activity. The active multilysine mutants were poorly ubiquitinated, but internalized normally, indicating that ubiquitination of the receptor is not required for endocytosis. In contrast, degradation of the multilysine mutants was dramatically reduced as the mutants were inefficiently transported to lysosomes but rather sorted to recycling endosomes. The altered sorting resulted in sustained signaling. The duration of FGFR1 signaling seems to be tightly regulated by receptor ubiquitination and subsequent sorting to the lysosomes for degradation.  相似文献   

13.
Ubiquitin is covalently attached to substrate proteins in the form of a single ubiquitin moiety or polyubiquitin chains and has been generally linked to protein degradation, however, distinct types of ubiquitin linkages are also used to control other critical cellular processes like cell signaling. Over forty mammalian G protein‐coupled receptors (GPCRs) have been reported to be ubiquitinated, but despite the diverse and rich complexity of GPCR signaling, ubiquitin has been largely ascribed to receptor degradation. Indeed, GPCR ubiquitination targets the receptors for degradation by lysosome, which is mediated by the Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, and the proteasome. This has led to the view that ubiquitin and ESCRTs primarily function as the signal to target GPCRs for destruction. Contrary to this conventional view, studies indicate that ubiquitination of certain GPCRs and canonical ubiquitin‐binding ESCRTs are not required for receptor degradation and revealed that diverse and complex pathways exist to regulate endo‐lysosomal sorting of GPCRs. In other studies, GPCR ubiquitination has been shown to drive signaling and not receptor degradation and further revealed novel insight into the mechanisms by which GPCRs trigger the activity of the ubiquitination machinery. Here, we discuss the diverse pathways by which ubiquitin controls GPCR endo‐lysosomal sorting and beyond.   相似文献   

14.
The signaling of plasma membrane proteins is tuned by internalization and sorting in the endocytic pathway prior to recycling or degradation in lysosomes. Ubiquitin modification allows recognition and association of cargo with endosomally associated protein complexes, enabling sorting of proteins to be degraded from those to be recycled. The mechanism that provides coordination between the cellular machineries that mediate ubiquitination and endosomal sorting is unknown. We report that the ubiquitin ligase UBE4B is recruited to endosomes in response to epidermal growth factor receptor (EGFR) activation by binding to Hrs, a key component of endosomal sorting complex required for transport (ESCRT) 0. We identify the EGFR as a substrate for UBE4B, establish UBE4B as a regulator of EGFR degradation, and describe a mechanism by which UBE4B regulates endosomal sorting, affecting cellular levels of the EGFR and its downstream signaling. We propose a model in which the coordinated action of UBE4B, ESCRT-0, and the deubiquitinating enzyme USP8 enable the endosomal sorting and lysosomal degradation of the EGFR.  相似文献   

15.
Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is irreversibly proteolytically activated, internalized, and then sorted to lysosomes and degraded. Internalization and lysosomal sorting of activated PAR1 is critical for termination of receptor signaling. We previously demonstrated that activated PAR1 is rapidly phosphorylated and internalized via a clathrin- and dynamin-dependent pathway that is independent of arrestins. Toward understanding the mechanisms responsible for activated PAR1 internalization through clathrin-coated pits we examined the function of a highly conserved tyrosine-based motif, YXXL, localized in the cytoplasmic carboxyl tail of the receptor. A mutant PAR1 in which tyrosine 383 and leucine 386 were replaced with alanines (Y383A/L386A) was significantly impaired in agonist-triggered internalization and degradation compared with wild-type receptor. In contrast, constitutive internalization, and recycling of unactivated PAR1 Y383A/L386A mutant was not affected, suggesting that tonic cycling of the mutant receptor remained intact. Strikingly, a PAR1 C387Z truncation mutant in which the YXXL motif was exposed at the C terminus constitutively internalized and degraded in an agonist-independent manner, whereas C387Z truncation mutant in which the critical tyrosine and leucine were mutated to alanine (C387Z-Y383A/L386A) failed to internalize. Inhibition of PAR1 C387Z mutant constitutive internalization with dominant-negative K44A dynamin blocked agonist-independent degradation of the mutant receptor. Together these findings strongly suggest that internalization of activated PAR1 is controlled by multiple regulatory mechanisms involving phosphorylation and a highly conserved tyrosine-based motif, YXXL. This study is the first to describe a function for a tyrosine-based motif, YXX, in GPCR internalization and reveal novel complexities in the regulation of GPCR trafficking.  相似文献   

16.
Cells permeabilized by the bacterial pore-forming toxin streptolysin O (SLO) reseal their plasma membrane in a Ca(2+) -dependent manner. Resealing involves Ca(2+) -dependent exocytosis of lysosomes, release of acid sphingomyelinase and rapid formation of endosomes that carry the transmembrane pores into the cell. The intracellular fate of the toxin-carrying endocytic vesicles, however, is still unknown. Here, we show that SLO pores removed from the plasma membrane by endocytosis are sorted into the lumen of lysosomes, where they are degraded. SLO-permeabilized cells contain elevated numbers of total endosomes, which increase gradually in size while transitioning from endosomes with flat clathrin coats to large multivesicular bodies (MVBs). Under conditions that allow endocytosis and plasma membrane repair, SLO is rapidly ubiquitinated and gradually degraded, in a process sensitive to inhibitors of lysosomal hydrolysis but not of proteasomes. The endosomes induced by SLO permeabilization become increasingly acidified and promote SLO degradation under normal conditions, but not in cells silenced for expression of Vps24, an ESCRT-III complex component required for the release of intraluminal vesicles into MVBs. Thus, cells dispose of SLO transmembrane pores by ubiquitination/ESCRT-dependent sorting into the lumen of late endosomes/lysosomes.  相似文献   

