首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DnaJ作为分子伴侣在植物抗逆中起重要作用. 但目前在二氯喹啉酸逆境下,其在抗药性稗草中表达特点却鲜有报道. 本研究采用RACE技术从抗二氯喹啉酸稗草中克隆了1个DnaJ基因, 命名为EcDnaJ1 (GenBank登录号:JX518598), 其cDNA全长为2 154 bp, 开放阅读框为1 350 bp,编码449 个氨基酸, 理论分子量为48.4 kD, 等电点为9.5. 该蛋白质氮端含有1个保守的J结构域, 中部含有4个模式为CxxCxGxG的锌指结构. Real-time PCR分别测定EcDnaJ1在二氯喹啉酸抗性和敏感的稗草生物型苗期叶、根及成株期根、茎、叶和种子中的表达, 在感、抗生物型的相对表达量分别是0.8~20.9和7.4~30.2, 其中在抗性稗草苗期叶片中相对表达量最高为30.2, 而在敏感稗草种子中最低为0.8, 抗性稗草是敏感稗草的1.4~9.2 倍. 受二氯喹啉酸诱导后, 其在感、抗稗草的相对表达量分别为35.8~72.5和84.9~261.9, 在抗性稗草苗期叶片中相对表达量最高为261.9, 而在敏感稗草的种子中相对表达量最低为35.8, 抗性稗草是敏感稗草的2.4~3.6 倍. 诱导前后, 无论是在苗期根和叶中还是成株期的根、茎、叶和种子中, EcDnaJ1表达量均是抗性稗草高于敏感稗草. 抗、感稗草生物型的EcDnaJ1在mRNA水平差异表达暗示,它可能参与了稗草对二氯喹啉酸的抗药性.  相似文献   

2.
Stowe AE  Holt JS 《Plant physiology》1988,87(1):183-189
The relationship of triazine resistance to decreased plant productivity was investigated in Senecio vulgaris L. F1 reciprocal hybrids were developed from pure-breeding susceptible (S) and resistant (R) lines. The four biotypes (S, S × R, R, R × S) were compared in terms of atrazine response, electron transport, carbon fixation, and biomass production. Atrazine response, carbon fixation rate, and PSII and whole-chain electron transport rates of hybrids were nearly identical to those of their respective maternal parents. Significant differences occurred between the two susceptible (S, S × R) and two resistant (R, R × S) biotypes in atrazine response (I50), carbon fixation rate, and PSII and whole-chain electron transport rates; PSI rates were identical in all four biotypes. Coupled and uncoupled, whole-chain electron transport rates of thylakoids of the two susceptible biotypes were approximately 50% greater than those of the two resistant biotypes at photon flux densities greater than 215 micromoles per square meter per second. Carbon exchange rates of the two susceptible biotypes were 23% greater than those of the two resistant biotypes. Hybrid biotypes (S × R, R × S) were not identical to their maternal parents in biomass production. The S, S × R, and R × S plants all achieved greater biomass than R plants. These results suggest that while the resistance mutation influences thylakoid performance, reduced productivity of triazine-resistant plants cannot be ascribed solely to decreases in electron transport or carbon assimilation rates brought about by the altered binding protein. Since the F1 hybrids differed from their maternal parents only in nuclear genes, it appears that the detrimental effects of the triazine resistance mutation on plant growth may be attenuated by interactions of the plastid and nuclear genomes.  相似文献   

3.

Aim

As a tumor suppressor, FEN1 plays an essential role in preventing tumorigenesis. Two functional germline variants (-69G > A and 4150G > T) in the FEN1 gene have been associated with DNA damage levels in coke-oven workers and multiple cancer risk in general populations. However, it is still unknown how these genetic variants are involved in breast cancer susceptibility.

Methods

We investigated the association between these polymorphisms and breast cancer risk in two independent case–control sets consisted of a total of 1100 breast cancer cases and 1400 controls. The influence of these variations on FEN1 expression was also examined using breast normal tissues.

Results

It was found that the FEN1-69GG genotypes were significantly correlated to increased risk for developing breast cancer compared with the -69AA genotype in both sets [Jinan set: odds ratios (OR) = 1.41, 95% confidence interval (CI) = 1.20–1.65, P = 1.9×10− 5; Huaian set: OR = 1.51, 95% CI = 1.22–1.86, P = 1.7×10− 4]. Similar results were observed for 4150G > T polymorphism. The genotype–phenotype correlation analyses demonstrated that the -69G or 4150G allele carriers had more than 2-fold decreased FEN1 expression in breast tissues compared with -69A or 4150T carriers, suggesting that lower FEN1 expression may lead to higher risk for malignant transformation of breast cells.

