首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial respiratory chain consists of multi-subunit protein complexes embedded in the inner membrane. Although the majority of subunits are encoded by nuclear genes and are imported into mitochondria, 13 subunits in humans are encoded by mitochondrial DNA. The coordinated assembly of subunits encoded from two genomes is a poorly understood process, with assembly pathway defects being a major determinant in mitochondrial disease. In this study, we monitored the assembly of human respiratory complexes using radiolabeled, mitochondrially encoded subunits in conjunction with Blue Native polyacrylamide gel electrophoresis. The efficiency of assembly was found to differ markedly between complexes, and intermediate complexes containing newly synthesized mitochondrial DNA-encoded subunits could be observed for complexes I, III, and IV. In particular, we detected human cytochrome b as a monomer and as a component of a novel approximately 120 kDa intermediate complex at early chase times before being totally assembled into mature complex III. Furthermore, we show that this approach is highly suited for the rapid detection of respiratory complex assembly defects in fibroblasts from patients with mitochondrial disease and, thus, has potential diagnostic applications.  相似文献   

2.
In humans, complex I of the respiratory chain is composed of seven mitochondrial DNA (mtDNA)-encoded and 38 nuclear-encoded subunits that assemble together in a process that is poorly defined. To date, only two complex I assembly factors have been identified and how each functions is not clear. Here, we show that the human complex I assembly factor CIA30 (complex I intermediate associated protein) associates with newly translated mtDNA-encoded complex I subunits at early stages in their assembly before dissociating at a later stage. Using antibodies we identified a CIA30-deficient patient who presented with cardioencephalomyopathy and reduced levels and activity of complex I. Genetic analysis revealed the patient had mutations in both alleles of the NDUFAF1 gene that encodes CIA30. Complex I assembly in patient cells was defective at early stages with subunits being degraded. Complementing the deficiency in patient fibroblasts with normal CIA30 using a novel lentiviral system restored steady-state complex I levels. Our results indicate that CIA30 is a crucial component in the early assembly of complex I and mutations in its gene can cause mitochondrial disease.  相似文献   

3.
Sixteen years ago, we demonstrated, by immunological and biochemical approaches, that seven subunits of complex I are encoded in mitochondrial DNA (mtDNA) and synthesized on mitochondrial ribosomes in mammalian cells. More recently, we carried out a biochemical, molecular, and cellular analysis of a mutation in the gene for one of these subunits, ND4, that causes Leber's hereditary optic neuropathy (LHON). We demonstrated that, in cells carrying this mutation, the mtDNA-encoded subunits of complex I are assembled into a complex, but the rate of complex I-dependent respiration is decreased. Subsequently, we isolated several mutants affected in one or another of the mtDNA-encoded subunits of complex I by exposing established cell lines to high concentrations of rotenone. Our analyses of these mtDNA mutations affecting subunits of complex I have shown that at least two of these subunits, ND4 and ND6, are essential for the assembly of the enzyme. ND5 appears to be located at the periphery of the enzyme and, while it is not essential for assembly of the other mtDNA-encoded subunits into a complex, it is essential for complex I activity. In fact, the synthesis of the ND5 polypeptide is rate limiting for the activity of the enzyme.  相似文献   

4.
Deficiencies in the activity of complex I (NADH: ubiquinone oxidoreductase) are an important cause of human mitochondrial disease. Complex I is composed of at least 46 structural subunits that are encoded in both nuclear and mitochondrial DNA. Enzyme deficiency can result from either impaired catalytic efficiency or an inability to assemble the holoenzyme complex; however, the assembly process remains poorly understood. We have used two-dimensional Blue-Native/SDS gel electrophoresis and a panel of 11 antibodies directed against structural subunits of the enzyme to investigate complex I assembly in the muscle mitochondria from four patients with complex I deficiency caused by either mitochondrial or nuclear gene defects. Immunoblot analyses of second dimension denaturing gels identified seven distinct complex I subcomplexes in the patients studied, five of which could also be detected in nondenaturing gels in the first dimension. Although the abundance of these intermediates varied among the different patients, a common constellation of subcomplexes was observed in all cases. A similar profile of subcomplexes was present in a human/mouse hybrid fibroblast cell line with a severe complex I deficiency due to an almost complete lack of assembly of the holoenzyme complex. The finding that diverse causes of complex I deficiency produce a similar pattern of complex I subcomplexes suggests that these are intermediates in the assembly of the holoenzyme complex. We propose a possible assembly pathway for the complex, which differs significantly from that proposed for Neurospora, the current model for complex I assembly.  相似文献   

