首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system.Posttranslational modification of proteins by ubiquitin is involved in a wide range of cellular processes (1). Ubiquitination is linked to the turnover of an ever growing number of proteins; it regulates protein trafficking and is also widely used to transiently facilitate protein-protein interactions (2, 3). As the number of known ubiquitinated proteins keeps growing, the focus is turning toward identifying when, where, and how those proteins are ubiquitinated in vivo with the aim of understanding how protein function is being regulated within the context of a whole organism. The ubiquitin pathway is essential for brain development and function, and its failure is associated with a number of neurodegenerative diseases, including Parkinson and Alzheimer diseases (46). Ubiquitin conjugation is carried out by the sequential action of ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes and can be reversed by deubiquitinating enzyme (DUB)1 proteases. The involvement of a number of those enzymes in synaptogenesis has been documented in several model systems (712). In Drosophila, for example, synaptogenesis is dependent on the E3 ligase Highwire and on the DUB fat facets (13). A few proteins involved in synaptogenesis have been shown to be ubiquitin substrates, including the postsynaptic proteins Shank, GKAP, and AKAP79/150 in cultured neurons (14) and the Caenorhabditis elegans synaptic protein DLK-1 kinase, which was shown to be ubiquitinated when overexpressed in HEK293T kidney cells (9). Most neuronal targets of the ubiquitin pathway, however, remain undiscovered. Yeast and HeLa cell-based proteomics approaches have failed to provide significant insights into the neuronal mechanisms regulated by ubiquitination. With the exception of a polyubiquitin affinity-based purification that successfully identified by Western blotting three ubiquitin substrates in cultured neurons (14), no proteomics approach has been described that can identify ubiquitinated neuronal proteins. Because neuronal function and activity are highly context-dependent, rather than working on neuronal culture, we have aimed to identify which proteins are ubiquitinated in vivo within the neurons of a living organism.Herein, we describe a novel strategy for the efficient isolation of neuronal ubiquitin conjugates from flies. The approach is based on the in vivo biotinylation of ubiquitin by ectopically expressing the Escherichia coli BirA enzyme to attach a biotin molecule to a specific BirA recognition sequence (15, 16) added at the N terminus of each ubiquitin chain. With the purpose of isolating ubiquitin conjugates uniquely from the nervous system of Drosophila melanogaster, we used the GAL4/UAS system for tissue-targeted expression (17). To increase the biotinylation efficiency, we took advantage of the processing activity of endogenous DUBs to digest a linear polypeptide precursor containing six copies of the tagged ubiquitin and the BirA enzyme, which are then present in the same cellular microenvironment. Because of the strength and the specificity of the avidin-biotin interaction, we were able to isolate and enrich the neuronal ubiquitinated proteins from a multicellular organism up to levels not achieved previously by any other approach. This allowed us to identify by mass spectrometry those neuronal proteins that are ubiquitinated and to resolve by Western blotting whether they are mono- or polyubiquitinated. This was achieved in the absence of proteasome inhibitors; therefore, physiological ubiquitination levels are reported. We focused on identifying the proteins that are ubiquitinated within the neurons in the period from neurite outgrowth and axonal pathfinding to target recognition and synapse formation (18). For that purpose, we applied our strategy on postmitotic neurons during embryonic stages 13–17 (19), a 12-h period during which embryos undergo synaptogenesis. Our strategy could be used to isolate ubiquitin conjugates from other tissues from the fruit flies, from different developmental stages, and in different mutant backgrounds, and it is likely to be applicable to other model organisms.  相似文献   

2.
Inositol 1,4,5-trisphosphate (IP(3)) receptors form tetrameric channels in endoplasmic reticulum membranes of mammalian cells and mediate IP(3)-induced calcium mobilization. In response to various extracellular stimuli that persistently elevate IP(3) levels, IP(3) receptors are also ubiquitinated and then degraded by the proteasome. Here, for endogenous type 1 IP(3) receptor (IP(3)R1) activated by endogenous signaling pathways and processed by endogenous enzymes, we sought to determine the sites of ubiquitination and the composition of attached ubiquitin conjugates. Our findings are (i) that at least 11 of the 167 lysines in IP(3)R1 can be ubiquitinated and that these are clustered in the regulatory domain and are found in surface regions, (ii) that at least approximately 40% of the IP(3)R1-associated ubiquitin is monoubiquitin, (iii) that both Lys(48) and Lys(63) linkages are abundant in attached ubiquitin chains, and (iv) that Lys(63) linkages accumulate most rapidly. Additionally, we find that not all IP(3)R1 subunits in a tetramer are ubiquitinated and that nontetrameric IP(3)R1 complexes form as degradation proceeds, suggesting that ubiquitinated subunits may be selectively extracted and degraded. Overall, these data show that endogenous IP(3)R1 is tagged with an array of ubiquitin conjugates at multiple sites and that both IP(3)R1 ubiquitination and degradation are highly complex processes.  相似文献   

