首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide state of actin (ATP, ADP-Pi, or ADP) is known to impact its interactions with other actin molecules upon polymerization as well as with multiple actin binding proteins both in the monomeric and filamentous states of actin. Recently, molecular dynamics simulations predicted that a sequence located at the interface of subdomains 1 and 3 (W-loop; residues 165–172) changes from an unstructured loop to a β-turn conformation upon ATP hydrolysis (Zheng, X., Diraviyam, K., and Sept, D. (2007) Biophys. J. 93, 1277–1283). This region participates directly in the binding to other subunits in F-actin as well as to cofilin, profilin, and WH2 domain proteins and, therefore, could contribute to the nucleotide sensitivity of these interactions. The present study demonstrates a reciprocal communication between the W-loop region and the nucleotide binding cleft on actin. Point mutagenesis of residues 167, 169, and 170 and their site-specific labeling significantly affect the nucleotide release from the cleft region, whereas the ATP/ADP switch alters the fluorescence of probes located in the W-loop. In the ADP-Pi state, the W-loop adopts a conformation similar to that in the ATP state but different from the ADP state. Binding of latrunculin A to the nucleotide cleft favors the ATP-like conformation of the W-loop, whereas ADP-ribosylation of Arg-177 forces the W-loop into a conformation distinct from those in the ADP and ATP-states. Overall, our experimental data suggest that the W-loop of actin is a nucleotide sensor, which may contribute to the nucleotide state-dependent changes in F-actin and nucleotide state-modulated interactions of both G- and F-actin with actin-binding proteins.  相似文献   

2.
Adenosine 5'-triphosphate or ATP is the primary energy source within the cell, releasing its energy via hydrolysis into adenosine 5'-diphosphate or ADP. Actin is an important ATPase involved in many aspects of cellular function, and the binding and hydrolysis of ATP regulates its polymerization into actin filaments as well as its interaction with a host of actin-associated proteins. Here we study the dynamics of monomeric actin in ATP, ADP-Pi, and ADP states via molecular dynamics simulations. As observed in some crystal structures we see that the DNase-I loop is an alpha-helix in the ADP state but forms an unstructured coil domain in the ADP-Pi and ATP states. We also find that this secondary structure change is reversible, and by mimicking nucleotide exchange we can observe the transition between the helical and coil states. Apart from the DNase-I loop, we also see several key structural differences in the nucleotide binding cleft as well as in the hydrophobic cleft between subdomains 1 and 3 where WH2-containing proteins have been shown to interact. These differences provide a structural basis for understanding the observed differences between the various nucleotide states of actin and provide some insight into how ATP regulates the interaction of actin with itself and other proteins.  相似文献   

3.
ADF/cofilins (AC) are essential F- and G-actin binding proteins that modulate microfilament turnover. The genome of Plasmodium falciparum, the parasite causing malaria, contains two members of the AC family. Interestingly, P. falciparum ADF1 lacks the F-actin binding residues of the AC consensus. Reverse genetics in the rodent malaria model system suggest that ADF1 performs vital functions during the pathogenic red blood cell stages, whereas ADF2 is not present in these stages. We show that recombinant PfADF1 interacts with monomeric actin but does not bind to actin polymers. Although other AC proteins inhibit nucleotide exchange on monomeric actin, the Plasmodium ortholog stimulates nucleotide exchange. Thus, PfADF1 differs in its biochemical properties from previously known AC proteins and seems to promote turnover exclusively by interaction with actin monomers. These findings provide important insights into the low cytosolic abundance and unique turnover characteristics of actin polymers in parasites of the phylum Apicomplexa.  相似文献   

4.
Resistance (R) proteins in plants confer specificity to the innate immune system. Most R proteins have a centrally located NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4) domain. For two tomato (Lycopersicon esculentum) R proteins, I-2 and Mi-1, we have previously shown that this domain acts as an ATPase module that can hydrolyze ATP in vitro. To investigate the role of nucleotide binding and hydrolysis for the function of I-2 in planta, specific mutations were introduced in conserved motifs of the NB-ARC domain. Two mutations resulted in autoactivating proteins that induce a pathogen-independent hypersensitive response upon expression in planta. These mutant forms of I-2 were found to be impaired in ATP hydrolysis, but not in ATP binding, suggesting that the ATP- rather than the ADP-bound state of I-2 is the active form that triggers defense signaling. In addition, upon ADP binding, the protein displayed an increased affinity for ADP suggestive of a change of conformation. Based on these data, we propose that the NB-ARC domain of I-2, and likely of related R proteins, functions as a molecular switch whose state (on/off) depends on the nucleotide bound (ATP/ADP).  相似文献   

