首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterochromatin has been traditionally regarded as a genomic wasteland, but in the last three decades extensive genetic and molecular studies have shown that this ubiquitous component of eukaryotic chromosomes may perform important biological functions. In D. melanogaster, about 30 genes that are essential for viability and/or fertility have been mapped to the heterochromatin of the major autosomes. Thus far, the known essential genes exhibit a peculiar molecular organization. They consist of single-copy exons, while their introns are comprised mainly of degenerate transposons. Moreover, about one hundred predicted genes that escaped previous genetic analyses have been associated with the proximal regions of chromosome arms but it remains to be determined how many of these genes are actually located within the heterochromatin. In this overview, we present available data on the mapping, molecular organization and function of known vital genes embedded in the heterochromatin of chromosomes 2 and 3. Repetitive loci, such as Responder and the ABO elements, which are also located in the heterochromatin of chromosome 2, are not discussed here because they have been reviewed in detail elsewhere.  相似文献   

2.
We have isolated two yeast artificial chromosome (YAC) clones from Drosophila melanogaster that contain a small amount of dodeca satellite (a satellite DNA located in the centromeric region of chromosome 3) and sequences homologous to the telomeric retrotransposon HeT-A. Using these YACs as probes for fluorescence in situ hybridization to mitotic chromosomes, we have localized these HeT-A elements to the centric heterochromatin of chromosome 3, at region h55. The possible origin of these telomeric elements in a centromeric position is discussed. Received: 30 July 1999 / Accepted: 19 September 1999  相似文献   

3.
Domínguez A  Albornoz J 《Genetica》1999,105(3):239-248
297 element Southern pattern modifications previously detected in mutation accumulation lines of Drosophila melanogaster were further investigated by in situ hybridisation, Southern blotting with different combinations of genomic digest-probe, and PCR. Only one out of the nine pattern modifications studied could be interpreted as an excision and was detectable by in situ hybridisation to polytene chromosomes. Results were consistent with most pattern modifications being small rearrangements within the body of the element. In agreement with the existence of spontaneous rearrangements of this kind is the observation that many genomic copies of element 297 are defective and these are not limited to heterochromatin. These findings have important implications for the models of transposable element (TE) number regulation as well as for the study of genome evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
In the T(1;2)dor var7 multibreak rearrangement the distal 1A-2B segment of the X chromosome of Drosophila melanogaster is juxtaposed to an inverted portion of the heterochromatin of chromosome 2. Analysis of mitotic chromosomes by a series of banding techniques has permitted us precisely to locate the heterochromatic breakpoint of this translocation in the h42 region of 2R. Cloning and sequencing of the eu-heterochromatic junction revealed that the translocated 1A-2B fragment is joined to (AACAC)n repeats, which represent a previously undescribed satellite DNA in D. melanogaster. These repeated sequences have been estimated to account for about 1 Mb of the D. melanogaster genome. The repeats are located mainly in the Y chromosome and in the heterochromatin of the right arm of chromosome 2 (2Rh), where they are colocalized with the Stalker retrotransposon. Received: 3 October 1998 / Accepted: 3 December 1998  相似文献   

5.
The morphological characteristics of intercalary heterochromatin (IH) are compared with those of other types of silenced chromatin in the Drosophila melanogaster genome: pericentric heterochromatin (PH) and regions subject to position effect variegation (PEV). We conclude that IH regions in polytene chromosomes are binding sites of silencing complexes such as PcG complexes and of SuUR protein. Binding of these proteins results in the appearance of condensed chromatin and late replication of DNA, which in turn may result in DNA underreplication. IH and PH as well as regions subject to PEV have in common the condensed chromatin appearance, the localization of specific proteins, late replication, underreplication in polytene chromosomes, and ectopic pairing.  相似文献   

6.
Gene content proved to be less than expected in completely sequenced eukaryotic genomes. Moreover, gene number differs only three times between such distant organisms as human and Drosophila. Hence it is likely that the essential functional and structural differences between the two species mostly depend on the regulation of gene activity than on the set and quality of genes themselves. New data demonstrate that changes in chromatin structure play a greater role in the fine gene activity regulation than considered before. R.B. Khesin had foreseen many chromatin functions that only recently came to be recognized. Khesin was interested in genome inconstancy over his last years. A higher content of several important chromosomal proteins was recently revealed in chromatin of transposable genetic elements (TGE). The possible role of TGE in chromatin organization in the nucleus is considered.  相似文献   