3.
Cell surface receptor proteins that have undergone endocytosis are transported to the endosome. From the endosome, ligand-activated receptor tyrosine kinases are further transported to the lysosome for degradation, a process called "receptor downregulation." By contrast, nutrient receptors, such as those for low-density lipoprotein and transferrin, are recycled back to the plasma membrane. Sorting of these two types of receptors occurs at the endosome, where ubiquitination of receptor proteins serves as the sorting signal. Namely, ubiquitinated receptors are incorporated into the lysosomal degradation pathway, whereas those that are not ubiquitinated are returned to the cell surface. Hrs and STAM are proteins that form a complex on the endosomal membrane. Recent studies have shown that the Hrs/STAM complex binds ubiquitin moieties and acts as sorting machinery that recognizes ubiquitinated receptors and transfers them to further sequential lysosomal sorting/trafficking processes.  相似文献   

4.
Lysine ubiquitination is an important and versatile protein post-translational modification. Numerous cellular functions are regulated by ubiquitination, suggesting that extensive numbers of proteins, if not all, are modified with ubiquitin at certain times. However, proteome-wide profiling of ubiquitination sites in the mammalian system is technically challenging. We report the design and characterization of an engineered protein affinity reagent for the isolation of ubiquitinated proteins and the identification of ubiquitination sites with mass spectrometry. This recombinant protein consists of four tandem repeats of ubiquitin-associated domain from UBQLN1 fused to a GST tag. We used this GST-qUBA reagent to isolate polyubiquitinated proteins and identified 294 endogenous ubiquitination sites on 223 proteins from human 293T cells without proteasome inhibitors or overexpression of ubiquitin. Mitochondrial proteins constitute 14.7% of this data set, implicating ubiquitination in a wide range of mitochondrial functions.  相似文献   

5.
Selective macroautophagy (autophagy) of ubiquitinated protein is implicated as a compensatory mechanism of the ubiquitin-proteasome system. p62/SQSTM1 is a key molecule managing autophagic clearance of polyubiquitinated proteins. However, little is known about mechanisms controlling autophagic degradation of polyubiquitinated proteins. Here, we show that the specific phosphorylation of p62 at serine 403 (S403) in its ubiquitin-associated (UBA) domain increases the affinity between UBA and polyubiquitin chain, resulting in efficiently targeting polyubiquitinated proteins in "sequestosomes" and stabilizing sequestosome structure as a cargo of ubiquitinated proteins for autophagosome entry. Casein kinase 2 (CK2) phosphorylates S403 of p62 directly. Furthermore, CK2 overexpression or phosphatase inhibition reduces the formation of inclusion bodies of the polyglutamine-expanded huntingtin exon1 fragment in a p62-dependent manner. We propose that phosphorylation of p62 at S403 regulates autophagic clearance of ubiquitinated proteins and protein aggregates that are poorly degraded by proteasomes.  相似文献   

6.
Post-translational modification of proteins via ubiquitination plays a crucial role in numerous vital functions of the cell. Polyubiquitination is one of the key regulatory processes involved in regulation of mitotic progression. Here we describe a differential proteomic screen dedicated to identification of novel proteins ubiquitinated upon mitotic exit in cell-free extract of Xenopus laevis embryo. Mutated recombinant His6-tagged ubiquitin (Ubi (K48R)) was added to mitotic extract from which we purified conjugated proteins, as well as associated proteins in nondenaturing conditions by cobalt affinity chromatography. Proteins eluted from Ubi (K48R) supplemented and control extracts were compared by LC-MS/MS analysis after monodimensional SDS-PAGE. A total of 144 proteins potentially ubiquitinated or associated with them were identified. Forty-one percent of these proteins were shown to be involved in ubiquitination and/or proteasomal degradation pathway confirming the specificity of the screen. Twelve proteins, among them ubiquitin itself, were shown to carry a "GG" or "LRGG" remnant tag indicating their direct ubiquitination. Interestingly, sequence analysis of ubiquitinated substrates carrying these tags indicated that in Xenopus cell-free embryo extract supplemented with Ubi (K48R) the majority of polyubiquitination occurred through lysine-11 specific ubiquitin chain polymerization. The potential interest in this atypical form of ubiquitination as well as usefulness of our method in analyzing atypical polyubiquitin species is discussed.  相似文献   

7.