5.
Calcium activates full-length myosin Va steady-state enzymatic activity and favors the transition from a compact, folded "off" state to an extended "on" state. However, little is known of how a head-tail interaction alters the individual actin and nucleotide binding rate and equilibrium constants of the ATPase cycle. We measured the effect of calcium on nucleotide and actin filament binding to full-length myosin Va purified from chick brains. Both heads of nucleotide-free myosin Va bind actin strongly, independent of calcium. In the absence of calcium, bound ADP weakens the affinity of one head for actin filaments at equilibrium and upon initial encounter. The addition of calcium allows both heads of myosin Va.ADP to bind actin strongly. Calcium accelerates ADP binding to actomyosin independent of the tail but minimally affects ATP binding. Although 18O exchange and product release measurements favor a mechanism in which actin-activated Pi release from myosin Va is very rapid, independent of calcium and the tail domain, both heads do not bind actin strongly during steady-state cycling, as assayed by pyrene actin fluorescence. In the absence of calcium, inclusion of ADP favors formation of a long lived myosin Va.ADP state that releases ADP slowly, even after mixing with actin. Our results suggest that calcium activates myosin Va by allowing both heads to interact with actin and exchange bound nucleotide and indicate that regulation of actin binding by the tail is a nucleotide-dependent process favored by linked conformational changes of the motor domain.  相似文献   

6.
Actin-based motility demands the spatial and temporal coordination of numerous regulatory actin-binding proteins (ABPs), many of which bind with affinities that depend on the nucleotide state of actin filament. Cofilin, one of three ABPs that precisely choreograph actin assembly and organization into comet tails that drive motility in vitro, binds and stochastically severs aged ADP actin filament segments of de novo growing actin filaments. Deficiencies in methodologies to track in real time the nucleotide state of actin filaments, as well as cofilin severing, limit the molecular understanding of coupling between actin filament chemical and mechanical states and severing. We engineered a fluorescently labeled cofilin that retains actin filament binding and severing activities. Because cofilin binding depends strongly on the actin-bound nucleotide, direct visualization of fluorescent cofilin binding serves as a marker of the actin filament nucleotide state during assembly. Bound cofilin allosterically accelerates P(i) release from unoccupied filament subunits, which shortens the filament ATP/ADP-P(i) cap length by nearly an order of magnitude. Real-time visualization of filament severing indicates that fragmentation scales with and occurs preferentially at boundaries between bare and cofilin-decorated filament segments, thereby controlling the overall filament length, depending on cofilin binding density.  相似文献   

7.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

8.
Myosins are molecular motor proteins that harness the chemical energy stored in ATP to produce directed force along actin filaments. Complex communication pathways link the catalytic nucleotide-binding region, the structures responsible for force amplification and the actin-binding domain of myosin. We have crystallized the nucleotide-free motor domain of myosin II in a new conformation in which switch I and switch II, conserved loop structures involved in nucleotide binding, have moved away from the nucleotide-binding pocket. These movements are linked to rearrangements of the actin-binding region, which illuminate a previously unobserved communication pathway between the nucleotide-binding pocket and the actin-binding region, explain the reciprocal relationship between actin and nucleotide affinity and suggest a new mechanism for product release in myosin family motors.  相似文献   

9.
Actin is a ubiquitous eukaryotic protein that is responsible for cellular scaffolding, motility, and division. The ability of actin to form a helical filament is the driving force behind these cellular activities. Formation of a filament depends on the successful exchange of actin's ADP for ATP. Mammalian profilin is a small actin binding protein that catalyzes the exchange of nucleotide and facilitates the addition of an actin monomer to a growing filament. Here, crystal structures of profilin-actin have been determined to show an actively exchanging ATP. Structural analysis shows how the binding of profilin to the barbed end of actin causes a rotation of the small domain relative to the large domain. This conformational change is propagated to the ATP site and causes a shift in nucleotide loops, which in turn causes a repositioning of Ca(2+) to its canonical position as the cleft closes around ATP. Reversal of the solvent exposure of Trp356 is also involved in cleft closure. In addition, secondary calcium binding sites were identified.  相似文献   