Conclusion

Our findings highlight FEN1 as an important gene in human breast carcinogenesis and genetic variants in FEN1 confer susceptibility to breast cancer.  相似文献   

4.
Two laboratory-scale expanded granular sludge bed (EGSB) anaerobic bioreactors (R1 and R2) were inoculated with biomass from different mesophilic (37 °C) treatment plants, and used for the treatment of an organic solvent-based wastewater at 9–14 °C at applied organic loading rates (OLRs) of 1.2–3.6 kg chemical oxygen demand (COD) m−3 d−1. Replicated treatment performance was observed at 10–14 °C, which suggested the feasibility of the process at pilot-scale. Stable and efficient COD removal, along with high methane productivity, was demonstrated at 9 °C at an applied OLR of 2.4 kg COD m−3 d−1. Clonal libraries and fluorescence in situ hybridization (FISH) indicated that the seed sludges were dominated (>60%) by acetoclastic Methanosaeta-like organisms. Specific methanogenic activity (SMA) profiles indicated shifts in the physiological profiles of R1 and R2 biomass, including the development of psychrotolerant methanogenic activity. Acetoclastic methanogenesis represented the primary route of methane production in R1 and R2, which is in contrast with several previous reports from low-temperature bioreactor trials. A reduction in the abundance of Methanosaeta-like clones (R2), along with the detection of hydrogenotrophic methanogenic species, coincided with altered granule (sludge) morphology and the development of hydrogenotrophic SMA after prolonged operation at 9 °C.  相似文献   

5.
6.
7.
8.
Studies were conducted that supported the hypothesis that the mutation to the psbA plastid gene that confers S-triazine resistance (R) in Brassica napus also results in an altered diurnal pattern of photosynthetic carbon assimilation (A) relative to that of the susceptible (S) wild type, and that these patterns change over the ontogeny of a plant. Photosynthetic photon flux density, under closely controlled environmental conditions, was incrementally increased and decreased on either side of the midday maxima of 1150 to 1300 μmol quanta m−2 s−1. In all experiments, A approximately tracked the increasing and decreasing diurnal light levels. Younger (3- to 4-leaf) R plants had greater photosynthetic rates early and late in the diurnal light period, whereas those of S plants were greater during midday as well as during the photoperiod as a whole. These relative photosynthetic characteristics of R and S plants changed in several ways with ontogeny. As the plants aged during the vegetative phase of development, S plants gradually assimilated more carbon in the early, and then in the late, part of the day. At the end of the vegetative phase of development, R plant carbon assimilation was less relative to S plants at most times of the day, and was never greater. This relationship between the two biotypes dramatically changed with the onset of the reproductive phase (8½ to 9½ leaf) of plant development: R plants assimilated more carbon than S plants during all periods of the diurnal light period with the exception of the late part of the day. In addition to these differences in A, R plant stomatal function differed from that in S plants. R plant leaves were always cooler than S plant leaves under the same environmental and diurnal conditions. Correlated with this difference in leaf temperature were equal or greater total conductances to water vapor and intercellular CO2 partial pressures in R compared to S leaves in most instances. These studies indicate a more complex pattern of photosynthetic carbon assimilation than previously observed. The photosynthetic superiority of one biotype relative to the other was a function of the time of day and the age of the plant. These studies also suggest that R plants may have an adaptive advantage over S plants in certain unfavorable ecological niches independent of the presence of S-triazine herbicides, such as cool, low-light environments early and late in the day, as well as late in the plants' development. This advantage could result in R biotypes appearing in populations of a species in greater numbers than plastidic mutation alone could cause.  相似文献   

9.
A vacuolar proton pyrophosphatase cDNA clone was isolated from Sorghum bicolor (SbVPPase) using end-to-end gene-specific primer amplification. It showed 80–90% homology at the nucleotide and 85–95% homology at the amino acid level with other VPPases. The gene was introduced into expression vector pCAMBIA1301 under the control of the cauliflower mosaic virus 35S (CaMV35S) promoter and transformed into Agrobacterium tumifaciens strain LBA4404 to infect embryogenic calli of finger millet (Eleusine coracana). Successful transfer of SbVPPase was confirmed by a GUS histochemical assay and PCR analysis. Both, controls and transgenic plants were subjected to 100 and 200 mM NaCl and certain biochemical and physiological parameters were studied. Relative water content (RWC), plant height, leaf expansion, finger length and width and grain weight were severely reduced (50–70%), and the flowering period was delayed by 20% in control plants compared to transgenic plants under salinity stress. With increasing salt stress, the proline and chlorophyll contents as well as the enzyme activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased by 25–100% in transgenics, while malondialdehyde (MDA) showed a 2–4-fold decrease. The increased activities of antioxidant enzymes and the reduction in the MDA content suggest efficient scavenging of reactive oxygen species (ROS) in transgenics and, as a consequence, probably alleviation of salt stress. Also, the leaf tissues of the transgenics accumulated 1.5–2.5-fold higher Na+ and 0.4–0.8-fold higher K+ levels. Together, these results clearly demonstrate that overexpression of SbVPPase in transgenic finger millet enhances the plant's performance under salt stress.  相似文献   