5.
The mitochondrial NADH dehydrogenase (complex I) in mammalian cells is a multimeric enzyme consisting of approximately 40 subunits, 7 of which are encoded in mitochondrial DNA (mtDNA). Very little is known about the function of these mtDNA-encoded subunits. In this paper, we describe the efficient isolation from a human cell line of mutants affected in any of these subunits. In the course of analysis of eight mutants of the human cell line VA2B selected for their resistance to high concentrations of the complex I inhibitor rotenone, seven were found to be respiration deficient, and among these, six exhibited a specific defect of complex I. Transfer of mitochondria from these six mutants into human mtDNA-less cells revealed, surprisingly, in all cases a cotransfer of the complex I defect but not of the rotenone resistance. This result indicated that the rotenone resistance resulted from a nuclear mutation, while the respiration defect was produced by an mtDNA mutation. A detailed molecular analysis of the six complex I-deficient mutants revealed that two of them exhibited a frameshift mutation in the ND4 gene, in homoplasmic or in heteroplasmic form, resulting in the complete or partial loss, respectively, of the ND4 subunit; two other mutants exhibited a frameshift mutation in the ND5 gene, in near-homoplasmic or heteroplasmic form, resulting in the ND5 subunit being undetectable or strongly decreased, respectively. It was previously reported (G. Hofhaus and G. Attardi, EMBO J. 12:3043-3048, 1993) that the mutant completely lacking the ND4 subunit exhibited a total loss of NADH:Q1 oxidoreductase activity and a lack of assembly of the mtDNA-encoded subunits of complex I. By contrast, in the mutant characterized in this study in which the ND5 subunit was not detectable and which was nearly totally deficient in complex I activity, the capacity to assemble the mtDNA-encoded subunits of the enzyme was preserved, although with a decreased efficiency or a reduced stability of the assembled complex. The two remaining complex I-deficient mutants exhibited a normal rate of synthesis and assembly of the mtDNA-encoded subunits of the enzyme, and the mtDNA mutation(s) responsible for their NADH dehydrogenase defect remains to be identified. The selection scheme used in this work has proven to be very valuable for the isolation of mutants from the VA2B cell line which are affected in different mtDNA-encoded subunits of complex I and may be applicable to other cell lines.  相似文献   

6.
The assembly of complex I (NADH-ubiquinone oxidoreductase) is a complicated process, requiring the integration of 45 subunits encoded by both nuclear and mitochondrial DNAs into a structure of approximately 1 MDa. A number of “assembly factors” that aid complex I biogenesis have recently been described, including C8orf38. This protein was identified as an assembly factor by its evolutionary conservation in organisms containing complex I and by a C8orf38 mutation in a patient presenting with Leigh syndrome and isolated complex I deficiency. In this report, we have undertaken the characterization of C8orf38 and its role in complex I assembly. Analysis of mitochondria from fibroblasts of a patient harboring a C8orf38 mutation showed almost undetectable levels of steady-state complex I and defective biogenesis of the mtDNA-encoded subunit ND1. Complementation with wild-type C8orf38 restored the levels of both ND1 and complex I, confirming the C8orf38 mutation as the cause of the complex I defect in the patient. In the absence of ND1 in patient cells, early- and mid-stage intermediate complexes were still formed; however, assembly of late-stage intermediates was impaired, indicating a convergence point in the assembly process. While C8orf38 appears to behave at a step in complex I biogenesis similar to that of the assembly factor C20orf7, complementation studies showed that both proteins are required for ND1 synthesis/stabilization. We conclude that C8orf38 is a crucial factor required for the translation and/or integration of ND1 into an early-stage assembly intermediate and that mutation of C8orf38 disrupts the initial stages of complex I biogenesis.  相似文献   