7.
P. Capy  J. R. David  D. L. Hartl 《Genetica》1992,86(1-3):37-46
The population biology and molecular evolution of the transposable element mariner has been studied in the eight species of the melanogaster subgroup of the Drosophila subgenus Sophophora. The element occurs in D. simulans, D. mauritiana, D. sechellia, D. teissieri, and D. yakuba, but is not found in D. melanogaster, D. erecta, or D. orena. Sequence comparisons suggest that the mariner element was present in the ancestor of the species subgroup and was lost in some of the lineages. Most species contain both active and inactive mariner elements. A deletion of most of the 3 end characterizes many elements in D. teissieri, but in other species the inactive elements differ from active ones only by simple nucleotide substitutions or small additions/deletions. Active mariner elements from all species are quite similar in nucleotide sequence, although there are some-species-specific differences. Many, but not all, of the inactive elements are also quite closely related. The genome of D. mauritiana contains 20–30 copies of mariner, that of D. simulans 0–10, and that of D. sechellia only two copies (at fixed positions in the genome). The mariner situation in D. sechellia may reflect a reduced effective population size owing to the restricted geographical range of this species and its ecological specialization to the fruit of Morinda citrifolia.  相似文献   

8.
9.
In situ digestion of metaphase and polytene chromosomes and of interphase nuclei in different cell types ofDrosophila nasuta with restriction enzymes revealed that enzymes like AluI, EcoRI, HaeIII, Sau3a and SinI did not affect Giemsa-stainability of heterochromatin while that of euchromatin was significantly reduced; TaqI and SalI digested both heterochromatin and euchromatin in mitotic chromosomes. Digestion of genomic DNA with AluI, EcoRI, HaeIII, Sau3a and KpnI left a 23 kb DNA band undigested in agarose gels while withTaqI, no such undigested band was seen. TheAluI resistant 23 kb DNA hybridized insitu specifically with the heterochromatic chromocentre. It appears that the digestibility of heterochromatin region in genome ofDrosophila nasuta with the tested restriction enzymes is dependent on the availability of their recognition sites.  相似文献   

10.
Transposable P elements inserted in the heterochromatic Telomeric Associated Sequences on the X chromosome (1A site) of Drosophila melanogaster have a very strong capacity to elicit the P cytotype, a maternally transmitted condition which represses P element transposition and P-induced hybrid dysgenesis. This repressive capacity has previously been shown to be sensitive to mutant alleles of the gene Su(var)205, which encodes HP1 (Heterochromatin Protein 1), thus suggesting a role for chromatin structure in repression. Since an interaction between heterochromatin formation and RNA interference has been reported in various organisms, we tested the effect of mutant alleles of aubergine, a gene that has been shown to play a role in RNA interference in Drosophila, on the repressive properties of telomeric P elements. Seven out of the eight mutant alleles tested clearly impaired the repressive capacities of the two independent telomeric P insertions at 1A analyzed. P repression by P strains whose repressive capacities are not linked to the presence of P copies at 1A were previously found to be insensitive to Su(var)205; here, we show that they are also insensitive to aubergine mutations. These results strongly suggest that both RNA interference and heterochromatin structure are involved in the establishment of the P cytotype elicited by telomeric P elements, and reinforce the hypothesis that different mechanisms for repression of P elements exist which depend on the chromosomal location of the regulatory copies of P.Communicated by G. Reuter  相似文献   

11.
Several copies of the Penelope transposable element, previously described in Drosophila virilis, have been studied in different D. virilis strains and D. melanogaster strains transformed with P-based constructs bearing a full-size Penelope copy. Most Penelope copies in both species have large terminal inverted repeats (TIRs) and deletions of various sizes at the 5′ ends of their ORFs. Junctions between TIRs and ORFs usually have microhomologies of various lengths, which allowed a hypothesis explaining the emergence of these complex structures at the molecular level to be put forward. Most Penelope copies have a 34 bp long direct repeat at the ORF ends. Full-size and truncated Penelope copies are usually surrounded by target site duplications of various lengths.  相似文献   

12.
13.
Summary Further IF screening ofDrosophila melanogaster geographic strains has revealed a variant of the s19 major chorion protein. Developmental analysis of F1 hybrids indicates that the source of the variation is found in the structural gene for this protein. The linkage group of the variant gene was determined to be the third, and the gene was localized by several methods of recombination analysis. The s19 gene was found to be tightly linked to thesepia locus, as had been previously found for the s18 gene (Yannoni and Petri 1980). Lack of recombination between the s19 and s18 genes in double heterozygotes suggested that these two genes are within 0.3 map units of each other. Although more precise localization of the s19 gene failed, the s18 gene could be more specifically located to the right ofsepia, betweensepia andhairy. Contrary to our prediction (ibid.), the s19 and s18 genes have been found to be tightly linked in spite of the fact that they display somewhat different developmental stage specificity.  相似文献   

