首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
An ultrastructural investigation showed that there was a neurohaemal organ in the wall of the ampulla of the antennal pulsatile organ. The neurosecretory axon terminals occurred singly or in small groups rather than closely packed together as in other neurohaemal organs. All axons contained the same type of neurosecretory granule. The granules had varying electron density and a diameter in the range 1000–2500 Å. Some terminals contained small, elliptical, electron-transparent vesicles and the axolemma was apposed to the stroma. Other terminals were large and enveloped by glial tissue and the contents of the terminals exhibited varying degrees of autolytic degeneration. Autolysis was characterized by the occurrence of dense bodies and multilaminate bodies which enclosed mitochondria and neurosecretory granules. It was suggested that the neurosecretory material affects antennal function.  相似文献   

2.
Summary

Corpora cardiaca of Locusta migratoria, contain the axon endings of the neurosecretory cells of the brain and store in neurosecretory granules a variety of mostly unidentified neurohormones. Homogenates of corpora cardiaca served to generate a battery of monoclonal antibodies screened by their immunoreactivity to antigenic determinants present in the neurosecretory cells of the pars intercerebralis in the brain. The results are illustrated with three selected monoclonal antibodies which recognize antigens located within the neurosecretory granules of the pericarya of the pars intercerebralis, the cerebro-cardiac axon tracts and the axonic endings in the neurohaemal part of the corpora cardiaca. The apparent molecular weights of these antigenes were determined by Western blotting. We discuss the potential of these monoclonal antibodies for the isolation and structure determination of neuropeptides.  相似文献   

3.
Summary Two types of glandular cells are present in the pars intermedia of the loach, Misgurnus fossilis. Basophils are characterized by the presence in their cytoplasm of numerous secretory granules containing electron-dense and homogeneous material and by scarce endoplasmic reticulum. Weak acidophils contain in their cytoplasm abundant endoplasmic reticulum and numerous granules of different electron densities.The distal part of the neurohypophysis is composed of several types of neurosecretory axons, strongly branched pituicytes, numerous capillaries, and connective tissue elements. The axon terminals form the neuroglandular, neurovascular and neurointerstitial contacts. Some axon terminals are closely apposed to the basement membrane separating neurohypophysis from meta-adenohypophysis. At points of absence of continuity of this membrane, some neurosecretory axons become directly contiguous with cytoplasmic membranes of the intermedia cells.The investigation was partly supported by a research grant from the Zoological Committee of the Polish Academy of Sciences.  相似文献   

4.
Summary Evidence is presented that neurons in the adult Colorado potato beetle contain a proctolin-like substance. By use of immunocytochemical methods the location of immunoreactive neurons in the central and stomatogastric nervous systems is described. No such neurons were found in the proto- and deutocerebrum or optic lobe. Few immunoreactive neurons are present in the tritocerebrum and numerous proctolin-immunoreactive neurons occur in all ventral ganglia and in the frontal ganglion. Two groups of neurosecretory cells in the suboesophageal ganglion contain a proctolin-immunoreactive substance. In these cells this material is co-localized with a bovine pancreatic polypeptide/FMRF amide-like substance and with a vasopressin/vasotocin/oxytocin-like substance. Proctolin-immunoreactive axon terminals were found on the musculature of the fore- and hindgut and of the vas deferens, and on some segmental muscles. Furthermore, proctolin-immunoreactive neurosecretory axon terminals were found in the corpus cardiacum. The proctolin-like substance may therefore function both as a neurotransmitter/neuromodulator and as a neurohormone. The presence of a proctolin-like substance was also demonstrated with a sensitive bioassay. On fractionation of extracts of the nervous systems of Leptinotarsa decemlineata with high performance liquid chromatography most of the proctolin-like bioactive material comigrated with authentic proctolin. This shows that a proctolin-like substance in this insect is very similar to, if not identical with, the known pentapeptide proctolin.  相似文献   

5.
Summary The cerebral caudodorsal cells (CDC) of the pulmonate snail Lymnaea stagnalis are involved in the control of egg laying and associated behaviour by releasing various peptides. One of these is the ovulation hormone (CDCH). The cellular dynamics of this peptide have been studied using an antiserum raised to a synthetic portion of CDCH comprising the 20–36 amino acid sequence. With the secondary antibody-immunogold technique, specific immunoreactivity was found in all CDC. Rough endoplasmic reticulum and Golgi apparatus showed very little reactivity as did secretory granules that were in the process of being budded off from the Golgi apparatus. However, secretory granules that were being discharged from the Golgi apparatus, were strongly reactive. Secretory granules within lysosomal structures revealed various degrees of immunoreactivity, indicating their graded breakdown. Large electrondense granules, formed by the Golgi apparatus and thought to be involved in intracellular degradation of secretory material, were only slightly reactive. In the axon terminals secretory granules released their contents into the haemolymph by the process of exocytosis. The exteriorized contents were in most cases clearly immunopositive.The possibility has been discussed that CDCH is cleaved from its polypeptide precursor within secretory granules during granule discharge from the Golgi apparatus; subsequently, the mature secretory granules would be transported towards the neurohaemal axon terminals where they release CDCH into the haemolymph. Superfluous secretory material would be degraded by the lysosomal system including the large electron-dense granules.  相似文献   