7.
The biogenesis and function of the mitochondrial respiratory chain (RC) involve the organization of RC enzyme complexes in supercomplexes or respirasomes through an unknown biosynthetic process. This leads to structural interdependences between RC complexes, which are highly relevant from biological and biomedical perspectives, because RC defects often lead to severe neuromuscular disorders. We show that in human cells, respirasome biogenesis involves a complex I assembly intermediate acting as a scaffold for the combined incorporation of complexes III and IV subunits, rather than originating from the association of preassembled individual holoenzymes. The process ends with the incorporation of complex I NADH dehydrogenase catalytic module, which leads to the respirasome activation. While complexes III and IV assemble either as free holoenzymes or by incorporation of free subunits into supercomplexes, the respirasomes constitute the structural units where complex I is assembled and activated, thus explaining the significance of the respirasomes for RC function.  相似文献   

8.
NADH:ubiquinone reductase, the respiratory chain complex I of mitochondria, consists of some 25 nuclear-encoded and seven mitochondrially encoded subunits, and contains as redox groups one FMN, probably one internal ubiquinone and at least four iron-sulphur clusters. We are studying the assembly of the enzyme in Neurospora crassa. The flux of radioactivity in cells that were pulse-labelled with [35S]methionine was followed through immunoprecipitable assembly intermediates into the holoenzyme. Labelled polypeptides were observed to accumulate transiently in a Mr 350,000 intermediate complex. This complex contains all mitochondrially encoded subunits of the enzyme as well as subunits encoded in the nucleus that have no homologous counterparts in a small, merely nuclear-encoded form of the NADH:ubiquinone reductase made by Neurospora crassa cells poisoned with chloramphenicol. With regard to their subunit compositions, the assembly intermediate and small NADH:ubiquinone reductase complement each other almost perfectly to give the subunit composition of the large complex I. These results suggest that two pathways exist in the assembly of complex I that independently lead to the preassembly of two major parts, which subsequently join to form the complex. One preassembled part is related to the small form of NADH:ubiquinone reductase and contributes most of the nuclear-encoded subunits, FMN, three iron-sulphur clusters and the site for the internal ubiquinone. The other part is the assembly intermediate and contributes all mitochondrially encoded subunits, one iron-sulphur cluster and the catalytic site for the substrate ubiquinone. We discuss the results with regard to the evolution of the electron pathway through complex I.  相似文献   

9.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, Iα, Iβ and Iλ, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   

10.
Mitochondria maintain genome and translation machinery to synthesize a small subset of subunits of the oxidative phosphorylation system. To build up functional enzymes, these organellar gene products must assemble with imported subunits that are encoded in the nucleus. New findings on the early steps of cytochrome c oxidase assembly reveal how the mitochondrial translation of its core component, cytochrome c oxidase subunit 1 (Cox1), is directly coupled to the assembly of this respiratory complex.  相似文献   

