首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Electro-mechanical delay (EMD) values of the erector spinae muscle were obtained using a technique based on the cross-correlation between the force and the electromyogram (EMG). Seven subjects performed a series of 20 submaximal dynamic isometric contractions in a seated position at two frequencies (0.5 Hz and 1 Hz) to study the influence of the rate of force development on EMD. Mean EMD values of 125.7 (SD 28.1) ms (1 Hz) and 136.8 (SD 28.6) ms (0.5 Hz) were shown to differ significantly (P = 0.02). This finding supports the hypothesis that EMD is inversely related to the rate of force development and implies that the time to stretch the series elastic component is an important factor determining EMD. After performing a series of fatiguing contractions EMD did not differ significantly from the control value. Multiple regression analysis showed that maximal voluntary contraction force (MVC) and endurance time of the fatiguing exercise correlated significantly with EMD. The site from which the EMG signal was recorded had no significant influence on EMD. However, the coefficient of correlation between force and the EMG-signal differed significantly between electrode positions. The magnitude of the EMD values found emphasized the need to account for this delay when interpreting temporal patterns of activation of the muscles in, for example, lifting tasks.  相似文献   

2.
Electromechanical delay (EMD) in isometric contractions of knee extensors evoked by voluntary, tendon reflex (TR) and electrical stimulation (ES) was investigated in 21 healthy young subjects. The subject performed voluntary knee extensions with maximum effort (maximal voluntary contraction, MVC), and at 30%, 60% and 80% MVC. Patellar tendon reflexes were evoked with the reflex hammer being dropped from 60°, 75° and 90° positions. In the percutaneous ES evoked contractions, single switches were triggered with pulses of duration 1.0 ms and of intensities 90, 120 and 150 V. Electromyograms of the vastus lateralis and rectus femoris muscles were recorded using surface electrodes. The isometric knee extension force was recorded using a load cell force transducer connected to the subject's lower leg. The major finding of this study was that EMD of the involuntary contractions [e.g. mean 22.1 (SEM 1.32) ms in TR 90°; mean 17.2 (SEM 0.62) ms in ES 150 V] was significantly shorter than that of the voluntary contractions [e.g. mean 38.7 (SEM 1.18) ms in MVC,P < 0.05]. The relationships between EMD, muscle contractile properties and muscle fibre conduction velocity were also investigated. Further study is needed to explain fully the EMD differences found between the voluntary and involuntary contractions.  相似文献   

3.
IntroductionIntramuscular pressure (IMP) is the fluid pressure generated within skeletal muscle and directly reflects individual muscle tension. The purpose of this study was to assess the development of force, IMP, and electromyography (EMG) in the tibialis anterior (TA) muscle during ramped isometric contractions and evaluate electromechanical delay (EMD).MethodsForce, EMG, and IMP were simultaneously measured during ramped isometric contractions in eight young, healthy human subjects. The EMD between the onset of force and EMG activity (Δt-EMG force) and the onset of IMP and EMG activity (Δt EMG-IMP) were calculated.ResultsA statistically significant difference (p < 0.05) was found between the mean force-EMG EMD (36 ± 31 ms) and the mean IMP-EMG EMD (3 ± 21 ms).ConclusionsIMP reflects changes in muscle tension due to the contractile muscle elements.  相似文献   

4.
The purpose of this study was to propose a new method that can be used to calculate electromechanical delay (EMD) without the measurement of forces. A secondary purpose, as an example of the importance of measuring EMD, was to predict muscle force development events based on the EMG activity of selected muscles during cycling at different pedaling frequencies. EMD was estimated using newly derived equations based on activation dynamics hypothesis. Tibialis anterior (TA) and soleus (SL) muscles of 16 male participants were studied while subjects pedaled at targeted cadences of 60, 80, and 100 revolutions per minute. The estimated EMDs of TA and SL were significantly different from each other with means of 68.1 and 88.7 ms, respectively. The average crank angle for the initiation and time to peak TA contraction was estimated at 75±35° and 26±15° before the crank reached top-dead-center (TDC), while the contraction ended at 31±19° after the TDC on average. The projected starting, peak and end angles of SL contraction activity were 45±18°, 123±13°, and 218±35° after the TDC, respectively. There was no difference among different pedaling cadences observed for these mechanical events. The proposed method was proven to be effective in studying EMD and estimate muscle contraction patterns during cycling.  相似文献   

