首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
RNAs that function in mitochondria, in contrast to the majority of mitochondrial proteins, are generally encoded by the mitochondrial genome. However, evidence has been presented for transport of nucleus-encoded tRNAs into mitochondria in diverse organisms. While mitochondrial protein import has been characterized in great detail, virtually nothing is known about the pathway of RNA import into mitochondria. Only very recently have in vivo systems for RNA import been established, and these are now providing some insight into this intriguing process.  相似文献   

2.
3.
A mounting body of evidence suggests that cytoplasmically synthesized proteins destined to be imported into the mitochondrial interior must at least partly unfold to penetrate across the mitochondrial membranes. During post-translational import, this unfolding process appears to be a major rate-limiting step. It can be blocked by ligands that stabilize the protein's native conformation and appears to be accompanied by the cleavage of ATP outside the mitochondrial inner membrane.  相似文献   

4.
Carrier proteins located in the inner membrane of mitochondria are responsible for the exchange of metabolites between the intermembrane space and the matrix of this organelle. All members of this family are nuclear-encoded and depend on translocation machineries for their import into mitochondria. Recently many new translocation components responsible for the import of carrier proteins were identified. It is now possible to describe a detailed import pathway for this class of proteins. This review highlights the contribution made by translocation components to the process of carrier protein import into mitochondria.  相似文献   

5.
Import of proteins into mitochondria and chloroplasts   总被引:2,自引:0,他引:2  
Although mitochondria and chloroplasts synthesize some of their own proteins, they must import most of them from the cytosol. Import is mediated by molecular chaperones in the cytosol, receptors and channels in the organelle membranes and ATP-driven 'import motors' inside the organelles. Many of these components are now known, allowing informed guesses on how they might work.  相似文献   

6.
Import of proteins into mitochondria: a multi-step process   总被引:17,自引:0,他引:17  
Translocation of precursor proteins from the cytosol into mitochondria is a multi-step process. The generation of translocation intermediates, i.e. the reversible accumulation of precursors at distinct stages of their import pathway into mitochondria ('translocation arrest'), has allowed the experimental characterization of distinct functional steps of protein import. These steps include: ATP-dependent unfolding of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors; specific recognition of precursors by distinct receptors on the mitochondrial surface; interaction of precursors with a general insertion protein ('GIP') in the outer mitochondrial membrane; membrane-potential-dependent translocation into the inner membrane at contact sites between both membranes; proteolytic processing of precursors; and intramitochondrial sorting of precursors via the matrix space ('conservative sorting'). The functional characteristics unveiled by studying mitochondrial protein import appear to be of general interest for investigations on intracellular protein sorting.  相似文献   

7.
Most of our knowledge regarding the process of protein import into mitochondria has come from research employing fungal systems. This review outlines recent advances in our understanding of this process in mammalian cells. In particular, we focus on the characterisation of cytosolic molecular chaperones that are involved in binding to mitochondrial-targeted preproteins, as well as the identification of both conserved and novel subunits of the import machineries of the outer and inner mitochondrial membranes. We also discuss diseases associated with defects in import and assembly of mitochondrial proteins and what is currently known about the regulation of import in mammals.  相似文献   

8.
Import of small RNAs into Leishmania mitochondria in vitro.   总被引:4,自引:0,他引:4       下载免费PDF全文
S Mahapatra  T Ghosh    S Adhya 《Nucleic acids research》1994,22(16):3381-3386
  相似文献   

9.
The signal peptides of pre-aldehyde dehydrogenase (22-mer) and pre-ornithine transcarbamylase (27-mer) were chemically synthesized and their imports into rat liver mitochondria were studied. Both signal peptides were imported rapidly (within 2 min) in the absence of a membrane potential, exogenous ATP, or rabbit reticulocyte lysate. Signal peptides also were imported into mitochondria treated with a low concentration of trypsin which removed the outer membrane proteins. It was concluded that the chemically synthesized signal peptide could be imported differently than the precursor proteins. The imported signal peptide were found to be associated with both outer and inner membranes. Pulse-chase experiments showed that the import was unidirectional and that the signal peptides associated with inner membranes increased during the chase time. The signal peptides inhibited import of precursor proteins to different extents. Association of signal peptides with inner membrane near or at translocator sites might result in inhibition of precursor import.  相似文献   