10.
Cell motility depends on the rapid assembly, aging, severing, and disassembly of actin filaments in spatially distinct zones. How a set of actin regulatory proteins that sustains actin-based force generation during motility work together in space and time remains poorly understood. We present our study of the distribution and dynamics of Arp2/3 complex, capping protein (CP), and actin-depolymerizing factor (ADF)/cofilin in actin "comet tails," using a minimal reconstituted system with nucleation-promoting factor (NPF)-coated beads. The Arp2/3 complex concentrates at nucleation sites near the beads as well as in the first actin shell. CP colocalizes with actin and is homogeneously distributed throughout the comet tail; it serves to constrain the spatial distribution of ATP/ADP-P(i) filament zones to areas near the bead. The association of ADF/cofilin with the actin network is therefore governed by kinetics of actin assembly, actin nucleotide state, and CP binding. A kinetic simulation accurately validates these observations. Following its binding to the actin networks, ADF/cofilin is able to break up the dense actin filament array of a comet tail. Stochastic severing by ADF/cofilin loosens the tight entanglement of actin filaments inside the comet tail and facilitates turnover through the macroscopic release of large portions of the aged actin network.  相似文献   

11.
Effect of low pH on single skeletal muscle myosin mechanics and kinetics   总被引:1,自引:0,他引:1  
Acidosis (low pH) is the oldest putative agent of muscular fatigue, but the molecular mechanism underlying its depressive effect on muscular performance remains unresolved. Therefore, the effect of low pH on the molecular mechanics and kinetics of chicken skeletal muscle myosin was studied using in vitro motility (IVM) and single molecule laser trap assays. Decreasing pH from 7.4 to 6.4 at saturating ATP slowed actin filament velocity (V(actin)) in the IVM by 36%. Single molecule experiments, at 1 microM ATP, decreased the average unitary step size of myosin (d) from 10 +/- 2 nm (pH 7.4) to 2 +/- 1 nm (pH 6.4). Individual binding events at low pH were consistent with the presence of a population of both productive (average d = 10 nm) and nonproductive (average d = 0 nm) actomyosin interactions. Raising the ATP concentration from 1 microM to 1 mM at pH 6.4 restored d (9 +/- 3 nm), suggesting that the lifetime of the nonproductive interactions is solely dependent on the [ATP]. V(actin), however, was not restored by raising the [ATP] (1-10 mM) in the IVM assay, suggesting that low pH also prolongs actin strong binding (t(on)). Measurement of t(on) as a function of the [ATP] in the single molecule assay suggested that acidosis prolongs t(on) by slowing the rate of ADP release. Thus, in a detachment limited model of motility (i.e., V(actin) approximately d/t(on)), a slowed rate of ADP release and the presence of nonproductive actomyosin interactions could account for the acidosis-induced decrease in V(actin), suggesting a molecular explanation for this component of muscular fatigue.  相似文献   

12.
Chymotryptic subfragment 1 (S-1) prepared from rabbit skeletal myosin has lost its ATPase activity upon incubation at 35 degrees C for 3 h. The loss in ATPase activity was accompanied by the perturbation of the structure of the 50K domain as indicated by a dramatic increase in the tryptic susceptibility of this domain without any change in the susceptibility of the other domains of S-1. The perturbation starts at the C-terminal region of the domain as suggested by the appearance of a 29K intermediate protein band in the tryptic peptide pattern of the heat-treated S-1. The heat-treated molecule essentially retained its actin and polyphosphate binding ability, and the actin binding was still sensitive to the presence of ATP or pyrophosphate. However, as opposed to native S-1, in heat-treated S-1 the addition of ATP does not induce an increase in tryptophan fluorescence, and, in the case of the treated species, the fluorescence of 1,N6-ethenoadenosine 5'-diphosphate added to the mixture is quenchable by acrylamide. This latter observation suggests that the binding of the adenine ring of the nucleotide has been altered following the heat treatment. The results indicate that the actin and polyphosphate binding sites of S-1 are distinct and that they are relatively independent of the adenine ring binding site.  相似文献   

13.
Myosin IXb (Myo9b) was reported to be a single-headed, processive myosin. In its head domain it contains an N-terminal extension and a large loop 2 insertion that are specific for class IX myosins. We characterized the kinetic properties of purified, recombinant rat Myo9b, and we compared them with those of Myo9b mutants that had either the N-terminal extension or the loop 2 insertion deleted. Unlike other processive myosins, Myo9b exhibited a low affinity for ADP, and ADP release was not rate-limiting in the ATPase cycle. Myo9b is the first myosin for which ATP hydrolysis or an isomerization step after ATP binding is rate-limiting. Myo9b-ATP appeared to be in a conformation with a weak affinity for actin as determined by pyrene-actin fluorescence. However, in actin cosedimentation experiments, a subpopulation of Myo9b-ATP bound F-actin with a remarkably high affinity. Deletion of the N-terminal extension reduced actin affinity and increased the rate of nucleotide binding. Deletion of the loop 2 insertion reduced the actin affinity and altered the communication between actin and nucleotide-binding sites.  相似文献   