5.
In airway smooth muscle (ASM), ACh induces propagating intracellular Ca2+ concentration ([Ca2+]i) oscillations (5-30 Hz). We hypothesized that, in ASM, coupling of elevations and reductions in [Ca2+]i to force generation and relaxation (excitation-contraction coupling) is slower than ACh-induced [Ca2+]i oscillations, leading to stable force generation. When we used real-time confocal imaging, the delay between elevated [Ca2+]i and contraction in intact porcine ASM cells was found to be approximately 450 ms. In beta-escin-permeabilized ASM strips, photolytic release of caged Ca2+ resulted in force generation after approximately 800 ms. When calmodulin (CaM) was added, this delay was shortened to approximately 500 ms. In the presence of exogenous CaM and 100 microM Ca2+, photolytic release of caged ATP led to force generation after approximately 80 ms. These results indicated significant delays due to CaM mobilization and Ca2+-CaM activation of myosin light chain kinase but much shorter delays introduced by myosin light chain kinase-induced phosphorylation of the regulatory myosin light chain MLC20 and cross-bridge recruitment. This was confirmed by prior thiophosphorylation of MLC20, in which force generation occurred approximately 50 ms after photolytic release of caged ATP, approximating the delay introduced by cross-bridge recruitment alone. The time required to reach maximum steady-state force was >15 s. Rapid chelation of [Ca2+]i after photolytic release of caged diazo-2 resulted in relaxation after a delay of approximately 1.2 s and 50% reduction in force after approximately 57 s. We conclude that in ASM cells agonist-induced [Ca2+]i oscillations are temporally and spatially integrated during excitation-contraction coupling, resulting in stable force production.  相似文献   

6.
The precedence effect refers to a group of auditory phenomena related to the ability to locate sound sources in reverberant environments. In the present study, this phenomenon was investigated using two moving signals. The first signal was direct (lead) and the other was delayed (lag). The motion of the sound source was created by successive switching of ten loudspeakers. The continuity of the motion was created by simultaneously attenuating the stimulus in the previous loudspeaker and enhancing it in the next one. The length of the path of the lead and lag was 34°. The lead moved from 34° to 0° (to the right) and the lag moved –52° to –86° (to the left). The duration of the lead and the lag was 1 s. Lead–lag delays ranged from 1 to 40 ms. Subjects had to indicate the location of the lag. The results indicate that the lead signal dominated in the sound localization at short delay durations (up to 18 ms). In spite of the instructions, all the subjects pointed at the lead, which suggests that they perceived the lag in this location. Two distinct sounds were perceived at the longest delays. The mean echo threshold and its standard deviation in eight subjects was 9.6 ± 4.5 ms.  相似文献   

7.
The aim of this work is to quantify the occurrence of an anticipatory mechanism in the control of quiet standing by measuring the lag between the myoelectric activity of the lateral gastrocnemius muscle and the stabilometric signal, as well as to determine the influence of the muscle fatigue on this process. Stabilometric and electromyographic (EMG) signals were synchronously collected from 22 subjects. Gastrocnemius fatigue was induced by a sustained plantar flexed posture until muscle failure. The data acquisition lasted for 120 s before and after the induced fatigue. After mean removal, the root mean square values of the EMG (RMS-EMG) were calculated for each 20 ms period. The normalized cross-correlation function was estimated to find the time delay between RMS-EMG and stabilometric signals. Anticipation values up to 1.62 s were found both before and after fatigue conditions (p < 0.05), indicating that this mechanism plays an important role in body sway control. The fatigue caused a significant increase in the latency between the myoelectric activity of the gastrocnemius muscle and the movements of the center of pressure (p < 0.05).  相似文献   