10.
11.
12.
Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria Arthrobacter protophormiae (SA3) and promoting plant growth through improved colonization of beneficial microbes like Rhizobium leguminosarum (R) and Glomus mosseae (G). The experiment comprised of treatments with combinations of SA3, G, and R under varying levels of salinity. The drop in plant biomass associated with salinity stress was significantly lesser in SA3 treated plants compared to non-treated plants. The triple interaction of SA3 + G + R performed synergistically to induce protective mechanism against salt stress and showed a new perspective of plant-microorganism interaction. This tripartite collaboration increased plant weight by 53%, reduced proline content, lipid peroxidation and increased pigment content under 200 mM salt condition. We detected that decreased ACC oxidase (ACO) activity induced by SA3 and reduced ACC synthase (ACS) activity in AMF (an observation not reported earlier as per our knowledge) inoculated plants simultaneously reduced the ACC content by 60% (responsible for generation of stress ethylene) in SA3 + G + R treated plants as compared to uninoculated control plants under 200 mM salt treatment. The results indicated that ACC deaminase-containing SA3 brought a putative protection mechanism (decrease in ACC content) under salt stress, apart from alleviating ethylene-induced damage, by enhancing nodulation and AMF colonization in the plants resulting in improved nutrient uptake and plant growth.  相似文献   

13.
The study aimed to define the key factors involved in the modulation of actinomycete mannanases. We focused on the roles of carbohydrate-binding modules (CBMs) and bivalent ions. To investigate the effects of these factors, two actinomycete mannanase genes were cloned from Streptomyces thermoluteus (StManII) and Streptomyces lividans (SlMan). CBMs fused to mannanase catalytic domains do not affect the thermal stability of the proteins. CBM2 of StManII increased the catalytic efficiency toward soluble-mannan and insoluble-mannan by 25%–36%, and CBM10 of SlMan increased the catalytic efficiency toward soluble-mannan by 40%–50%. Thermal stability of wild-type and mutant enzymes was enhanced by calcium and manganese. Thermal stability of SlMandC was also slightly enhanced by magnesium. These results indicated that bivalent ion-binding site responsible for thermal stability was in the catalytic domains. Thermal stability of mannanase differed in the kinds of bivalent ions. Isothermal titration calorimetry revealed that the catalytic domain of StManII bound bivalent ions with a Ka of 5.39 ± 0.45 × 103–7.56 ± 1.47 × 103 M− 1, and the catalytic domain of SlMan bound bivalent ions with a Ka of 1.06 ± 0.34 × 103–3.86 ± 0.94 × 103 M− 1. The stoichiometry of these bindings was consistent with one bivalent ion-binding site per molecule of enzyme. Circular dichroism spectrum revealed that the presence of bivalent ions induced changes in the secondary structures of the enzymes. The binding of certain bivalent ion responsible for thermal stability was accompanied by a different conformational change by each bivalent ion. Actinomycete mannanases belong to GHF5 which contained various hemicellulases; therefore, the information obtained from mannanases applies to the other enzymes.  相似文献   

14.

Background

Left ventricular dysfunction (LVD) is a complex, multifactorial condition, caused by mechanical, neurohormonal, and genetic factors. We have previously observed association of renin–angiotensin–aldosterone system (RAAS), matrix metalloproteinases (MMPs) and inflammatory pathway genes with LVD. Therefore the present study was undertaken to identify the combination of genetic variants and their possible interactions contributing towards genetic susceptibility to LVD in the background of coronary artery disease (CAD).

