首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cross-compatible relatives of crop species contribute to the uncertainty regarding the potential risk of transgene escape from genetically modified varieties. The most successful crossing partner of oilseed rape (Brassica napus L.) is diploid Brassica rapa L. Variation of ploidy level among B. rapa cultivars has, until recently, been neglected in the context of gene flow and hybridisation with oilseed rape. We estimated the extent of hybridisation between autotetraploid B. rapa varieties (female) and B. napus (pollen donor) under experimental field conditions. Morphology, variation of relative DNA amount, and microsatellite markers were used to distinguish between intraspecific offspring of tetraploid B. rapa and interspecific hybrids with B. napus. Of 517 seed progenies of tetraploid B. rapa, 45 juvenile plants showed species specific morphological traits of oilseed rape. The detection of putative hybrids based on variation in relative DNA amounts was problematic due to the occurrence of aneuploidy. In total, 84 offspring showed relative DNA amounts deviating from tetraploid B. rapa, four of which were hexaploids. Of the 205 offspring analysed at three microsatellite loci, 67 had oilseed rape alleles. Based on molecular evidence a minimum hybridisation rate of 13.0% was estimated. A few mother plants accounted for the majority of hybrids. The mean pollen viability of hybrids between B. napus and tetraploid B. rapa (80.6%) was high in comparison with mean pollen viability of triploid hybrids between B. napus and diploid B. rapa. Therefore, the occurrence of tetraploid B. rapa should be taken into consideration when estimating the likelihood of gene flow from oilseed rape to close relatives at the landscape level. Tetraploid B. rapa is a common component of several seed mixtures and establishes feral populations in northwest Germany. Assuming a similar abundance of diploid and tetraploid B. rapa, gene flow from B. napus to tetraploid may be more likely than gene flow to diploid B. rapa.  相似文献   

2.
The synthesis of polyunsaturated fatty acids (PUFAs), the most abundant fatty acids in plants, begins with a reaction catalyzed by fatty acid desaturase 2 (FAD2; EC 1.3.1.35), also called microsomal oleate Δ12-desaturase. Since the FAD2 gene was first identified in Arabidopsis thaliana, FAD2 research has gained wide interest as the essential enzyme for synthesizing PUFA. Grapes are one of the most frequently cultivated fruits in the world, with most commercial growers cultivating Vitis vinifera and V. labrusca. Grapeseed oil contains a high proportion, 60–70% of linoleic acid (18:2). We cloned two putative FAD2 genes from V. labrusca cv. Campbell Early based on V. vinifera genome sequences. Deduced amino acid sequences of two putative genes showed that VlFAD2s show high similarity to Arabidopsis FAD2 and commonly contain six transmembrane domain, three histidine boxes and endoplasmic reticulum (ER) retrieval motif representing the characteristics of fatty acid desaturase. Phylogenetic analyses of various plant FAD2s showed that VlFAD2-1 and VlFAD2-2 are separately grouped with constitutive and seed-type FAD2s, respectively. Southern blot showed that one or two bands are found in each lane. Because Campbell Early is a hybrid cultivar, FAD2-1 and FAD2-2 genes may exist as one copy in V. labrusca. Expression analysis in different tissues indicated that VlFAD2-1 is a constitutive gene but VlFAD2-2 is a seed-type gene. Complementation experiments of fad2-1 mutant Arabidopsis with VlFAD2-1 or VlFAD2-2 demonstrated that VlFAD2-1 and VlFAD2-2 can restore low PUFA proportion of fad2 to normal PUFA proportion.  相似文献   