Background

Protein aggregation is a hallmark of many neurodegenerative diseases and has been linked to the failure to degrade misfolded and damaged proteins. In the cell, aberrant proteins are degraded by the ubiquitin proteasome system that mainly targets short-lived proteins, or by the lysosomes that mostly clear long-lived and poorly soluble proteins. Both systems are interconnected and, in some instances, autophagy can redirect proteasome substrates to the lysosomes.

Principal Findings

To better understand the interplay between these two systems, we established a neuroblastoma cell population stably expressing the GFP-ubiquitin fusion protein. We show that inhibition of the proteasome leads to the formation of large ubiquitin-containing inclusions accompanied by lower solubility of the ubiquitin conjugates. Strikingly, the formation of the ubiquitin-containing aggregates does not require ectopic expression of disease-specific proteins. Moreover, formation of these focused inclusions caused by proteasome inhibition requires the lysine 63 (K63) of ubiquitin. We then assessed selected compounds that stimulate autophagy and found that the antihelmintic chemical niclosamide prevents large aggregate formation induced by proteasome inhibition, while the prototypical mTORC1 inhibitor rapamycin had no apparent effect. Niclosamide also precludes the accumulation of poly-ubiquitinated proteins and of p62 upon proteasome inhibition. Moreover, niclosamide induces a change in lysosome distribution in the cell that, in the absence of proteasome activity, may favor the uptake into lysosomes of ubiquitinated proteins before they form large aggregates.

Conclusions

Our results indicate that proteasome inhibition provokes the formation of large ubiquitin containing aggregates in tissue culture cells, even in the absence of disease specific proteins. Furthermore our study suggests that the autophagy-inducing compound niclosamide may promote the selective clearance of ubiquitinated proteins in the absence of proteasome activity.  相似文献   

8.
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control mechanism that eliminates unwanted proteins from the endoplasmic reticulum (ER) through a ubiquitin-dependent proteasomal degradation pathway. gp78 is a previously described ER membrane-anchored ubiquitin ligase (E3) involved in ubiquitination of ER proteins. AAA ATPase (ATPase associated with various cellular activities) p97/valosin-containing protein (VCP) subsequently dislodges the ubiquitinated proteins from the ER and chaperones them to the cytosol, where they undergo proteasomal degradation. We now report that gp78 physically interacts with p97/VCP and enhances p97/VCP-polyubiquitin association. The enhanced association correlates with decreases in ER stress-induced accumulation of polyubiquitinated proteins. This effect is abolished when the p97/VCP-interacting domain of gp78 is removed. Further, using ERAD substrate CD3delta, gp78 consistently enhances p97/VCP-CD3delta binding and facilitates CD3delta degradation. Moreover, inhibition of endogenous gp78 expression by RNA interference markedly increases the levels of total polyubiquitinated proteins, including CD3delta, and abrogates VCP-CD3delta interactions. The gp78 mutant with deletion of its p97/VCP-interacting domain fails to increase CD3delta degradation and leads to accumulation of polyubiquitinated CD3delta, suggesting a failure in delivering ubiquitinated CD3delta for degradation. These data suggest that gp78-p97/VCP interaction may represent one way of coupling ubiquitination with retrotranslocation and degradation of ERAD substrates.  相似文献   

9.
10.
A general method for purification of any substrate of the ubiquitin pathway, the major eukaryotic proteolytic pathway, should utilize the common characteristic of covalent linkage of ubiquitin to substrate lysyl residues. The utility of a N-terminal histidine-tagged ubiquitin (HisUb) for in vivo conjugation and isolation of ubiquitinated proteins by metal chelation chromatography is conditioned by the requirement that HisUb conjugate to the same set of proteins as wild-type ubiquitin. Stringent in vivo tests with Saccharomyces cerevisiae strains expressing ubiquitins only from plasmids were performed to show that HisUb could substitute for wild-type ubiquitin. The utility of HisUb as a method for purification of proteins ubiquitinated in vivo was demonstrated by metal chelation chromatography of yeast extracts expressing HisUb and immunoblotting for Rpb1, the largest subunit of RNA polymerase II. A fraction of Rpb1 was present in the ubiquitinated form in vivo. The ability to use HisUb expression in transgenic organisms that retain expression of their endogenous ubiquitin genes was demonstrated through transgenic Arabidopsis thaliana expressing HisUb or its variant HisUbK48R. UbK48R is a version of ubiquitin capable of conjugation to proteins, but cannot serve as an attachment site for ubiquitin via the major in vivo interubiquitin linkage. Whereas transgenic plants expressing HisUb showed insignificant enrichment of ubiquitinated proteins, transgenic Arabidopsis lines expressing HisUbK48R gave a much better yield.  相似文献   