17.
BACKGROUND: Growth factors and their receptor tyrosine kinases play pivotal roles in development, normal physiology, and pathology. Signal transduction is regulated primarily by receptor endocytosis and degradation in lysosomes ("receptor downregulation"). c-Cbl is an adaptor that modulates this process by recruiting binding partners, such as ubiquitin-conjugating enzymes. The role of another group of adaptors, Sprouty proteins, is less understood; although, studies in insects implicated the founder protein in the negative regulation of several receptor tyrosine kinases. RESULTS: By utilizing transfection of living cells, as well as reconstituted in vitro systems, we identified a dual regulatory mechanism that combines human Sprouty2 and c-Cbl. Upon activation of the receptor for the epidermal growth factor (EGFR), Sprouty2 undergoes phosphorylation at a conserved tyrosine that recruits the Src homology 2 domain of c-Cbl. Subsequently, the flanking RING finger of c-Cbl mediates poly-ubiquitination of Sprouty2, which is followed by proteasomal degradation. Because phosphorylated Sprouty2 sequesters active c-Cbl molecules, it impedes receptor ubiquitination, downregulation, and degradation in lysosomes. This competitive interplay occurs in endosomes, and it regulates the amplitude and longevity of intracellular signals. CONCLUSIONS: Sprouty2 emerges as an inducible antagonist of c-Cbl, and together they set a time window for receptor activation. When incorporated in signaling networks, the coupling of positive (Sprouty) to negative (Cbl) feedback loops can greatly enhance output diversification.  相似文献   

18.
Interleukin 6 (IL-6), a pleiotropic cytokine, functions in cells through its interaction with its receptor complex, which consists of two ligand-binding α subunits and two signal-transducing subunits known as gp130. There is a wealth of studies on signals mediated by gp130, but its downregulation is less well understood. Here we found that IL-6 stimulation induced lysosome-dependent degradation of gp130, which correlated with an increase in the K63-linked polyubiquitination of gp130. The stimulation-dependent ubiquitination of gp130 was mediated by c-Cbl, an E3 ligase, which was recruited to gp130 in a tyrosine-phosphorylated SHP2-dependent manner. We also found that IL-6 induced a rapid translocation of gp130 from the cell surface to endosomal compartments. Furthermore, the vesicular sorting molecule Hrs contributed to the lysosomal degradation of gp130 by directly recognizing its ubiquitinated form. Deficiency of either Hrs or c-Cbl suppressed gp130 degradation, which leads to a prolonged and amplified IL-6 signal. Thus, our present report provides the first evidence for involvement of a c-Cbl/SHP2 complex in ubiquitination and lysosomal degradation of gp130 upon IL-6 stimulation. The lysosomal degradation of gp130 is critical for cessation of IL-6-mediated signaling.  相似文献   

19.
The intracellular trafficking of Arn1, a ferrichrome transporter in Saccharomyces cerevisiae, is controlled in part by the binding of ferrichrome to the transporter. In the absence of ferrichrome, Arn1 is sorted directly from the Golgi to endosomes. Ferrichrome binding triggers the redistribution of Arn1 to the plasma membrane, whereas ferrichrome transport is associated with the cycling of Arn1 between the plasma membrane and endosomes. Here, we report that the clathrin adaptor Gga2 and ubiquitination by the Rsp5 ubiquitin ligase are required for trafficking of Arn1. Gga2 was required for Golgi-to-endosomal trafficking of Arn1, which was sorted from endosomes to the vacuole for degradation. Trafficking into the vacuolar lumen was dependent on ubiquitination by Rsp5, but ubiquitination was not required for plasma membrane accumulation of Arn1 in the presence of ferrichrome. Retrograde trafficking via the retromer complex or Snx4 was also not required for plasma membrane accumulation. High concentrations of ferrichrome led to higher levels of ubiquitination of Arn1, but they did not induce degradation. Without this ubiquitination, Arn1 remained on the plasma membrane, where it was active for transport. Arn1 was preferentially modified with polyubiquitin chains on a cluster of lysine residues at the amino terminus of the transporter.  相似文献   

20.
The activation and phosphorylation of Met, the receptor tyrosine kinase (RTK) for hepatocyte growth factor, initiates the recruitment of multiple signaling proteins, one of which is c-Cbl, a ubiquitin-protein ligase. c-Cbl promotes ubiquitination and enhances the down-modulation of the Met receptor and other RTKs, targeting them for lysosomal sorting and subsequent degradation. The ubiquitination of Met by c-Cbl requires the direct interaction of the c-Cbl tyrosine kinase binding (TKB) domain with tyrosine 1003 in the Met juxtamembrane domain. Although a consensus for c-Cbl TKB domain binding has been established ((D/N)XpYXX(D/E0phi), this motif is not present in Met, suggesting that other c-Cbl TKB domain binding motifs may exist. By alanine-scanning mutagenesis, we have identified a DpYR motif including Tyr(1003) as being important for the direct recruitment of the c-Cbl TKB domain and for ubiquitination of the Met receptor. The substitution of Tyr(1003) with phenylalanine or substitution of either aspartate or arginine residues with alanine impairs c-Cbl-recruitment and ubiquitination of Met and results in the oncogenic activation of the Met receptor. We demonstrate that the TKB domain of Cbl-b, but not Cbl-3, binds to the Met receptor and requires an intact DpYR motif. Modeling studies suggest the presence of a salt bridge between the aspartate and arginine residues that would position pTyr(1003) for binding to the c-Cbl TKB domain. The DpYR motif is conserved in other members of the Met RTK family but is not present in previously identified c-Cbl-binding proteins, identifying DpYR as a new binding motif for c-Cbl and Cbl-b.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号