3.
4.
The Bn-FAE1.1 and Bn-FAE1.2 genes encode the 3-ketoacyl-CoA synthase, a component of the elongation complex responsible for the synthesis of very long chain monounsaturated fatty acids (VLCMFA) in the seeds of Brassica napus. Bn-FAE1 gene expression was studied during seed development using two different cultivars: Gaspard, a high erucic acid rapeseed (HEAR), and ISLR4, a low erucic acid rapeseed (LEAR). The mRNA developmental profiles were similar for the two cultivars, the maximal expression levels being measured at 8 weeks after pollination (WAP) in HEAR and at 9 WAP in LEAR. Differential expression of Bn-FAE1.1 and Bn-FAE1.2 genes was also studied. In each cultivar the same expression profile was observed for both genes, but Bn-FAE1.2 was expressed at a lower level than Bn-FAE1.1. Secondly, VLCMFA synthesis was measured using particulate fractions prepared from maturating seeds harvested weekly after pollination. The oleoyl-CoA and ATP-dependent elongase activities increased from the 4th WAP in HEAR and reached the maximal level at 8 WAP, whereas both activities were absent in LEAR. In contrast, the 3-hydroxy dehydratase, a subunit of the elongase complex, had a similar activity in both cultivars and reached a maximum from 7 to 9 WAP. Finally, antibodies against the 3-ketoacyl-CoA synthase revealed a protein of 57 kDa present only in HEAR. Our results show: (i) that both genes are transcribed in HEAR and LEAR cultivars; (ii) that they are coordinately regulated; (iii) that Bn-FAE1.1 is quantitatively the major isoform expressed in seeds; (iv) that the Bn-FAE1 gene encodes a protein of 57 kDa responsible for the 3-ketoacyl-CoA synthase activity.  相似文献   

5.
Fingerprinting of 29 accessions of oilseed rape, including seven accessions of Brassica napus, and 22 accessions of B. rapa (B. campestris) from Europe, North America, and China was analyzed using RFLP and AFLP markers. In total, 1 477 polymorphic RFLP bands and 183 polymorphic AFLP bands from 166 enzyme-probe combinations and two pairs of AFLP primers, respectively, were scored for the 29 accessions. On average, RFLP analysis showed that the Arabidopsis EST probe detected more polymorphic bands in Brassica than the random genomic probe performed. More polymorphic RFLP markers were detected with the digestion of EcoR I or BamH I than HindIII. According to the number of bands amplified from each accession, the copy numbers of each gene in the genomes of B. rapa and B. napus were estimated. The average copy numbers in B. rapa of China, B. rapa of Europe, and B. napus, were 3.2, 3.1, and 2.9, respectively. Genetic distance based on the AFLP data was well correlated with that based on the RFLP data (r = 0.72, P<0.001), but 0.39 smaller on average. Genetic diversity analysis showed that Chinese B. rapa was more polymorphic than Chinese B. napus and European materials. Some European B. napus accessions were clustered into European B. rapa, which were distinctly different from Chinese B. napus. The larger variations of Chinese accessions of B. rapa suggest that they are valuable in oilseed rape breeding. Novel strategies to use intersubgenomic heterosis between genome of B. rapa (ArAr) and genome of B. napus (AnAnCnCn) were elucidated.  相似文献   

6.
7.
8.
The fatty acid elongase 1 (FAE1) genes of Brassic napus were cloned from two cultivars, i.e. Zhongshuan No. 9 with low erucic acid content, and Zhongyou 821 with high erucic acid content, using the degenerate PCR primers. The sequence analysis showed that there was no intron within the FAE1 genes. The FAE1 genes from Zhongyou 821 contained a coding sequence of 1521 nucleotides, and those cloned from Zhongshuan No. 9 contained a 1517 bp coding sequence. Alignment of the FAE1 sequences from Brassica rapa, B. oleracea and B. napus detected 31 single nucleotide polymorphic sites (2.03%), which resulted in 7 amino-acid substitutions. Further analysis indicated that 19 SNPs were genome-specific, of which, 95% were synonymous mutations. The nucleotide substitution at position 1217 in the FAE1 genes led to a specific site of restricted cleavage. An AvrII cleavage site was present only in the C genome genes and absent in the A genome FAE1 genes. Digestion profile of the FAE1 sequences from B. rapa, B. oleracea and B. napus produced with AvrII confirmed that the FAE1 genes of B. oleracea origin was recognized and digested, while that of B. rapa origin could not. The results indicated that by AvrII cleavage it was possible to distinguish B. rapa from B. oleracea and between the A and C genome of B. napus. In addition, the FAE1 genes could be used as marker genes to detect the pollen flow of B. napus, thus providing an alternative method for risk assessment of gene flow.  相似文献   