Methods and results

The study included 230 healthy controls and 510 consecutive patients with angiographically confirmed CAD. Among them, 162 with reduced left ventricle ejection fraction (LVEF ≤ 45%) were categorized as having LVD. We analyzed 11 polymorphisms of RAAS, MMPs and inflammatory pathways. Single locus analysis showed that AT1 A1166C (p value < 0.001; OR = 3.67), MMP9 R668Q (p value = 0.007; OR = 3.48) and NFKB1-94 ATTG ins/del (p value = 0.013; OR = 2.01) polymorphisms were independently associated with LVD when compared with both non-LVD patients and healthy controls. High-order gene–gene interaction analysis, using classification and regression tree (CART) and multifactor dimensionality reduction (MDR) revealed that AT1 A1166C and NFKB1-94 ATTG ins/del polymorphisms jointly increased the risk of LVD to great extent (p-value = 0.001; OR = 8.55) and best four-factor interaction model consisted of AT1 A1166C, MMP7 A-181G, MMP9 R668Q and NFKB1-94 ATTG ins/del polymorphisms with testing accuracy of 0.566 and cross validation consistency (CVC) = 9/10 (permutation p < 0.001) showed increased risk for LVD respectively.

Conclusion

AT1 A1166C independently and in combination with MMP9 R668Q and NFKB1-94 ATTG ins/del polymorphisms plays important role in conferring genetic susceptibility to LVD in CAD patients.  相似文献   

15.
Previous studies have indicated that the arachidonate 5-lipoxygenase-activating protein (ALOX5AP) gene SG13S114 polymorphism is associated with risk of ischemic stroke (IS), but the results remain inconclusive even in Chinese population. A meta-analysis of 10 case-control studies was conducted on the relationship between ALOX5AP SG13S114 polymorphism and susceptibility to IS in Chinese population published domestically and abroad from September 2007 to December 2012. Data were extracted by two authors and pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated. Meta-analysis results showed that the significant association between SG13S114 variant and IS was found under the allelic (OR = 0.87, 95% CI: 0.80–0.96, P = 0.004), dominant (OR = 0.75, 95% CI: 0.62–0.92, P = 0.005), and recessive (OR = 0.89, 95% CI: 0.82–0.97, P = 0.005) genetic models in Chinese population. In subgroup meta-analysis, SG13S114 variant and atherothrombotic stroke, rather than lacunar stroke, showed the significant association under the allelic (OR = 0.86, 95% CI: 0.80–0.92, P < 0.0001), dominant (OR = 0.72, 95% CI: 0.57–0.91, P = 0.006), and recessive (OR = 0.86, 95% CI: 0.78–0.95, P = 0.002) models. ALOX5AP SG13S114 polymorphism is associated with susceptibility to IS in Chinese population.  相似文献   

16.
AZI1 (AZELAIC ACID INDUCED 1) of Arabidopsis thaliana could be induced by azelaic acid and was involved in priming of systemic plant immunity. In the present work, expression of AZI1 in response to low temperature was investigated via RNA gel blot analysis. AZI1 could be induced slowly by cold stress and more than 6 h treatment at 4 °C was required to detect an increase in mRNA abundance. However, the high expression state could not be maintained stably and would decline to basal level when the plants were transferred to room temperature. In order to clarify the function of AZI1 in resistance to abiotic stresses, overexpressing, RNA interference and T-DNA knockout lines of this gene were used in electrolyte leakage assays. Overexpression of AZI1 resulted in reduced electrolyte leakage during freezing damage. In contrast, AZI1 knockdown and knockout lines showed increased tendencies in cellular damage after freezing treatment. To further validate the potential resistance of AZI1 to low-temperature stress, Saccharomyces cerevisiae cells were transformed with pESC-AZI1 in which AZI1 was under the control of GAL1 promoter. Compared to yeast cells containing empty pESC-URA, the survival rate of yeast cells harboring AZI1 increased obviously after freezing treatment. All these results suggested that AZI1 might be multifunctional and associated with cold tolerance of Arabidopsis.  相似文献   

17.
Our previous studies identified a functional SNP, R952Q in the LRP8 gene, that was associated with increased platelet activation and familial and early-onset coronary artery disease (CAD) and myocardial infarction (MI) in American and Italian Caucasian populations. In this study, we analyzed four additional SNPs near R952Q (rs7546246, rs2297660, rs3737983, rs5177) to identify a specific LRP8 SNP haplotype that is associated with familial and early-onset CAD and MI. We employed a case–control association design involving 381 premature CAD and MI probands and 560 controls in GeneQuest, 441 individuals from 22 large pedigrees in GeneQuest II, and 248 MI patients with family history and 308 controls in an Italian cohort. Like R952Q, LRP8 SNPs rs7546246, rs2297660, rs3737983, and rs5177 were significantly associated with early-onset CAD/MI in both population-based and family-based association studies in GeneQuest. The results were replicated in the GeneQuest II family-based population and the Italian population. We then carried out a haplotype analysis for all five SNPs including R952Q. One common haplotype (TCCGC) was significantly associated with CAD (P = 4.0 × 10− 11) and MI (P = 6.5 × 10− 12) in GeneQuest with odds ratios of 0.53 and 0.42, respectively. The results were replicated in the Italian cohort (P = 0.004, OR = 0.71). The sib-TDT analysis also showed significant association between the TCCGC haplotype and CAD in GeneQuest II (P = 0.001). These results suggest that a common LRP8 haplotype TCCGC confers a significant protective effect on the development of familial, early-onset CAD and/or MI.  相似文献   

