首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The colorless alga Polytoma obtusum has been found to possess leucoplasts, and two kinds of ribosomes with sedimentation values of 73S and 79S. The ribosomal RNA (rRNA) of the 73S but not the 79S ribosomes was shown to hybridize with the leucoplast DNA (rho - 1.682 g/ml). Nuclear DNA of Polytoma (rho = 1.711) showed specific hybridization with rRNA from the 79S ribosomes. Saturation hybridization indicated that only one copy of the rRNA cistrons was present per leucoplast genome, with an average buoyant density of rho = 1.700. On the other hand, about 750 copies of the cytoplasmic rRNA cistrons were present per nuclear genome with a density of rho = 1.709. Heterologous hybridization studies with Chlamydomonas reinhardtii rRNAs showed an estimated 80% homology between the two cytoplasmic rRNAs, but only a 50% homology between chloroplast and leucoplast rRNAs of the two species. We conclude that the leucoplasts of Polytoma derive from chloroplasts of a Chlamydomonas-like ancestor, but that the leucoplast rRNA cistrons have diverged in evolution more extensively than the cistrons for cytoplasmic rRNA.  相似文献   

2.
Electron microscope studies have been made on the fine structure of the colorless biflagellate, Polytoma obtusum, with main emphasis on the structural organization of the mitochondria and the leucoplast. Both organelles have been demonstrated to contain DNA aggregates as well as ribosomal particles within their matrix material. Reconstructions from serial showed that (a) the mitochondria were highly convoluted and irregular in shape and size, and (b) the leucoplast was a single cup-shaped entity, with large starch grains, localized at the posterior end, and multiple sites of DNA aggregates. The starch-containing compartments appeared to be interconnected by narrow tubular or sheetlike bridges. Cytoplasmic invaginations into the plastid, often containing mitochondria, were of frequent occurrence, and membranes of mitochondria and the leucoplast appeared to be closely apposed. Membranes elements, both sheetlike and vesicular, were also present in the matrix. The Polytoma leucoplast was, in certain respects, morphologically similar to the plastids of various photosynthetic mutants of Chlamydomonas, most of which show Menedelian segregation. It is suggested that Polytoma arose from a Chlamydomonas-like ancestor, possibly through combined mutational processess of both chloroplast and nuclear genomes. Since Polytoma leucoplasts contain both DNA and ribosomal particles, it is probable that these organelles still possess semiautonomy and limited ability for protein synthesis.  相似文献   

3.
Polytoma obtusum was found to selectively incorporate exogenous thymidine into its leukoplast DNA. The nuclear DNA was unable to incorporate [3H]thymidine, although both DNA species could be labeled with radioactive adenine with similar efficiencies. The mitochondrial DNA (mitDNA), which had a buoyant density of 1.714 g/ml and was banded slightly on the heavier side of the nuclear DNA peak, was also found to incorporate a small amount of [3H]thymidine. These observations suggest that P. obtusum lack cytoplasmic thymidine kinase, whereas the enzyme is present in both leukoplast and mitochondria.  相似文献   

4.
Ribosomal DNA in spores of Physarum polycephalum   总被引:2,自引:0,他引:2  
DNA was isolated from plasmodia, spores and newly hatched amoebae of the slime mould Physarum polycephalum. The DNA preparations were fractionated in CsCl gradients and each fraction hybridised to combined 19 S + 26 S rRNA. In all three DNA preparations hybridisation was found to be limited to satellite DNA (rho = 1.714 g/cm3) and at saturation was found to reach a level of 0.16--0.18 % of total DNA. The main band of nuclear DNA (rho = 1.702 g/cm3) did not hybridise appreciably. Further experiments using analytical CsCl gradients revealed that the ratio of satellite to main band DNA was similar in all three preparations. It is concluded that the genes for ribosomal RNA are equally reiterated in spores, hatching amoebae and in plasmodia. They appear to be similarly organised in all stages of the life cycle examined so far.  相似文献   

5.
The identity of peaks generated by chloroplast ribosomes of Chlamydomonas reinhardtii were determined by zone velocity sedimentation on sucrose density gradients, and analysis of distribution of ribosomal RNAs in the gradients. The sedimentagion coefficient of the principal peak was 66-70 S (usually 69 S), in good agreement with previously reported values for chloroplast ribosomes of C. reinhardtii, and other organisms. The fast sedimenting side of the 69 S peak contained an excess of chloroplast large subunit. When ribosome dissociation was prevented by sedimentation at low velocity, by aldehyde fixation, or by the presence of nascent polypeptide chains, the principal peak had a sedimentation coefficient of about 75 S. Thus the 69 S peak was an artifact caused by dissociation during centrifugation. Peaks that contained chloroplast ribosomal RNAs were also observed at '60 S' and '45 S' when chloroplast ribosomes were centrifuged unfixed at high velocity. The amounts of '60 S' and '45 S' components were decreased by centrifugation at low speed, or fixation, but sedimentation coefficients remained unchanged. The '60 S', and '45 S' components were identified as large, and small subunits of chloroplast ribosomes, respectively. The artifacts produced by centrifugation of chloroplast ribosomes, are similar to the artifacts produced by centrifuging ribosomes of Escherichia coli. Similar explanations appear to apply to both. We concluded that the 69 S chloroplast ribosome peak occurs because of dissociation of 'tight' couples, and incomplete separation of subunits. Subunit peaks (60 S and 45 S) arise from free subunits, and/or from dissociation of 'loose' couples.  相似文献   