9.
The fatty acid elongase 1 (FAE1) genes of Brassic napus were cloned from two cultivars, i.e. Zhongshuan No. 9 with low erucic acid content, and Zhongyou 821 with high erucic acid content, using the degenerate PCR primers. The sequence analysis showed that there was no intron within the FAE1 genes. The FAE1 genes from Zhongyou 821 contained a coding sequence of 1521 nucleotides, and those cloned from Zhongshuan No. 9 contained a 1517 bp coding sequence. Alignment of the FAE1 sequences from Brassica rapa, B. oleracea and B. napus detected 31 single nucleotide polymorphic sites (2.03%), which resulted in 7 amino-acid substitutions. Further analysis indicated that 19 SNPs were genome-specific, of which, 95% were synonymous mutations. The nucleotide substitution at position 1217 in the FAE1 genes led to a specific site of restricted cleavage. An AvrII cleavage site was present only in the C genome genes and absent in the A genome FAE1 genes. Digestion profile of the FAE1 sequences from B. rapa, B. oleracea and B. napus produced with AvrII confirmed that the FAE1 genes of B. oleracea origin was recognized and digested, while that of B. rapa origin could not. The results indicated that by AvrII cleavage it was possible to distinguish B. rapa from B. oleracea and between the A and C genome of B. napus. In addition, the FAE1 genes could be used as marker genes to detect the pollen flow of B. napus, thus providing an alternative method for risk assessment of gene flow. Supported by the National Natural Science Foundation of China (Grant No. 30471099), Development Plan of the State Key Fundamental Research of China (Grant No. 2006CB101600), and the National High Technology and Development Program of China (Grant No. 2006AA10A113)  相似文献   

10.
11.
12.
13.
The glucosinolate contents of two different cultivars of Brassica rapa (Herfstraap and Oleifera) infected with Leptosphaeria maculans and Fusarium oxysporum were determined. Infection triggered the accumulation of aliphatic glucosinolates (gluconapin, progoitrin, glucobrassicanapin and gluconapoleiferin) and indole glucosinolate (4-hydroxy-glucobrassicin) in Herfstraap and of two indole glucosinolates (glucobrassicin and 4-hydroxy-glucobrassicin) in Oleifera. While total and aliphatic glucosinolates decreased significantly in Oleifera, a large increase was observed in Herfstraap after fungal infection. The indole glucosinolate glucobrassicin accumulated in Oleifera at a higher rate than Herfstraap especially after infection with F. oxysporum. Apparently the interaction between fungus and B. rapa is cultivar and fungal species specific.  相似文献   

14.

Background

Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.

Results

We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.

Conclusions

This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.  相似文献   

15.
16.
甘蓝型油菜是一种重要的油料作物,为了改良其种子脂肪酸组分,提升其经济价值,本研究分析了油菜种子发育时期脂肪酸合成积累模式及BnFAD2、BnFAD3、BnFATB基因的表达规律,认为这3个基因在种子发育中后期(授粉后25d起)的高效表达对油酸合成积累有着重要影响。通过Napin启动子诱导对油菜植株中BnFAD2、BnFAD3、BnFATB基因进行RNAi共干扰抑制,以达到提升油酸含量的目的。试验结果表明,转基因油菜种子中BnFAD2、BnFAD3、BnFATB基因的表达受到强烈抑制,种子中油酸含量由66.76%提升至82.98%,且油脂合成的相关基因同步出现表达上调。  相似文献   

17.
18.