18.
In plants, there is evidence that different dose rate exposures to gamma (γ) rays can cause different biological effects. The dynamics of DNA damage accumulation and molecular mechanisms that regulate recovery from radiation injury as a function of dose rate are poorly explored. To highlight dose-rate dependent differences in DNA damage, single cell gel electrophoresis was carried out on regenerating Petunia x hybrida leaf discs exposed to LDR (total dose 50 Gy, delivered at 0.33 Gy min−1) and HDR (total doses 50 and 100 Gy, delivered at 5.15 Gy min−1) γ-ray in the 0–24 h time period after treatments. Significant fluctuations of double strand breaks and different repair capacities were observed between treatments in the 0–4 h time period following irradiation. Dose-rate-dependent changes in the expression of the PhMT2 and PhAPX genes encoding a type 2 metallothionein and the cytosolic isoform of ascorbate peroxidase, respectively, were detected by Quantitative RealTime-Polymerase Chain Reaction. The PhMT2 and PhAPX genes were significantly up-regulated (3.0- and 0.7-fold) in response to HDR. The results are discussed in light of the potential practical applications of LDR-based treatments in mutation breeding.  相似文献   

19.
In pigs the endogenously produced compound androstenone is metabolised in the liver in two steps by 3β-hydroxysteroid dehydrogenase (3β-HSD) and sulphotransferase 2A1 (SULT2A1). The present study investigated the effect of selected sex-steroids (0.01–1 μM androstenone, testosterone and estradiol), skatole (1–100 μM) and secondary plant metabolites (1–100 μM) on the expression of 3β-HSD and SULT2A1 mRNA. Additionally the effect of a global methanolic extract of dried chicory root was investigated and compared to previous obtained in vivo effects. Primary hepatocytes were isolated from the livers of piglets (crossbreed: Landrace × Yorkshire and Duroc) and cultured for 24 h before treatment for an additionally 24 h. RNA was isolated from the hepatocytes and specific gene expression determined by RT-PCR using TaqMan probes. The investigated sex-steroids had no effect on the mRNA expression of 3β-HSD and SULT2A1, while skatole decreased the content of SULT2A1 30% compared to control. Of the investigated secondary plant metabolites artemisinin and scoparone (found in Artemisia sp.) lowered the content of SULT2A1 by 20 and 30% compared to control, respectively. Moreover, we tested three secondary plant metabolites (lactucin, esculetin and esculin) found in chicory root. Lactucin increased the mRNA content of both 3β-HSD and SULT2A1 by 200% compared to control. An extract of chicory root was shown to decrease the expression of both 3β-HSD and SULT2A1. It is concluded that the gene expression of enzymes with importance for androstenone metabolism is regulated by secondary plant metabolites in a complex manner.  相似文献   

20.
In this study, hypoxia inducible factor-1α (HIF-1α) and hypoxia inducible factor-1β (HIF-1β) from small abalone Haliotis diversicolor were cloned. The cDNA of H. diversicolor HIF-1α (HdHIF-1α) is 2833 bp encoding a protein of 711aa and H. diversicolor HIF-1β (HdHIF-1β) is 1919 bp encoding a protein of 590aa. Similar to other species' HIF-1, HdHIF-1 has one basic helix–loop–helix (bHLH) domain and two Per-Arnt-Sim (PAS) domains, and HdHIF-1α has a oxygen-dependent degradation domain (ODDD) with two proline hydroxylation motifs and a C-terminal transactivation domain (C-TAD) with an asparagine hydroxylation motif. Under normoxic conditions, HdHIF-1α and HdHIF-1β mRNAs were constitutively present in all examined tissues. Under hypoxia (2.0 mg/L DO at 25 °C) stress, HdHIF-1α expression was up-regulated in gills at 4 h, 24 h and 96 h, and in hemocytes at 24 h and 96 h, while HdHIF-1β remained relatively constant. Under thermal stress (31 °C), HdHIF-1α expression was significantly increased in gills at 4 h, and hemocytes at 0 h and 4 h, while HdHIF-1β expression still remained relatively constant. These results suggested that HIF-1α may play an important role in adaption to poor environment in H. diversicolor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号