11.
Mitochondrial NADH-ubiquinone oxidoreductase (complex I) is the largest enzyme of the oxidative phosphorylation system, with subunits located at the matrix and membrane domains. In plants, holocomplex I is composed of more than 40 subunits, 9 of which are encoded by the mitochondrial genome (NAD subunits). In Nicotiana sylvestris, a minor 800-kDa subcomplex containing subunits of both domains and displaying NADH dehydrogenase activity is detectable. The NMS1 mutant lacking the membrane arm NAD4 subunit and the CMSII mutant lacking the peripheral NAD7 subunit are both devoid of the holoenzyme. In contrast to CMSII, the 800-kDa subcomplex is present in NMS1 mitochondria, indicating that it could represent an assembly intermediate lacking the distal part of the membrane arm. L-galactono-1,4-lactone dehydrogenase (GLDH), the last enzyme in the plant ascorbate biosynthesis pathway, is associated with the 800-kDa subcomplex but not with the holocomplex. To investigate possible relationships between GLDH and complex I assembly, we characterized an Arabidopsis thaliana gldh insertion mutant. Homozygous gldh mutant plants were not viable in the absence of ascorbate supplementation. Analysis of crude membrane extracts by blue native and two-dimensional SDS-PAGE showed that complex I accumulation was strongly prevented in leaves and roots of Atgldh plants, whereas other respiratory complexes were found in normal amounts. Our results demonstrate the role of plant GLDH in both ascorbate biosynthesis and complex I accumulation.  相似文献   

12.
NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria is a complicated, multi-subunit, membrane-bound assembly. Recently, the subunit compositions of complex I and three of its subcomplexes have been reevaluated comprehensively. The subunits were fractionated by three independent methods, each based on a different property of the subunits. Forty-six different subunits, with a combined molecular mass of 980 kDa, were identified. The three subcomplexes, I alpha, I beta and I lambda, correlate with parts of the membrane extrinsic and membrane-bound domains of the complex. Therefore, the partitioning of subunits amongst these subcomplexes has provided information about their arrangement within the L-shaped structure. The sequences of 45 subunits of complex I have been determined. Seven of them are encoded by mitochondrial DNA, and 38 are products of the nuclear genome, imported into the mitochondrion from the cytoplasm. Post-translational modifications of many of the nuclear encoded subunits of complex I have been identified. The seven mitochondrially encoded subunits, and seven of the nuclear encoded subunits, are homologues of the 14 subunits found in prokaryotic complexes I. They are considered to be sufficient for energy transduction by complex I, and they are known as the core subunits. The core subunits bind a flavin mononucleotide (FMN) at the active site for NADH oxidation, up to eight iron-sulfur clusters, and one or more ubiquinone molecules. The locations of some of the cofactors can be inferred from the sequences of the core subunits. The remaining 31 subunits of bovine complex I are the supernumerary subunits, which may be important either for the stability of the complex, or for its assembly. Sequence relationships suggest that some of them carry out reactions unrelated to the NADH:ubiquinone oxidoreductase activity of the complex.  相似文献   

13.
Complex I (NADH:ubiquinone oxidoreductase) is the first and largest multimeric complex of the mitochondrial respiratory chain. Human complex I comprises seven subunits encoded by mitochondrial DNA and 38 nuclear-encoded subunits that are assembled together in a process that is only partially understood. To date, mutations causing complex I deficiency have been described in all 14 core subunits, five supernumerary subunits, and four assembly factors. We describe complex I deficiency caused by mutation of the putative complex I assembly factor C20orf7. A candidate region for a lethal neonatal form of complex I deficiency was identified by homozygosity mapping of an Egyptian family with one affected child and two affected pregnancies predicted by enzyme-based prenatal diagnosis. The region was confirmed by microcell-mediated chromosome transfer, and 11 candidate genes encoding potential mitochondrial proteins were sequenced. A homozygous missense mutation in C20orf7 segregated with disease in the family. We show that C20orf7 is peripherally associated with the matrix face of the mitochondrial inner membrane and that silencing its expression with RNAi decreases complex I activity. C20orf7 patient fibroblasts showed an almost complete absence of complex I holoenzyme and were defective at an early stage of complex I assembly, but in a manner distinct from the assembly defects caused by mutations in the assembly factor NDUFAF1. Our results indicate that C20orf7 is crucial in the assembly of complex I and that mutations in C20orf7 cause mitochondrial disease.  相似文献   