Background

Acyl-coA binding proteins (ACBPs) bind long chain acyl-CoA esters with very high affinity. Their possible involvement in fatty acid transportation from the plastid to the endoplasmic reticulum, prior to the formation of triacylglycerol has been suggested. Four classes of ACBPs were identified in Arabidopsis thaliana: the small ACBPs, the large ACBPs, the ankyrin repeats containing ACBPs and the kelch motif containing ACBPs. They differed in structure and in size, and showed multiple important functions. In the present study, Brassica napus ACBPs were identified and characterized.

Results

Eight copies of kelch motif ACBPs were cloned, it showed that B. napus ACBPs shared high amino acid sequence identity with A. thaliana, Brassica rapa and Brassica oleracea. Furthermore, phylogeny based on domain structure and comparison map showed the relationship and the evolution of ACBPs within Brassicaceae family: ACBPs evolved into four separate classes with different structure. Chromosome locations comparison showed conserved syntenic blocks.

Conclusions

ACBPs were highly conserved in Brassicaceae. They evolved from a common ancestor, but domain duplication and rearrangement might separate them into four distinct classes, with different structure and functions. Otherwise, B. napus inherited kelch motif ACBPs from ancestor conserving chromosomal location, emphasizing preserved synteny block region. This study provided a first insight for exploring ACBPs in B. napus, which supplies a valuable tool for crop improvement in agriculture.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1735-6) contains supplementary material, which is available to authorized users.  相似文献   

19.
A genome triplication took place in the ancestor of Brassiceae species after the split of the Arabidopsis lineage. The postfragmentation and shuffling of the genome turned the ancestral hexaploid back to diploids and caused the radiation of Brassiceae species. The course of speciation was accompanied by the loss of duplicate genes and also influenced the evolution of retained genes. Of all the genes, those encoding NBS domains are typical R genes that confer resistance to invading pathogens. In this study, using the genome of Arabidopsis thaliana as a reference, we examined the loss/retention of orthologous NBS-encoding loci in the tripled Brassica rapa genome and discovered differential loss/retention frequencies. Further analysis indicated that loci of different retention ratios showed different evolutionary patterns. The loci of classesII and III (maintaining two and three syntenic loci, respectively, multi-loci) show sharper expansions by tandem duplications, have faster evolutionary rates and have more potential to be associated with novel gene functions. On the other hand, the loci that are retained at the minimal rate (keeping only one locus, class I, single locus) showed opposite patterns. Phylogenetic analysis indicated that recombination and translocation events were common among multi-loci in B. rapa, and differential evolutionary patterns between multi- and single-loci are likely the consequence of recombination. Investigations towards other gene families demonstrated different evolutionary characteristics between different gene families. The evolution of genes is more likely determined by the property of each gene family, and the whole genome triplication provided only a specific condition.  相似文献   

20.
Glucosinolate biosynthetic genes in Brassica rapa   总被引:7,自引:0,他引:7  
Wang H  Wu J  Sun S  Liu B  Cheng F  Sun R  Wang X 《Gene》2011,487(2):135-142
Glucosinolates (GS) are a group of amino acid-derived secondary metabolites found throughout the Cruciferae family. Glucosinolates and their degradation products play important roles in pathogen and insect interactions, as well as in human health. In order to elucidate the glucosinolate biosynthetic pathway in Brassica rapa, we conducted comparative genomic analyses of Arabidopsis thaliana and B. rapa on a genome-wide level. We identified 102 putative genes in B. rapa as the orthologs of 52 GS genes in A. thaliana. All but one gene was successfully mapped on 10 chromosomes. Most GS genes exist in more than one copy in B. rapa. A high co-linearity in the glucosinolate biosynthetic pathway between A. thaliana and B. rapa was also established. The homologous GS genes in B. rapa and A. thaliana share 59-91% nucleotide sequence identity and 93% of the GS genes exhibit synteny between B. rapa and A. thaliana. Moreover, the structure and arrangement of the B. rapa GS (BrGS) genes correspond with the known evolutionary divergence of B. rapa, and may help explain the profiles and accumulation of GS in B. rapa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号