11.
HDAC6 is a unique cytoplasmic deacetylase capable of interacting with ubiquitin. Using a combination of biophysical, biochemical and biological approaches, we have characterized the ubiquitin-binding domain of HDAC6, named ZnF-UBP, and investigated its biological functions. These studies show that the three Zn ion-containing HDAC6 ZnF-UBP domain presents the highest known affinity for ubiquitin monomers and mediates the ability of HDAC6 to negatively control the cellular polyubiquitin chain turnover. We further show that HDAC6-interacting chaperone, p97/VCP, dissociates the HDAC6-ubiquitin complexes and counteracts the ability of HDAC6 to promote the accumulation of polyubiquitinated proteins. We propose that a finely tuned balance of HDAC6 and p97/VCP concentrations determines the fate of ubiquitinated misfolded proteins: p97/VCP would promote protein degradation and ubiquitin turnover, whereas HDAC6 would favour the accumulation of ubiquitinated protein aggregates and inclusion body formation.  相似文献   

12.
Protein conjugation with ubiquitin, known as ubiquitination, is a key regulatory mechanism to control protein abundance, localization, and activity in eukaryotic cells. To identify ubiquitin-dependent regulatory steps in plants, we developed a robust affinity purification/identification system for ubiquitinated proteins. Using GST-tagged ubiquitin binding domains, we performed a large scale affinity purification of ubiquitinated proteins from Arabidopsis cell suspension culture. High molecular weight ubiquitinated proteins were separated by SDS-PAGE, and the trypsin-digested samples were then analyzed by a multidimensional protein identification technology (MudPIT) system. A total of 294 proteins specifically bound by the GST-tagged ubiquitin binding domains were identified. From these we determined 85 ubiquitinated lysine residues in 56 proteins, confirming the enrichment of the target class of proteins. Our data provide the first view of the ubiquitinated proteome in plants. We also provide evidence that this technique can be broadly applied to the study of protein ubiquitination in diverse plant species.  相似文献   

13.
Accumulation of misfolded proteins and alterations in the ubiquitin-proteasome pathway are associated with various neurodegenerative conditions of the CNS and PNS. Aggregates containing ubiquitin and peripheral myelin protein 22 (PMP22) have been observed in the Trembler J mouse model of Charcot-Marie-Tooth disease type 1A demyelinating neuropathy. In these nerves, the turnover rate of the newly synthesized PMP22 is reduced, suggesting proteasome impairment. Here we show evidence of proteasome impairment in Trembler J neuropathy samples compared with wild-type, as measured by reduced degradation of substrate reporters. Proteasome impairment correlates with increased levels of polyubiquitinated proteins, including PMP22, and the recruitment of E1, 20S and 11S to aggresomes formed either spontaneously due to the Trembler J mutation or upon proteasome inhibition. Furthermore, myelin basic protein, an endogenous Schwann cell proteasome substrate, associates with PMP22 aggregates in affected nerves. Together, our data show that in neuropathy nerves, reduced proteasome activity is coupled with the accumulation of ubiquitinated substrates, and the recruitment of proteasomal pathway constituents to aggregates. These results provide novel insights into the mechanism by which altered degradation of Schwann cell proteins may contribute to the pathogenesis of certain PMP22 neuropathies.  相似文献   