8.
The precedence effect refers to the fact that humans are able to localize sound sources in reverberant environments. In this study, sound localization was studied with dual sound source: stationary (lead) and moving (lag) for two planes: horizontal and vertical. Duration of lead and lag signals was 1s. Lead-lag delays ranged from 1-40 ms. Testing was conducted in free field, with broadband noise busts (5-18 kHz). The listeners indicated the perceived location of the lag signal. Results suggest that at delays above to 25 ms in horizontal plane and 40 ms in vertical plane subjects localized correctly the moving signal. At short delays (up to 8-10 ms), regardless of the instructions, all subjects pointed to the trajectory near the lead. The echo threshold varied dramatically across listeners. Mean echo thresholds were 7.3 ms in horizontal plane and 10.1 ms in vertical plane. Statistically significant differences were not observed for two planes [F(1, 5) = 5.52; p = 0.07].  相似文献   

9.
In order to compute the muscle fiber conduction velocity (MFCV) and to clarify how action potentials are conducted, the normalized peak-averaging technique (NPAT) was newly employed together with computer softwares. Twelve pairs of surface electromyograms were selected from biceps brachii muscles during contraction at a level of 50% of the maximum voluntary isometric contraction in seven healthy volunteers. The techniques to compute MFCV from the time delay of the peaks (P-NPAT) and from the cross correlation (CC-NPAT) of averaged pulses were compared to the cross-correlation technique (CCT). The spread rate of averaged pulses was computed to estimate the spread of MFCVs in different motor units. Tri-phasic averaged pulses were obtained clearly by averaging more than 500 detected pulses. The P-NPAT and CC-NPAT highly correlated with the CCT in the computed MFCVs. The MFCVs obtained by P-NPAT were generally larger than those obtained by CCT, and the spread rates had in the definite values. These results suggest that the MFCV could be computed and the spread of MFCVs would be estimated from averaged pulses. The MFCV of a patient with myotonic dystrophy was also studied, and it was suggested that the NPAT would be clinically useful.  相似文献   

10.
An insect dorsal vessel (DV) is well suited for a bioactuator since it is capable of contracting autonomously, and its tissue and cells are more environmentally robust under culturing conditions compared with mammalian tissue. In this study, electrical pulse stimulation was examined so as to regulate a bioactuator using the DV tissue. The DV tissue of a larva of Ctenoplusia agnate was assembled on a micropillar array, which was stimulated after culturing for about 3 wk. The contraction of the DV tissue was evaluated by image analysis to measure lateral displacements at the micropillar top. As a result, suitable stimulation conditions in a 35-mm petri dish were determined as: applied voltage of 10 V with 20-ms duration. Next, the time lag between the onset of electrical stimulus and the onset of mechanical contraction (electromechanical delay (EMD)) was estimated. A light-emitting diode (LED) was connected serially with the petri dish, and the LED flashed when electrical pulses were given. Movie images were analyzed in which electrical pulses made the DV tissue contract and the LED flashed virtually simultaneously; from these, the EMD was estimated as approximately 50 ms. These results suggest that the electrical pulse stimulation is capable of regulating the DV tissue, and the micropillar array is a useful biological tool to investigate physiological properties of muscle tissue.  相似文献   

11.
In the intact heart, the distribution of electromechanical delay (EMD), the time interval between local depolarization and myocyte shortening onset, depends on the loading conditions. The distribution of EMD throughout the heart remains, however, unknown because current experimental techniques are unable to evaluate three-dimensional cardiac electromechanical behavior. The goal of this study was to determine the three-dimensional EMD distributions in the intact ventricles for sinus rhythm (SR) and epicardial pacing (EP) by using a new, to our knowledge, electromechanical model of the rabbit ventricles that incorporates a biophysical representation of myofilament dynamics. Furthermore, we aimed to ascertain the mechanisms that underlie the specific three-dimensional EMD distributions. The results revealed that under both conditions, the three-dimensional EMD distribution is nonuniform. During SR, EMD is longer at the epicardium than at the endocardium, and is greater near the base than at the apex. After EP, the three-dimensional EMD distribution is markedly different; it also changes with the pacing rate. For both SR and EP, late-depolarized regions were characterized with significant myofiber prestretch caused by the contraction of the early-depolarized regions. This prestretch delays myofiber-shortening onset, and results in a longer EMD, giving rise to heterogeneous three-dimensional EMD distributions.  相似文献   