6.
7.
1. At 0-4 degrees C mitochondrial ribosomes (55S) dissociate into 39S and 29S subunits after exposure to 300mm-K(+) in the presence of 3.0mm-Mg(2+). When these subunits are placed in a medium containing a lower concentration of K(+) ions (25mm), approx. 75% of the subparticles recombine giving 55S monomers. 2. After negative staining the large subunits (20.3nm width) usually show a roundish profile, whereas the small subunits (12nm width) show an elongated, often bipartite, profile. The dimensions of the 55S ribosomes are 25.5nmx20.0nmx21.0nm, indicating a volume ratio of mitochondrial to cytosol ribosomes of 1:1.5. 3. The 39S and 29S subunits obtained in high-salt media at 0-4 degrees C have a buoyant density of 1.45g/cm(3); from the rRNA content calculated from buoyant density and from the rRNA molecular weights it is confirmed that the two subparticles have weights of 2.0x10(6) daltons and 1.20x10(6) daltons; the weights of the two subunits of cytosol ribosomes are 2.67x10(6) and 1.30x10(6) daltons. 4. The validity of the isodensity-equilibrium-centrifugation methods used to calculate the chemical composition of ribosomes was reinvestigated; it is confirmed that (a) reaction of ribosomal subunits with 6.0% (v/v) formaldehyde at 0 degrees C is sufficient to fix the particles, so that they remain essentially stable after exposure to dodecyl sulphate or centrifugation in CsCl, and (b) the partial specific volume of ribosomal subunits is a simple additive function of the partial specific volumes of RNA and protein. The RNA content is linearly related to buoyant density by the equation RNA (% by wt.)=349.5-(471.2x1/rho(CsCl)), where 1/rho(CsCl)=[unk](RNP) (partial specific volume of ribonucleoprotein). 5. The nucleotide compositions of the two subunit rRNA species of mitochondrial ribosomes from rodents (42% and 43% G+C) are distinctly different from those of cytoplasmic ribosomes.  相似文献   

8.
Cytoplasmic p53 polypeptide is associated with ribosomes.   总被引:4,自引:1,他引:3       下载免费PDF全文
Our previous finding that the tumor suppressor p53 is covalently linked to 5.8S rRNA suggested functional association of p53 polypeptide with ribosomes. p53 polypeptide is expressed at low basal levels in the cytoplasm of normal growing cells in the G1 phase of the cell cycle. We report here that cytoplasmic wild-type p53 polypeptide from both rat embryo fibroblasts and MCF7 cells and the A135V transforming mutant p53 polypeptide were found associated with ribosomes to various extents. Treatment of cytoplasmic extracts with RNase or puromycin in the presence of high salt, both of which are known to disrupt ribosomal function, dissociated p53 polypeptide from the ribosomes. In immunoprecipitates of p53 polypeptide-associated ribosomes, 5.8S rRNA was detectable only after proteinase K treatment, indicating all of the 5.8S rRNA in p53-associated ribosomes is covalently linked to protein. While 5.8S rRNA linked to protein was found in the immunoprecipitates of either wild-type or A135V mutant p53 polypeptide associated with ribosomes, little 5.8S rRNA was found in the immunoprecipitates of the slowly sedimenting p53 polypeptide, which was not associated with ribosomes. In contrast, 5.8S rRNA was liberated from bulk ribosomes by 1% sodium dodecyl sulfate, without digestion with proteinase K, indicating that these ribosomes contain 5.8S rRNA, which is not linked to protein. Immunoprecipitation of p53 polypeptide coprecipitated a small fraction of ribosomes. p53 mRNA immunoprecipitated with cytoplasmic p53 polypeptide, while GAPDH mRNA did not. These results show that cytoplasmic p53 polypeptide is associated with a subset of ribosomes, having covalently modified 5.8S rRNA.  相似文献   