6.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

7.
Summary An ultrastructural study of the sinus gland of the crayfish Astacus leptodactylus demonstrates that this gland is mainly composed of glial cells, axons and axon terminals. On the basis of the size, shape and electron density of the neurosecretory granules, we could distinguish five different types of axon terminals.  相似文献   

8.
The ultrastructure of the retrocerebral endocrine-aortal complex of the earwig, Euborellia annulipes has been studied. The space between the inner and outer stromal layers of the aorta is occupied by numerous axon terminals and pre-terminals containing large electron dense granules (NS-I) of approximately 100 to 220 nm and a few axon terminals having small granules (NS-II) of approximately 40 to 90 nm; the former appear to belong to medial neurosecretory A-cells, and the latter to the B-cells of the brain. The corpora cardiaca consist of intrinsic cells with mitochondria and multivesicular bodies. Granules of type NS-II and NS-III are observed in the axon terminals and pre-terminals in the corpora cardiaca. The NS-II are identical to those found in the aorta and are probably the secretions of the lateral B-cells. Granules of type NS-III are 40 to 120 nm and electron dense, and are intrinsic in origin. Similar granules occur in the intrinsic cells of the corpora cardiaca. E M studies have confirmed the rôle of the aorta as a neurohaemal organ for the medial neurosecretory cells, and the corpora cardiaca for the lateral neurosecretory cells of the brain. The corpora cardiaca also act as a reservoir for the intrinsic secretion. The corpus allatum is a solid body consisting of parenchymal cells with prominent nuclei, mitochondria, and endoplasmic reticulum. In between its cells are occasional glial cells and also neurosecretory as well as non-neurosecretory axons. The gland is devoid of A-cell NSM.  相似文献   

9.
Summary Neuronal pathways in the retrocerebral complex and thoracico-abdominal ganglionic mass of the blowflyCalliphora vomitoria have been identified immunocytochemically with antisera against the extended-enkephalins, Met-enkephalin-Arg6-Phe7 (Met-7) and Met-enkephalin-Arg6-Gly7-Leu8 (Met-8). Neurons of the hypocerebral ganglion, immunoreactive to Met-8, have axons in the crop duct nerve and terminals in muscles of the crop and its duct. Certain neurons of the hypocerebral ganglion are also immunoreactive to Met-7, and axons from these cells innervate the heart. Met-8 immunoreactive nerve terminals invest the cells of the corpus allatum. The source of this material is believed to ve a single pair of lateral neurosecretory cells in the brain. There is no Met-7 immunoreactive material in the corpus allatum. In the corpus cardiacum neither Met-7 nor Met-8 immunoreactivity is present in the cells. However, in the neuropil of the gland certain fibres, with their origins elsewhere, do contain Met-8 immunoreactivity. The most prominent neurons in the thoracic ganglion are the Met-7 immunoreactive ventral thoracic neurosecretory cells, axons from which project to neurohaemal areas in the dorsal neural sheath and also, via the ventral connective, to the brain. Co-localisation studies show that the perikarya of these cells are immunoreactive to antisera raised against several vertebrate-type peptides, such as Met-7, gastrin/cholecystokinin and pancreatic polypeptide. However, their axons and terminals show varying amounts of the peptides, suggesting differential transport and utilisation. Only a few cells in the thoracic ganglion are immunoreactive to Met-8 antisera. These lie close to the nerve bundles suppling the legs. In the abdominal ganglion, Met-8 immunoreactive neurons project to the muscles of the hindgut. This study suggests that the extended enkephalin-like peptides ofCalliphora may have a variety of different roles: as neurotransmitter or neuromodulator substances; in the direct innervation of effector organs; and as neurohormones.  相似文献   