14.
We report here on the identification of two distinct functional domains on chicken vinculin molecule, which can, independently, mediate its interaction with focal contacts in living cells. These findings were obtained by immunofluorescent labeling of COS cells transfected with a series of chicken vinculin-specific cDNA constructs derived from clones cVin1 and cVin5 (Bendori, R., D. Salomon, and B. Geiger. 1987. EMBO [Eur. Mol. Biol. Organ.] J. 6:2897-2905). These included a chimeric construct consisting of 5' sequences of cVin1 attached to the complementary 3' region of cVin5, as well as several constructs of either cVin1 or cVin5 from which 3' or 5' sequences were deleted. We show here that the products of both cVin1 and cVin5, and of the cVin1/cVin5 chimera, readily associated with focal contacts in transfected COS cells. Furthermore, 78 and 45 kD NH2-terminal fragments encoded by a deleted cVin1 and the 78-kD COOH-terminal portion of vinculin encoded by cVin5 were capable of binding specifically to focal contact areas. In contrast 3'-deletion mutants prepared from clone cVin5 and a 5'-deletion mutant of cVin1, lacking both NH2- and COOH-terminal sequences, failed to associate with focal contacts in transfected cells. The loss of binding was accompanied by an overall disarray of the microfilament system. These results, together with previous in vitro binding studies, suggest that vinculin contains at least two independent sites for binding to focal contacts; the NH2-terminal domain may contain the talin binding site while the COOH-terminal domain may mediate vinculin-vinculin interaction. Moreover, the disruptive effect of the double-deleted molecule (lacking the two focal-contact binding sites) on the organization of actin suggests that a distinct region involved in the binding of vinculin to the microfilament system is present in the NH2-terminal 45-kD region of the molecule.  相似文献   

15.
Myosin V is a molecular motor shown to move processively along actin filaments. We investigated the properties of the weak binding states of monomeric myosin V containing a single IQ domain (MV 1IQ) to determine if the affinities of these states are increased as compared to conventional myosin. Further, using a combination of non-hydrolyzable nucleotide analogues and mutations that block ATP hydrolysis, we sought to probe the states that are populated during ATP-induced dissociation of actomyosin. MV 1IQ binds actin with a K(d) = 4 microM in the presence of ATP gamma S at 50 mM KCl, which is 10-20-fold tighter than that of nonprocessive class II myosins. Mutations within the switch II region trapped MV 1IQ in two distinct M.ATP states with very different actin binding affinities (K(d) = 0.2 and 2 microM). Actin binding may change the conformation of the switch II region, suggesting that elements of the nucleotide binding pocket will be in a different conformation when bound to actin than is seen in any of the myosin crystal structures to date.  相似文献   

16.
Members of the actin family of proteins exhibit different biochemical properties when ATP, ADP-Pi, ADP, or no nucleotide is bound. We used molecular dynamics simulations to study the effect of nucleotides on the behavior of actin and actin-related protein 3 (Arp3). In all of the actin simulations, the nucleotide cleft stayed closed, as in most crystal structures. ADP was much more mobile within the cleft than ATP, despite the fact that both nucleotides adopt identical conformations in actin crystal structures. The nucleotide cleft of Arp3 opened in most simulations with ATP, ADP, and no bound nucleotide. Deletion of a C-terminal region of Arp3 that extends beyond the conserved actin sequence reduced the tendency of the Arp3 cleft to open. When the Arp3 cleft opened, we observed multiple instances of partial release of the nucleotide. Cleft opening in Arp3 also allowed us to observe correlated movements of the phosphate clamp, cleft mouth, and barbed-end groove, providing a way for changes in the nucleotide state to be relayed to other parts of Arp3. The DNase binding loop of actin was highly flexible regardless of the nucleotide state. The conformation of Ser14/Thr14 in the P1 loop was sensitive to the presence of the γ-phosphate, but other changes observed in crystal structures were not correlated with the nucleotide state on nanosecond timescales. The divalent cation occupied three positions in the nucleotide cleft, one of which was not previously observed in actin or Arp2/3 complex structures. In sum, these simulations show that subtle differences in structures of actin family proteins have profound effects on their nucleotide-driven behavior.  相似文献   