14.
In acute promyelocytic leukaemia (APL), the promyelocytic leukaemia (PML) protein is fused to the retinoic acid receptor alpha (RAR). This disease can be treated effectively with arsenic, which induces PML modification by small ubiquitin-like modifiers (SUMO) and proteasomal degradation. Here we demonstrate that the RING-domain-containing ubiquitin E3 ligase, RNF4 (also known as SNURF), targets poly-SUMO-modified proteins for degradation mediated by ubiquitin. RNF4 depletion or proteasome inhibition led to accumulation of mixed, polyubiquitinated, poly-SUMO chains. PML protein accumulated in RNF4-depleted cells and was ubiquitinated by RNF4 in a SUMO-dependent fashion in vitro. In the absence of RNF4, arsenic failed to induce degradation of PML and SUMO-modified PML accumulated in the nucleus. These results demonstrate that poly-SUMO chains can act as discrete signals from mono-SUMOylation, in this case targeting a poly-SUMOylated substrate for ubiquitin-mediated proteolysis.  相似文献   

15.
Ubiquitinated derivatives of histones H2A and H2B, in which the carboxyl terminus of ubiquitin is joined to epsilon-amino groups of specific lysine residues of each histone, occur in vivo. Certain ubiquitin carrier proteins (E2s) catalyze ubiquitin transfer to histones (Pickart, C. M., and Rose, I. A. (1985) J. Biol. Chem. 260, 1573-1581). The catalytic activities of these purified ubiquitin carrier proteins have been quantitatively characterized with purified histones, in order to determine if one or more of them exhibits specificity for H2A over other histones (H3,H4) which are not known to be ubiquitinated in vivo. The results show the following. 1) No E2 exhibits strong specificity for H2A over the other histones. 2) For a given histone, kinetics of formation of its monoubiquitinated adduct do not differ strongly among the E2s; sigmoid kinetics (nH = 2) are generally observed, with values of K 0.5 ranging from 2-6 microM. 3) E214K catalyzes primarily monoubiquitination. 4) E220K catalyzes multiple ubiquitination (up to three ubiquitin/histone) by a processive mechanism that involves joining of ubiquitin carboxyl termini to multiple histone lysine residues. 5) E235K also catalyzes processive ubiquitination, with formation of polyubiquitinated products exhibiting a lag phase. Many of the polyubiquitinated adducts produced at low histone concentration are larger than expected for monoubiquitination of every histone-lysine residue, and polyubiquitination is selectively inhibited by substitution of reductively methylated ubiquitin for ubiquitin. These results suggest that E235K uniquely catalyzes ubiquitin transfer to lysine residues of previously conjugated ubiquitin molecule(s). The implications of these results for biological mechanisms of histone ubiquitination are discussed.  相似文献   

16.
Ubiquitinated proteins can alternatively be delivered directly to the proteasome or via p97/VCP (valosin-containing protein). Whereas the proteasome degrades ubiquitinated proteins, the homohexameric ATPase p97/VCP seems to control the ubiquitination status of recruited substrates. The COP9 signalosome (CSN) is also involved in the ubiquitin/proteasome system (UPS) as exemplified by regulating the neddylation of ubiquitin E3 ligases. Here, we show that p97/VCP colocalizes and directly interacts with subunit 5 of the CSN (CSN5) in vivo and is associated with the entire CSN complex in an ATP-dependent manner. Furthermore, we provide evidence that the CSN and in particular the isopeptidase activity of its subunit CSN5 as well as the associated deubiquitinase USP15 are required for proper processing of polyubiquitinated substrates bound to p97/VCP. Moreover, we show that in addition to NEDD8, CSN5 binds to oligoubiquitin chains in vitro. Therefore, CSN and p97/VCP could form an ATP-dependent complex that resembles the 19 S proteasome regulatory particle and serves as a key mediator between ubiquitination and degradation pathways.  相似文献   

17.
Human T-cell leukemia virus type 1 (HTLV-1) is the retrovirus responsible for adult T-cell leukemia and HTLV-1-associated myelopathy. Adult T-cell leukemia development is mainly due to the ability of the viral oncoprotein Tax to promote T-cell proliferation, whereas the appearance of HTLV-1-associated myelopathy involves the antigenic properties of Tax. Understanding the events regulating the intracellular level of Tax is therefore an important issue. How Tax is degraded has not been determined, but it is known that Tax binds to proteasomes, the major sites for degradation of intracellular proteins, generally tagged through polyubiquitin conjugation. In this study, we investigated the relationship between Tax, ubiquitin, and proteasomes. We report that mono- and polyubiquitinated Tax proteins can be recovered from both transfected 293T cells and T lymphocytes. We also show that lysine residues located in the carboxy-terminal domain of Tax are the principal targets of this process. Remarkably, we further demonstrate that mutation of lysine residues in the C-terminal part of Tax, which massively reduces Tax ubiquitination, impairs proteasome binding, and conversely, that a Tax mutant that binds poorly to this particle (M22) is faintly ubiquitinated, suggesting that Tax ubiquitination is required for association with cellular proteasomes. Finally, we document that comparable amounts of ubiquitinated species were found whether proteasome activities were inhibited or not, providing evidence that they are not directly addressed to proteasomes for degradation. These findings indicate that although it is ubiquitinated and binds to proteasomes, Tax is not massively degraded via the ubiquitin-proteasome pathway and therefore reveal that Tax conjugation to ubiquitin mediates a nonproteolytic function.  相似文献   