9.
10.
1. The behaviour of the large ribosomal subunit from Rhodopseudomonas spheroides (45S) has been compared with the 50S ribosome from Escherichia coli M.R.E. 600 (and E. coli M.R.E. 162) during unfolding by removal of Mg(2+) and detachment of ribosomal proteins by high univalent cation concentrations. The extent to which these processes are reversible with these ribosomes has also been examined. 2. The R. spheroides 45S ribosome unfolds relatively slowly but then gives rise directly to two ribonucleoprotein particles (16.6S and 13.7S); the former contains the intact primary structure of the 16.25S rRNA species and the latter the 15.00S rRNA species of the original ribosome. No detectable protein loss occurs during unfolding. The E. coli ribosome unfolds via a series of discrete intermediates to a single, unfolded ribonucleoprotein unit (19.1S) containing the 23S rRNA and all the protein of the original ribosome. 3. The two unfolded R. spheroides ribonucleoproteins did not recombine when the original conditions were restored but each simply assumed a more compact configuration. Similar treatments reversed the unfolding of the E. coli 50S ribosomes; replacement of Mg(2+) caused the refolding of the initial products of unfolding and in the presence of Ni(2+) the completely unfolded species (19.1S) again sedimented at the same rate as the original ribosomes (44S). 4. Ribosomal proteins (25%) were dissociated from R. spheroides 45S ribosomes by dialysis against a solution with a Na(+)/Mg(2+) ratio of 250:1. During this process two core particles were formed (21.2S and 14.2S) and the primary structures of the two original rRNA species were conserved. This dissociation was not reversed. With E. coli 50S approximately 15% of the original ribosomal protein was dissociated, a single 37.6S core particle was formed, the 23S rRNA remained intact and the ribosomal proteins would reassociate with the core particle to give a 50S ribosome. 5. The ribonuclease activities in R. spheroides 45S and E. coli M.R.E. 600 and E. coli M.R.E. 162 50S ribosomes are compared. 6. The observations concerning unfolding and dissociation are consistent with previous reports showing the unusual rRNA complement of the mature R. spheroides 45S ribosome and show the dependence of these events upon the rRNA and the importance of protein-protein interactions in the structure of the R. spheroides ribosome.  相似文献   

11.
12.
Analyses of ribosomes extracted from spores of Bacillus cereus T by a dryspore disruption technique indicated that previously reported defects in ribosomes from spores may arise during the ribosome extraction process. The population of ribosomes from spores is shown to cotain a variable quantity of free 50S subunits which are unstable, giving rise to slowly sedimenting particles in low-Mg2+ sucrose gradients and showing extremely low activity in in vitro protein synthesis. The majority of the ribosomal subunits in spores, obtained by dissociation of 70S ribosomes and polysomes, are shown to be as stable as subunits from vegetative cells, though the activity of spore polysomes was lower than that of vegetative ribosomes. In spite of the instability and inactivity of a fraction of the spore's ribosomal subunits, the activity of the total population obtained from spores by the dry disruption technique was 32% of vegetative ribosome activity, fivefold higher than previously obtained with this species. The improvement in activity and the observed variability of subunit destabilization are taken as evidence for partial degradation of spore ribosomes during extraction.  相似文献   

13.
An extrachromosomal DNA was discovered in Naegleria gruberi. The 3,000 to 5,000 copies per cell of this 14-kilobase-pair circular plasmid carry all the 18S, 28S, and 5.8S rRNA genes. The presence of the ribosomal DNA of an organism exclusively on a circular extrachromosomal element is without precedent, and Naegleria is only the third eucaryotic genus in which a nuclear plasmid DNA has been found.  相似文献   

14.
Over 80% of the phenylalanyl-tRNA synthetase activity in Ehrlich ascites cell homogenates was found to be associated with the high speed particulate fraction. This enzyme activity occurred in two principle forms: activity bound to the ribosomes, and activity as part of a complex sedimenting at approximately 25S in a sucrose density gradient. The ribosome-associated enzyme was shown to be bound to the 60S ribosomal subunit. Exposure of the ribosomes to RNA resulted in removal of synthetase activity from the ribosomes and the concomitant appearance of activity in a complex sedimenting at 25S.  相似文献   

15.
The topography of 5.8 rRNA in rat liver ribosomes has been examined by comparing diethyl pyrocarbonate-reactive sites in free 5.8 S RNA, the 5.8 S-28 rRNA complex, 60 S subunits, and whole ribosomes. The ribosomal components were treated with diethyl pyrocarbonate under salt and temperature conditions which allow cell-free protein synthesis; the 5.8 S rRNA was extracted, labeled in vitro, chemically cleaved with aniline, and the fragments were analyzed by rapid gel-sequencing techniques. Differences in the cleavage patterns of free and 28 S or ribosome-associated 5.8 S rRNA suggest that conformational changes occur when this molecule is assembled into ribosomes. In whole ribosomes, the reactive sites were largely restricted to the "AU-rich" stem and an increased reactivity at some of the nucleotides suggested that a major change occurs in this region when the RNA interacts with ribosomal proteins. The reactivity was generally much less restricted in 60 S subunits but increased reactivity in some residues was also observed. The results further indicate that in rat ribosomes, the two -G-A-A-C- sequences, putative binding sites for tRNA, are accessible in 60 S subunits but not in whole ribosomes and suggest that part of the molecule may be located in the ribosomal interface. When compared to 5 S rRNA, the free 5.8 S RNA molecule appears to be generally more reactive with diethyl pyrocarbonate and the cleavage patterns suggest that the 5 S RNA molecule is completely restricted or buried in whole ribosomes.  相似文献   