10.
The matrix-targeting signal of mitochondrial preornithine carbamyl transferase has been fused to either murine dihydrofolate reductase (pODHFR) or bacterial chloramphenicol acetyltransferase (pOCAT). Loosening of the tightly folded "native" structure of the two proteins following their synthesis in a rabbit reticulocyte lysate was assayed by the acquisition of protease sensitivity (pODHFR and pOCAT) or by the loss of enzyme activity (pOCAT). By these criteria, the bulk population of both precursor proteins was tightly folded following release from the ribosome, even in the presence of ATP and excess reticulocyte lysate. Neither protein unfolded as a consequence of binding to the surfaces of anionic liposomes or intact mitochondria. However, a non-native form of full-length pOCAT, exhibiting a loss of enzymatic activity and an enhanced protease sensitivity, was detected in association with a submitochondrial fraction that banded between the inner and outer mitochondrial membrane fractions on sucrose density gradients. Delivery of the precursor molecule to this position required ATP and a proteinaceous component on the surface of the organelle.  相似文献   

11.
Murcha MW  Huang T  Whelan J 《FEBS letters》1999,464(1-2):53-59
Characterisation of the amount of protein import of the alternative oxidase (AOX) and the F(A)d precursor proteins (previously shown to use different import pathways) into mitochondria from developing soybean tissues indicated that they displayed different patterns. Import of the AOX declined in both cotyledon and root mitochondria with increasing age, whereas the import of the F(A)d into cotyledon mitochondria remained high throughout the same period. Using primary leaf mitochondria, it was evident that import of AOX remained high while it declined in cotyledon and root mitochondria. The amount of import of the AOX into mitochondria from different tissues closely matched the amount of the Tom 20 receptor.  相似文献   

12.
Import of cytochrome c into mitochondria. Cytochrome c heme lyase   总被引:16,自引:0,他引:16  
The import of cytochrome c into mitochondria can be resolved into a number of discrete steps. Here we report on the covalent attachment of heme to apocytochrome c by the enzyme cytochrome c heme lyase in mitochondria from Neurospora crassa. A new method was developed to measure directly the linkage of heme to apocytochrome c. This method is independent of conformational changes in the protein accompanying heme attachment. Tryptic peptides of [35S]cysteine-labelled apocytochrome c, and of enzymatically formed holocytochrome c, were resolved by reverse-phase HPLC. The cysteine-containing peptide to which heme was attached eluted later than the corresponding peptide from apocytochrome c and could be quantified by counting 35S radioactivity as a measure of holocytochrome c formation. Using this procedure, the covalent attachment of heme to apocytochrome c, which is dependent on the enzyme cytochrome c heme lyase, could be measured. Activity required heme (as hemin) and could be reversibly inhibited by the analogue deuterohemin. Holocytochrome c formation was stimulated 5--10-fold by NADH greater than NADPH greater than glutathione and was independent of a potential across the inner mitochondrial membrane. NADH was not required for the binding of apocytochrome c to mitochondria and was not involved in the reduction of the cysteine thiols prior to heme attachment. Holocytochrome c formation was also dependent on a cytosolic factor that was necessary for the heme attaching step of cytochrome c import. The factor was a heat-stable, protease-insensitive, low-molecular-mass component of unknown function. Cytochrome c heme lyase appeared to be a soluble protein located in the mitochondrial intermembrane space and was distinct from the previously identified apocytochrome c binding protein having a similar location. A model is presented in which the covalent attachment of heme by cytochrome c heme lyase also plays an essential role in the import pathway of cytochrome c.  相似文献   