14.
Summary The relative net fitness of a compound chromosome strain of Drosophila melanogaster was about 0.05, compared with the chromosomally normal strain from which it was derived. Based on meiotic considerations alone, the expected relative fitness was about 0.25. There were no significant differences in fertility between the compound and normal strains; the compound strain produced about 28% as many offspring as the normal strain and developed faster than the normal strain in two replicates, and slower in one replicate. The low relative fitness of the compound strain was apparently due to assortative mating, in which normal females discriminated strongly against compound males. Implications for pest control projects are dicussed.  相似文献   

15.
Transposable elements constitute a major fraction of eukaryotic genomes. Here, I characterize two novel non-LTR retrotransposons, cloned from the neo-Y chromosome of Drosophila miranda. Worf is 4.1 kb in size and shows homology to the T1-2 non-LTR transposon characterized in Anopheles. Spock is 4.9 kb in size and shows similarity to the Doc element of D. melanogaster. Southern blot analysis of both elements yielded stronger signals for male DNA. In situ hybridization to polytene chromosomes revealed that both elements are accumulating on the neo-Y chromosome of D. miranda. PCR analysis was conducted to investigate the frequency of spock and worf and of the previously identified transposons, TRIM and TRAM, at individual chromosomal sites among 12 strains of D. miranda. Contrary to the observation that element frequencies are usually kept low at individual sites in Drosophila, the four transposons investigated are fixed at their genomic locations on the neo-Y chromosome. These results support the hypothesis that transposons accumulate in nonrecombining regions and may be one cause of the heteromorphism of sex chromosomes.  相似文献   

16.
Three of the major protein species present in the hemolymph of Drosophila melanogaster larvae just prior to pupation are absent from second instar larvae but accumulate rapidly during the third instar. This article describes the purification and characterization of one of these, larval serum protein (LSP) 2, using an immunological assay. It is a homohexamer of molecular weight about 450,000, with a polypeptide molecular weight of 78,000–83,000. Fast and slow electrophoretic variants of this protein map between the markers vin and gs, at 36–37 on chromosome 3.This work was partially supported by M.R.C. Research Studentships to J.W. and M.E.A.  相似文献   

17.
Summary In this paper we describe a new allele of suppressor of forked, su(f) hd37, referred to as hd37, which was isolated in a hybrid dysgenesis mutation screen and is shown to be P induced by its high frequency of reversion in hybrid dysgenic crosses, and by in situ hybridization. hd37 suppresses forked and fails to complement the forked suppression of known su(f) alleles. However, it complements the recessive lethality of alleles in both of the su(f) lethal complementation groups. We also describe a new phenotypic effect of su(f) alleles, the enhancement of Minute(3)i 55. Recessive lethal alleles enhance the lethal effects of this Minute, but hd37 does not. The temperature sensitive period for forked bristle suppression by hd37 was found to be very narrow, consisting of a short interval (12–18 h) immediately before bristle formation. These results suggest that the several genetic functions associated with this locus may be genetically separable.Journal paper No. J-12137 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa. Project No. 2746  相似文献   

18.
A molecular cytogenetic study of Gobius niger has been conducted by treating its mitotic chromosomes with silver-, CMA3- and DAPI-staining and fluorescent in situ hybridization using four multicopy or repetitive DNAs (the 28S and 5S rDNAs, the TTAGGG telomeric repeat and the mariner-like elements) as probes. In particular, the study proved the presence of NOR heteromorphism and suggested the possible role of the transposable element mariner in its genesis. In situ hybridization with the 5S rDNA probe proved the presence of just one 5S-bringing chromosome pair, whereas hybridization with the telomeric repeat revealed small bright hybridization spots, uniform in size and intensity, on each telomere of all chromosomes but no interstitial signals were noticed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
C. Arnault  I. Dufournel 《Genetica》1994,93(1-3):149-160
The action of stresses on the genome can be considered as responses of cells or organisms to external aggressions. Stress factors are of environmental origin (climatic or trophic) or of genomic nature (introduction of foreign genetic material, for example). In both cases, important perturbations can occur and modify hereditary potentialities, creating new combinations compatible with survival; such a situation may increase the variability of the genome, and allow evolutive processes to take place. The behavior of transposable elements under stress conditions is thus of particular interest, since these sequences are sources of mutations and therefore of genetic variability; they may play an important role in population adaptation. The survey of the available experimental results suggests that, although some examples of mutations and transposable elements movements induced by external factors are clearly described, environmental injuries or introduction of foreign material into a genome are not systematically followed by drastic genomic changes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号