10.
Summary In the posterior part of the brain of the protandric polychaete Ophryotrocha puerilis neurosecretory cells form prominent axon terminals. The terminals are arranged in two complexes. The perikarya of these presumably monopolar neurons are scattered in the anterior part of the cerebral perikaryal layer. In females the terminals store large amounts of neurosecretory material. It has been suggested earlier that neurosecretions of the terminals may play a role during sex reversal from females to males. Application of histamine caused the release of neurosecretory material from the respective terminals in females. However, this discharge was not followed by sex reversal. Application of reserpine had no influence on the terminals. Neither by in vivo observation nor by ultrastructural analysis any effect of reserpine on the terminal complexes could be observed. In isolated terminals filled with neurosecretory material from females, catecholamines could not be detected by HPLC. Also, polyclonal antibodies against dopamine did not stain the terminal complexes. Furthermore, the complexes did not develop any fluorescence after glyoxylic acid treatment. Therefore, the present results contradict the hypothesis that the neurosecretory material of the respective axon terminals is catecholaminergic and that it is involved in sex differentiation. The function of the secretory neurons studied here remains unclear.Abbreviations AT axon terminal - CA catecholamine(s) - DA dopamine - DAB diaminobenzidine - GA glyoxylic acid - GIF glyoxylic acid-induced fluorescence - LY Lucifer Yellow - MB methylene blue - NSM neurosecretory material - OTH ootropic hormone - TC terminal complex  相似文献   

11.
Summary

Prominent secretory nerve endings are found at the posterior margin of the supraesophageal ganglion in the protandric polychaete, Ophryotrocha puerilis. Solitary juveniles developing as primary males, and then as females, accumulate neurosecretory material in the nerve endings which thereby swell and become filled with granules. Females maintained in mass culture have similar terminals, whereas in secondary males (males which had been females before), these axon terminals are very small and contain no material. When such males are isolated, they accumulate neurosecretory material within the nerve endings and become females. When formerly isolated females are put together, their stores of neurosecretory material are rapidly discharged. Subsequently they lay egg masses and switch to the male state. These effects are mediated by a pheromone released during social contact of formerly isolated females. The complexity of the relationship between neurosecretory activity and sexual state is indicated by the situation in animals maintained in pairs, when both male and female partners have swollen nerve endings packed with secretory material.  相似文献   

12.
A diverse afferent synaptic input to immunostained oxytocin magnocellular neurons of the paraventricular nucleus of the rat hypothalamus is described. By electron microscopy, immunoreactive material is present within cell bodies and neuronal processes and it is associated primarily with neurosecretory granules and granular endoplasmic reticulum. Afferent axon terminals synapse on perikarya, dendritic processes, and possibly axonal processes of oxytocin-containing neurons. The presynaptic elements of the synaptic complexes contain clear spherical vesicles, a mixture of clear spherical and ellipsoidal vesicles, or a mixture of clear and dense-centered vesicles. The postsynaptic membranes of oxytocinergic cells frequently show a prominent coating of dense material on the cytoplasmic face which gives the synaptic complex a marked asymmetry.  相似文献   

13.
The incidence of diapause was shown to be determined humorally during the larval-pupal ecdysis by means of brain extirpation experiments.On the basis of this observation, light and electron microscopic changes in the neurosecretory type II cells in the pars intercerebralis-corpus cardiacum system during pharate pupal and early pupal stages were examined in insects reared under long day-length (non-diapause individuals) and in insects reared under short day-length (diapause individuals). In the diapause individuals, neurosecretory granules in NS-II cells increased during the pupal instar and large aggregates of granules packed the cytoplasm. Thereafter, inclusion bodies showing cytoplasmic breakdown of the granules appeared.In the non-diapause individuals, on the contrary, electron micrographs suggesting the release of neurosecretory material from axon terminals were obtained just after the pupal ecdysis. There were very few granules, with many Golgi bodies and much rough ER 8 to 12 hr after the ecdysis.It is concluded that adult development is determined by the release of neurosecretory material from the axon terminals of NS-II cells at the larval-pupal ecdysis. If release does not occur, the pupae enter diapause. It is also thought that differences in day-length during the larval stages influence the activities of NS-II cells before pupation.  相似文献   

14.
The sorting domain for the different types of granules and small synaptic vesicles in neurosecretion is still largely a matter of debate. Some authors state that an exocytotic process has to precede granule formation. In previous studies, we favoured the idea that neurosecretory packages in terminals are assembled from axonal reticulum membranes simply by differentiation at the axon ending, the axonal reticulum being an extension of the Golgi apparatus. By ligating bovine splenic nerve, a de novo differentiation can be induced. After ligation, granules and granulo-tubular complexes appear. They were immunoreactive for SV2, VMAT2 and synaptobrevin II, which are all known to be highly enriched in large dense granules. Previously the granulo-tubular structures have already been recognized as precursor stadia of neurosecretory granules.It is concluded that at a de novo differentiation, a sorting out and aggregation is taking place of molecules typical for large dense granules. The small dense granules and tubules can be considered unripe, precursor forms of the large dense granules. All this occurs in the absence of signs of exocytosis. The present findings corroborate the view that granule formation occurs via local differentiation at an axon ending.  相似文献   