14.
Tom7 is a component of the translocase of the outer mitochondrial membrane (TOM) and assembles into a general import pore complex that translocates preproteins into mitochondria. We have identified the human Tom7 homolog and characterized its import and assembly into the mammalian TOM complex. Tom7 is imported into mitochondria in a nucleotide-independent manner and is anchored to the outer membrane with its C terminus facing the intermembrane space. Unlike studies in fungi, we found that human Tom7 assembles into an approximately 120-kDa import intermediate in HeLa cell mitochondria. To detect subunits within this complex, we employed a novel supershift analysis whereby mitochondria containing newly imported Tom7 were incubated with antibodies specific for individual TOM components prior to separation by blue native electrophoresis. We found that the 120-kDa complex contains Tom40 and lacks receptor components. This intermediate can be chased to the stable approximately 380-kDa mammalian TOM complex that additionally contains Tom22. Overexpression of Tom22 in HeLa cells results in the rapid assembly of Tom7 into the 380-kDa complex indicating that Tom22 is rate-limiting for TOM complex formation. These results indicate that the levels of Tom22 within mitochondria dictate the assembly of TOM complexes and hence may regulate its biogenesis.  相似文献   

15.
Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high–molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.  相似文献   

16.
The presence of mitochondrial respiratory complex I in the pathogenic bloodstream stages of Trypanosoma brucei has been vigorously debated: increased expression of mitochondrially encoded functional complex I mRNAs is countered by low levels of enzymatic activity that show marginal inhibition by the specific inhibitor rotenone. We now show that epitope-tagged versions of multiple complex I subunits assemble into α and β subcomplexes in the bloodstream stage and that these subcomplexes require the mitochondrial genome for their assembly. Despite the presence of these large (740- and 855-kDa) multisubunit complexes, the electron transport activity of complex I is not essential under experimental conditions since null mutants of two core genes (NUBM and NUKM) showed no growth defect in vitro or in mouse infection. Furthermore, the null mutants showed no decrease in NADH:ubiquinone oxidoreductase activity, suggesting that the observed activity is not contributed by complex I. This work conclusively shows that despite the synthesis and assembly of subunit proteins, the enzymatic function of the largest respiratory complex is neither significant nor important in the bloodstream stage. This situation appears to be in striking contrast to that for the other respiratory complexes in this parasite, where physical presence in a life-cycle stage always indicates functional significance.  相似文献   

17.
Hubbs AE  Roy H 《Plant physiology》1993,101(2):523-533
In higher plants, ribulose bisphosphate carboxylase/oxygenase (Rubisco) consists of eight large "L" subunits, synthesized in chloroplasts, and eight small "S" subunits, synthesized as precursors in the cytosol. Assembly of these into holoenzyme occurs in the chloroplast stroma after import and processing of the S subunits. A chloroplast chaperonin interacts with the L subunits, which dissociate from the chaperonin before they assemble into holoenzyme. Our laboratory has reported L subunit assembly into Rubisco in chloroplast extracts after protein synthesis in leaves, intact chloroplasts, and most recently in membrane-free chloroplast extracts. We report here that the incorporation of in vitro-synthesized L subunits into holoenzyme depends on the conditions of L subunit synthesis. Rubisco assembly did not occur after L subunit synthesis at 160 mM KCI. When L subunit synthesis occurred at approximately 70 mM KCI, assembly depended on the temperature at which L subunit synthesis took place. These phenomena were the result of postsynthetic events taking place during incubation for protein synthesis. We separated these events from protein synthesis by lowering the temperature during protein synthesis. Lower temperatures supported the synthesis of full-length Rubisco L subunits. The assembly of these completed L subunits into Rubisco required intervening incubation with ATP, before addition of S subunits. ATP treatment mobilized L subunits from a complex with the chloroplast chaperonin 60 oligomer. Addition of 130 mM KCI at the beginning of the intervening incubation with ATP blocked the incorporation of L subunits into Rubisco. The inhibitory effect of high KCI was due to CI- and came after association of newly synthesized L subunits with chaperonin 60, but before S subunit addition. It is interesting that L subunits synthesized at [greater than or equal to]32[deg]C failed to assemble into Rubisco under any conditions. These results agree with previous results obtained in this laboratory using newly synthesized L subunits made in intact chloroplasts. They also show that assembly of in vitro-synthesized L subunits into Rubisco requires ATP, that CI- inhibits Rubisco assembly, and that synthesis temperature affects subsequent assembly competence of L subunits.  相似文献   