18.
Ubiquitin is the most phylogenetically conserved protein known. This 8,500 Da polypeptide can be covalently attached to cellular proteins as a posttranslational modification. In most cases, the addition of multiple ubiquitin adducts to a protein targets it for rapid degradation by a multisubunit protease known as the 26S proteasome. While the ubiquitin/26S proteasome pathway is responsible for the degradation of the bulk of cellular proteins during homeostasis, it may also be responsible for the rapid loss of protein during the programmed death of certain cells, such as skeletal muscle during insect metamorphosis. In addition, alterations in the expression and regulation of ubiquitin may play significant roles in pathological disorders. For example, dramatic increases in ubiquitin and ubiquitin-protein conjugates are observed in a wide variety of neurodegenerative disorders, including Alzheimer's disease. Patients suffering from the autoimmune disease systemic lupus erythematosus generate antibodies reacting with ubiquitin and ubiquitinated histones. At present, it is not known whether these changes in ubiquitin expression and regulation initiate pathological changes in these diseases or if they are altered as a consequence of these disorders.  相似文献   

19.
Neurodegenerative disorders have been reported to be associated with accumulation of ubiquitinated proteins in neuronal inclusions and also with signs of inflammation. In these disorders, the abnormal protein aggregates may, themselves, trigger the expression of inflammatory mediators, such as, cyclooxygenase 2 (COX-2). Impairment of the ubiquitin/proteasome pathway may contribute to this neurodegenerative process. Accordingly, proteasome inhibitors and oxidative stressors such as cadmium, were found to decrease survival, induce the accumulation of ubiquitinated proteins and elicit up-regulation of cyclooxygenase 2 in neuronal cell cultures. Products of cyclooxygenase 2, such as prostaglandin J2, can, in turn, increase the levels of ubiquitinated proteins and also cause cyclooxygenase 2 up-regulation, creating a "self-destructive" feedback mechanism. In neurodegenerative disorders characterized by neuronal inclusions containing ubiquitinated proteins, a disruption of the ubiquitin/proteasome pathway may, therefore, act in conjunction with cyclooxygenase 2 up-regulation to exacerbate the neurodegenerative process. Cyclooxygenase 2 inhibitors and agents that prevent protein aggregation could be of therapeutic value to these forms of neurodegeneration.  相似文献   

20.
Identification of ubiquitinated proteins in Arabidopsis   总被引:1,自引:0,他引:1  
Ubiquitin (Ub) is a small peptide that is covalently attached to proteins in a posttranslational reaction. Ubiquitination is a precise regulatory system that is present in all eukaryotic organisms and regulates the stability, the activity, the localization and the transport of proteins. Ubiquitination involves different enzymatic activities, in which the E3 ligases catalyze the last step recruiting of the target for labelling with ubiquitin. Genomic analyses have shown that the ubiquitin-proteasome system involves a large number of proteins in plants, as approximately 5% of the total protein belongs to this pathway. In contrast to the high number of E3 ligases of ubiquitin identified, very few proteins regulated by ubiquitination have been described. To solve this, we have undertaken a new proteomic approach aimed to identify proteins modified with ubiquitin. This is based on affinity purification and identification for ubiquitinated proteins using the ubiquitin binding domain (UBA) polypeptide of the P62 protein attached to agarose beads. This P62-agarose matrix is capable of specifically binding ubiquitinated proteins. These bound proteins were digested with trypsin and the peptides separated by HPLC chromatography, spotted directly onto a MALDI target and analyzed by MALDI-TOF/TOF off-line coupled LC/MALDI-MS/MS. A total of 200 putative ubiquitinated proteins were identified. From these we found that several of the putative targets were already described in plants, as well as in other organisms, as ubiquitinated proteins. In addition, we have found that some of these proteins were indeed modified with ubiquitin in vivo. Taken together, we have shown that this approach is useful for identifying ubiquitinated protein in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号