15.
The ultrastructure of the sinus gland of the fiddler crab, Uca pugnax, was investigated and found to be similar to that in other crustaceans. Five types of neurosecretory axon terminals were tentatively identified on the basis of the size, shape, and electron density of granules within the axons. Release of neuro-secretory material appears to be by exocytosis.  相似文献   

16.
Summary Two groups of cerebral dorsal cells of the pulmonate snail Planorbarius corneus stain positively with antisera raised against synthetic fragments of the B- and C-chain of the molluscan pro-insulin-related prohormone, proMIP-I, of another pulmonate snail, Lymnaea stagnalis. At the light-microscopic level the somata of the dorsal cells and their axons and neurohemal axon terminals in the periphery of the paired median lip nerves are immunoreactive with both antisera. Furthermore, the canopy cells in the lateral lobes of the cerebral ganglia are positive. In addition, MIPB-immunoreactive neurons are found in most other ganglia of the central nervous system. At the ultrastructural level, pale and dark secretory granules are found in somata and axon terminals of the dorsal cells. Dark granules are about 4 times as immunoreactive to both antisera as pale granules. Release of anti-MIPB- and anti-MIPC-immunopositive contents of the secretory granules by exocytosis is apparent in material treated according to the tannic acid method. It is concluded that the dorsal and canopy cells synthesize a molluscan insulin-related peptide that is packed in the cell body into secretory granules and that is subsequently transported to the neurohemal axon terminals and released into the hemolymph by exocytosis. Thus, MIP seems to act as a neurohormone on peripheral targets. On the basis of the analogy between the dorsal cells and the MIP-producing cells in L. stagnalis, it is proposed that the dorsal cells of P. corneus are involved in the control of body growth and associated processes.  相似文献   

17.
Synapses between neurons with corticotropin-releasing-factor-(CRF)-like immunoreactivities and other immunonegative neurons in the hypothalamus of colchicine-treated rats, especially in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON) were observed by immunocytochemistry using CRF antiserum. The immunoreactive nerve cell bodies and fibers were numerous in both the PVN and the SON. The CRF-containing neurons had synaptic contacts with immunonegative axon terminals containing a large number of clear synaptic vesicles alone or combined with a few dense-cored vesicles. We also found CRF-like immunoreactive axon terminals making synaptic contacts with other immunonegative neuronal cell bodies and fibers. And since some postsynaptic immunonegative neurons contained many large neurosecretory granules, they are considered to be magnocellular neurosecretory cells. These findings suggest that CRF functions as a neurotransmitter and/or modulator in addition to its function as a hormone.  相似文献   

18.
Summary Separate antisera were raised to the N- and C-terminal half of the diuretic hormone from Manduca sexta. Antisera against the two halves of this peptide recognized the same cells in M. sexta, and preabsorption of the antisera with the peptides used as antigens abolished the immunoreactivity, confirming their specificity. The antisera reacted with two median neurosecretory cells on each side of the protocerebral groove in larvae, and with a group of about 80 small median neurosecretory cells in the adult, as well as their axons to, and their axon terminals in, the corpora cardiaca. During the early pupal stages, small cells, which are possibly derived from a common neuroblast, differentiate into immunoreactive neurosecretory cells, which explains the large increase in cell numbers in the adult. In the sleepy sulphur butterfly, Eurema nicippe, homologous median neurosecretory cells in the adult were immunoreactive with both antisera.  相似文献   

19.
Summary Particular neurons in the nervous system of the Colorado potato beetle, Leptinotarsa decemlineata, are recognized by antisera against bovine pancreatic polypeptide and FMRFamide. Both antisera react with the same neurons. Solid phase absorptions showed that antiserum against bovine pancreatic polypeptide cross-reacts with FMRFamide, whereas antiserum against FMRFamide cross-reacts with bovine pancreatic polypeptide. Some of the immunoreactive neurons have axons branching extensively within the neuropile, which suggests that the peptide is used as transmitter. In the corpus cardiacum, a neurohaemal organ in insects, numerous immunoreactive axon terminals are present. Here, the peptide material is presumably released as a hormone.  相似文献   

20.
Summary In the brain of the adult worker bee (Apis mellifica) prolactin-like (PRL) immunoreactive cells were localized in the lateral neurosecretory cell region and the subesophageal ganglion by means of the PAP procedure. These cells emit nerve fibres which pass through the neuropile of the brain to the corpora cardiaca where a great number of immunoreactive axon terminals is present. Tests with antisera against rat pituitary prolactin and human luteinizing hormone were negative. These results indicate that hPRL material is produced in neurosecretory cells of the bee brain and transferred via axons to the corpora cardiaca for storage and subsequent release into haemolymph.This work is part of the Ph. D. thesis of K.P.S.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号