18.
The biogenesis of multimeric protein complexes of the inner mitochondrial membrane in yeast requires a number of nuclear-coded ancillary proteins. One of these, Pet100p, is required for cytochrome c oxidase. Previous studies have shown that Pet100p is not required for the synthesis, processing, or targeting of cytochrome c oxidase subunits to the mitochondrion nor for heme A biosynthesis. Here, we report that Pet100p does not affect the localization of cytochrome c oxidase subunit polypeptides to the inner mitochondrial membrane but instead functions after they have arrived at the inner membrane. We have also localized Pet100p to the inner mitochondrial membrane in wild type cells, where it is present in a subassembly (Complex A) with cytochrome c oxidase subunits VII, VIIa, and VIII. Pet100p does not interact with the same subunits after they have been assembled into the holoenzyme. In addition, we have identified two subassemblies that are present in pet100 null mutant cells: one subassembly (Complex A') is composed of subunits VII, VIIa, and VIII but not Pet100p, and another subassembly (Complex B) is composed of subunits Va and VI. Because pet100 null mutant cells lack assembled cytochrome c oxidase but accumulate Complexes A' and B it appears likely that these subassemblies of cytochrome c oxidase subunits are intermediates along an assembly pathway for holocytochrome c oxidase and that Pet100p functions in this pathway to facilitate the interaction(s) between Complex A' and other cytochrome c oxidase subassemblies and subunits.  相似文献   

19.
Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.  相似文献   

20.
Lushy A  Verchovsky L  Nechushtai R 《Biochemistry》2002,41(37):11192-11199
Photosystem I (PSI) is a photochemically active membrane protein complex that functions at the reducing site of the photosynthetic electron-transfer chain as plastocyanin-ferredoxin oxidoreductase. PsaE, a peripheral subunit of the PSI complex, plays an important role in the function of PSI. PsaE is involved in the docking of ferredoxin/flavodoxin to the PSI complex and also participates in the cyclic electron transfer around PSI. The molecular characterization of the assembly of newly synthesized PsaE in the thylakoid membranes or in isolated PSI complexes is the subject of the present study. For this purpose the Mastigocladus laminosus psaE gene was cloned and overexpressed in Escherichia coli, and the resulting PsaE protein was purified to homogeneity by affinity chromatography. The purified PsaE was then introduced into thylakoids isolated from M. laminosus, and the newly introduced PsaE subunit saturates the membrane. The solubilization and separation of the different thylakoid protein complexes indicated that PsaE accumulates specifically in its functional location, the PSI complex. A similar stable assembly was detected when PsaE was introduced into purified PSI complexes, i.e., in the absence of other thylakoid components. This strongly indicates that the information for the stable assembly of PsaE into PSI lies within the polypeptide itself and within other subunits of the PSI complex that interact with it. To determine the nature of these interactions, the assembly reaction was performed in conditions affecting the ionic/osmotic strength. We found that altering the ionic strength significantly affects the capability of PsaE to assemble into isolated thylakoids or PSI complexes, strongly supporting the fact that electrostatic interactions are formed between PsaE and other PSI subunits. Moreover, the data suggest that the formation of electrostatic interactions occurs concomitantly with an exchange step in which newly introduced PsaE replaces the subunit present in situ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号