17.
Actin and small heat shock proteins (sHsps) are ubiquitous and multifaceted proteins that exist in 2 reversible forms, monomers and multimers, ie, the microfilament of the cytoskeleton and oligomers of the sHsps, generally, supposed to be in a spherical and hollow form. Two situations are described in the literature, where the properties of actin are modulated by sHsps; the actin polymerization is inhibited in vitro by some sHsps acting as capping proteins, and the actin cytoskeleton is protected by some sHsps against the disruption induced by various stressful conditions. We propose that a direct actin-sHsp interaction occurs to inhibit actin polymerization and to participate in the in vivo regulation of actin filament dynamics. Protection of the actin cytoskeleton would result from an F-actin-sHsp interaction in which microfilaments would be coated by small oligomers of phosphorylated sHsps. Both proteins share common structural motives suggesting direct binding sites, but they remain to be demonstrated. Some sHsps would behave with the actin cytoskeleton as actin-binding proteins capable of either capping a microfilament when present as a nonphosphorylated monomer or stabilizing and protecting the microfilament when organized in small, phosphorylated oligomers.  相似文献   

18.
BackgroundThe SecA DEAD (Asp-Glu-Ala-Asp) motor protein uses binding and hydrolysis of adenosine triphosphate (ATP) to push secretory proteins across the plasma membrane of bacteria. The reaction coordinate of nucleotide exchange is unclear at the atomic level of detail.MethodsWe performed multiple atomistic computations of the DEAD motor domain of SecA with different occupancies of the nucleotide and magnesium ion sites, for a total of ~1.7 μs simulation time. To characterize dynamics at the active site we analyzed hydrogen-bond networks.ResultsATP and ADP can bind spontaneously at the interface between the nucleotide binding domains, albeit at an intermediate binding site distinct from the native site. Binding of the nucleotide is facilitated by the presence of a magnesium ion close to the glutamic group of the conserved DEAD motif. In the absence of the magnesium ion, protein interactions of the ADP molecule are perturbed.ConclusionsA protein hydrogen-bond network whose dynamics couples to the occupancy of the magnesium ion site helps guide the nucleotide along the nucleotide exchange path. In SecA, release of magnesium might be required to destabilize the ADP binding site prior to release of the nucleotide.General significanceWe identified dynamic hydrogen-bond networks that help control nucleotide exchange in SecA, and stabilize ADP at an intermediate site that could explain slow release. The reaction coordinate of the protein motor involves complex rearrangements of a hydrogen-bond network at the active site, with perturbation of the magnesium ion site likely occurring prior to the release of ADP.  相似文献   

19.
Actin stimulates myosin's activity by inducing structural alterations that correlate with the transition from a weakly to a strongly bound state, during which time inorganic phosphate (P(i)) is released from myosin's active site. The surface loop at the 50/20-kDa junction of myosin (loop 2) is part of the actin interface. Here we demonstrate that elimination of two highly conserved lysines at the C-terminal end of loop 2 specifically blocks the ability of heavy meromyosin to undergo a weak to strong binding transition with actin in the presence of ATP. Removal of these lysines has no effect on strong binding in the absence of nucleotide, on the rate of ADP binding or release, or on the basal ATPase activity. We further show that the 16 amino acids of loop 2 preceding the lysine-rich region are not essential for actin activation, although they do modulate myosin's affinity for actin in the presence of ATP. We conclude that interaction of the conserved lysines with acidic residues in subdomain 1 of actin either triggers a structural change or stabilizes a conformation that is necessary for actin-activated release of P(i) and completion of the ATPase cycle.  相似文献   

20.
The mechanism by which Rous sarcoma virus (RSV) induces a reorganization of actin and its associated proteins and a reduction in microfilament bundles is at present poorly understood. To examine the relationship between the organization of the microfilament system and the polymerization state of actin after transformation, we have investigated these changes in a Rat-1 cell line transformed by LA29, a temperature-sensitive (ts) mutant of RSV. Parallel immunofluorescence and biochemical analysis demonstrated that LA29 pp60v-src was ts for tyrosine kinase activity and cytoskeletal association. Changes in the distribution and organization of actin, alpha-actinin and vinculin were dependent on the association of a kinase-active pp60v-src molecule with the detergent-insoluble cytoskeleton. Whilst there was a transformation-dependent loss of microfilament bundles, biochemical quantitation demonstrated that the polymerization state of the actin in both detergent-soluble and insoluble fractions of these cells grown at temperatures either permissive or restrictive for transformation was quantitatively unchanged. These results indicate that the loss of microfilament bundles after transformation is not due to a net depolymerization of filamentous actin but rather to a reorganization of polymeric actin from microfilament bundles and stress fibers to other polymeric forms within the cell. The polymeric nature of the actin in these cells was confirmed by electron microscopy of cytoskeletons and substrate-adherent membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号