13.
14.
Heterologous expression in yeast of mCYP11A1 fusions with different topogenic signals of yeast mitochondrial proteins for artificial channeling to different translocases of the inner membrane was used to gain insight in the mechanism of its topogenesis in mitochondria. To ensure insertion of the CYP11A1 domain into the inner mitochondrial membrane during the process of translocation, topogenic sequences containing transmembrane segments of Bcs1p(1-83), DLD(1-72), and full-sized AAC protein were used when constructing modified forms of CYP11A1, and the Su9(1-112) addressing signal was included to stimulate membrane insertion of CYP11A1 after its translocation to the matrix. Alternatively, to promote slippage of the hybrid molecules into the matrix, the hybrid of mCYP11A1 with the precursor of steroidogenic mitochondria matrix protein adrenodoxin (preAd) was designed. The extra sequences used for intramitochondrial sorting of CYP11A1 apparently ensured predicted topology of hybrid molecules in yeast mitochondria. All of the addressing sequences, containing transmembrane domains, provided effective insertion of the hybrid proteins AAC-mCYP11A1, Bcs1p(1-83)-mCYP11A1, DLD(1-72)-mCYP11A1 and Su9(1-116)-mCYP11A1 into the inner membrane. preAd-mCYP11A1 hybrid molecules were shown to be translocated across the inner membrane and tightly associated with the membrane on its matrix side but not membrane inserted. Measuring specific activities of hybrid proteins in the mitochondrial fractions upon addition of Ad and AdR showed that the hybrids predetermined for cotranslocational insertion of CYP11A1 into the inner membrane were more active in the reaction of cholesterol side-chain cleavage than those destined for insertion on the matrix side of the IM, the Ad-mCYP11A1 hybrid demonstrating only residual enzyme activity. The data obtained reinforce the proposal that complete transfer of the polypeptide chain into the matrix is not a necessary stage in its topogenesis, but rather persistent interaction of the polypeptide chain with the membrane during the process of translocation is of importance for heme binding, folding and membrane insertion.  相似文献   

15.
A putative precursor of rat liver mitochondrial glutamic oxaloacetic transaminase which was about 2,000 daltons larger than the subunits of the mature enzyme synthesized in vitro was sensitive to proteases (trypsin and chymotrypsin). When this precursor was incubated with isolated mitochondria in the absence of protein synthesis, it was processed to the mature form; the mature form co-sedimented with mitochondria and was resistant to externally added proteases. Mature enzyme did not compete with this transport.  相似文献   

16.
Cytochrome c heme lyase (CCHL) catalyses the covalent attachment of the heme group to apocytochrome c during its import into mitochondria. The enzyme is membrane-associated and is located within the intermembrane space. The precursor of CCHL synthesized in vitro was efficiently translocated into isolated mitochondria from Neurospora crassa. The imported CCHL, like the native protein, was correctly localized to the intermembrane space, where it was membrane-bound. As with the majority of mitochondrial precursor proteins, CCHL uses the MOM19-GIP receptor complex in the outer membrane for import. In contrast to proteins taking the general import route, CCHL was imported independently of both ATP-hydrolysis and an electrochemical potential as external energy sources. CCHL which lacks a cleavable signal sequence apparently does not traverse the inner membrane to reach the intermembrane space; rather, it translocates through the outer membrane only. Thus, CCHL represents an example of a novel, 'non-conservative' import pathway into the intermembrane space, thereby also showing that the import apparatus in the outer membrane acts separately from the import machinery in the inner membrane.  相似文献   

17.
《The Journal of cell biology》1990,111(6):2353-2363
We have identified the yeast homologue of Neurospora crassa MOM72, the mitochondrial import receptor for the ADP/ATP carrier (AAC), by functional studies and by cDNA sequencing. Mitochondria of a yeast mutant in which the gene for MOM72 was disrupted were impaired in specific binding and import of AAC. Unexpectedly, we found a residual, yet significant import of AAC into mitochondria lacking MOM72 that occurred via the receptor MOM19. We conclude that both MOM72 and MOM19 can direct AAC into mitochondria, albeit with different efficiency. Moreover, the precursor of MOM72 apparently does not require a positively charged sequence at the extreme amino terminus for targeting to mitochondria.  相似文献   

18.
19.
20.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号