16.
The synthesis of rRNA was unbalanced by the introduction of plasmids containing rRNA operons with large internal deletions. Significant unbalanced synthesis was achieved only when the deletions affected both 16S and 23S RNA genes or when the deletions affected the 23S RNA gene alone. Although large imbalances in rRNA synthesis resulted from deletions affecting 16S and 23S RNA genes or only 23S RNA genes, excess 16S RNA and defective rRNA species were rapidly degraded. Large imbalances in the synthesis of regions of rRNA did not result in significantly unbalanced synthesis of ribosomal proteins. It therefore is probable that excess intact 16S RNA is degraded because ribosomal proteins are not available for packaging the RNA into ribosomes. Defective RNA species also may be degraded for this reason or because proper ribosome assembly is prevented by the defects in RNA structure. We propose two possible explanations for the finding that unbalanced overproduction of binding sites for feedback ribosomal protein does not result in significant unbalanced translational feedback depression of ribosomal protein mRNAs.  相似文献   

17.
18.
Yeast 5.8 S rRNA is released from purified 26 S rRNA when it is dissolved in water or low salt buffer (50 mM KCl, 10mM Tris-HCl, pH 7.5); it is not released from 60 S ribosomal subunits under similar conditions. The 5.8 S RNA component together with 5 S rRNA can be released from subunits or whole ribosomes by brief heat treatment or in 50% formamide; the Tm for the heat dissociation of 5.8 S RNA is 47 degrees C. This Tm is only slightly lower when 5 S rRNA is released first with EDTA treatment prior to heat treatment. No ribosomal proteins are released by the brief heat treatment. A significant portion of the 5.8 S RNA reassociates with the 60 S subunit when suspended in a higher salt buffer (e.g.0.4 m KCl, 25 mM Tris-HCl, pH 7.5, 6 mM magnesium acetate, 5 mM beta-mercaptoethanol). The Tm of this reassociated complex is also 47 degrees C. The results indicate that in yeast ribosomes the 5.8 S-26 S rRNA interaction is stabilized by ribosomal proteins but that the association is sufficiently loose to permit a reversible dissociation of the 5.8 S rRNA molecule.  相似文献   

19.
Bacillus stearothermophilus large ribosomal subunits were reconstituted in the presence of 5S rRNAs from different origins and tested for their biological activities. The results obtained have shown that eubacterial and archaebacterial 5S rRNAs can easily substitute for B. stearothermophilus 5S rRNA in the reconstitution, while eukaryotic 5S rRNAs yield ribosomal subunits with reduced biological activities. From our results we propose an interaction between nucleotides 42-47 of 5S rRNA and nucleotides 2603-2608 of 23S rRNA during the assembly of the 50S ribosomal subunit. Other experiments with eukaryotic 5.8S rRNAs reveal, if at all, a very low incorporation of these RNA species into the reconstituted ribosomes.  相似文献   

20.
Replacement of the protein L11 binding domain within Escherichia coli 23S ribosomal RNA (rRNA) by the equivalent region from yeast 26S rRNA appeared to have no effect on the growth rate of E.coli cells harbouring a plasmid carrying the mutated rrnB operon. The hybrid rRNA was correctly processed and assembled into ribosomes, which accumulated normally in polyribosomes. Of the total ribosomal population, < 25% contained wild-type, chromosomally encoded rRNA; the remainder were mutant. The hybrid ribosomes supported GTP hydrolysis dependent upon E.coli elongation factor G, although at a somewhat reduced rate compared with wild-type particles, and were sensitive to the antibiotic, thiostrepton, a potent inhibitor of ribosomal GTPase activity that binds to 23S rRNA within the L11 binding domain. That thiostrepton could indeed bind to the mutant ribosomes, although at a reduced level relative to that seen with wild-type ribosomes, was confirmed in a non-equilibrium assay. The rationale for the ability of the hybrid ribosomes to bind the antibiotic, given that yeast ribosomes do not, was provided when yeast rRNA was shown by equilibrium dialysis to bind thiostrepton only 10-fold less tightly than did E.coli rRNA. The extreme conservation of secondary, but not primary, structure in this region between E.coli and yeast rRNAs allows the hybrid ribosomes to function competently in protein synthesis and also preserves the interaction with thiostrepton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号