12.
The purpose of this study was to clarify the influence of muscle-tendon complex stretch on electromechanical delay (EMD) in terms of the extent of tendon slack in the human medial gastrocnemius (MG). EMD and MG tendon length were measured at each of five ankle joint angles (-30, -20, -10, 0, and 5 degrees : positive values for dorsiflexion) using percutaneous electrical stimulation and ultrasonography, respectively. The extent of MG tendon slack was calculated as MG tendon length shortening, standardized with MG tendon slack length obtained at the joint angle (-16 degrees +/- 5 degrees ) where the passive ankle joint torque was zero. EMD at -30 degrees (19.2 +/-2.2 ms) and -20 degrees (17.2 +/- 1.3 ms) was significantly greater than that at -10 degrees (16.0 +/-2.3 ms), 0 degrees (15.0 +/-1.4 ms), and 5 degrees (14.8 +/-1.4 ms), and at 0 and 5 degrees, respectively. The relative EMD, normalized with the maximal EMD for each subject, decreased dependent on the extent of decrease in MG tendon slack. There were no significant differences in EMD among the joint angles (-10, 0, and 5 degrees ) where MG tendon slack was taken up. These results suggest that the extent of tendon slack is an important factor for determining EMD.  相似文献   

13.
Intramuscular pressure (IMP) reflects forces produced by a muscle. Age is one of the determinants of skeletal muscle performance. The present study aimed to test whether IMP mirrors known age-related muscular changes. We simultaneously measured the tibialis anterior (TA) IMP, compound muscle action potential (CMAP), and ankle torque in thirteen older adults (60–80 years old) in vivo by applying different stimulation intensities and frequencies. We found significant positive correlations between the stimulation intensity and IMP and CMAP. Increasing stimulation frequency caused ankle torque and IMP to increase. The electromechanical delay (EMD) (36 ms) was longer than the onset of IMP (IMPD) (29 ms). Compared to the previously published data collected from young adults (21–40 years old) in identical conditions, the TA CMAP and IMP of older adults at maximum intensity of stimulation were 23.8% and 39.6% lower, respectively. For different stimulation frequencies, CMAP, IMP, as well as ankle torque of older adults were 20.5%, 24.2%, and 13.2% lower, respectively. Surprisingly, the EMD did not exhibit any difference between young and older adults and the IMPD was consistent with the EMD. Data supporting the hypotheses suggest that IMP measurement is an indicator of muscle performance in older adults.  相似文献   

14.
Time-resolved X-ray equatorial diffraction studies on a single frog skeletal muscle fiber were performed with a 10 ms time resolution using synchrotron radiation in order to compare the time courses of the molecular changes of contractile proteins and the intracellular Ca2+ transient during an isometric twitch contraction at 2.7 degrees C. Measurements of the Ca2+ transient using aequorin as an intracellular Ca2+ indicator were conducted separately just before and after the X-ray experiments under very similar experimental conditions. The results, which showed a similar time course of tension to that observed in the X-ray experiment, were compared with the aequorin light signal, tension and the intensity changes of the 1,0 and 1,1 equatorial reflections. No appreciable change in both reflection spacings indicated that the effect of internal shortening of the muscle was minimized during contraction. The intensity change of the equatorial reflections generally occurred after the aequorin light signal. In the rising phase, the time course of increase in the 1,1 intensity paralleled that of the rise of the light signal and the intensity peak occurred 20-30 ms after the peak of the light signal. The decrease in the 1,0 intensity showed a time course similar to that of tension and the intensity minimum roughly coincided with the tension peak, coming at 80-90 ms and about 60 ms after the peaks of the light signal and the 1,1 intensity change, respectively. In the relaxation phase, the 1,1 intensity seemed to fall rapidly just before the tension peak and then returned to the original level in parallel with the decay of tension. The 1,0 intensity returned more slowly than the tension relaxation. Thus, the change of the 1,1 intensity was faster than that of the 1,0 intensity in both the rising and relaxation phases. When the measured aequorin light signal was corrected for the kinetic delay of the aequorin reaction with a first-order rate constant of either 50 or 17 s-1, the peak of the corrected light signal preceded that of the measured one by approx. 30 ms. Thus, the peak of the Ca2+ transient appeared earlier than the peaks of the 1,1 and 1,0 intensity changes by 50-60 and 110-120 ms, respectively. The time lag between the extent of structural change and the Ca2+ transient is discussed in relation to the double-headed attachment of a cross-bridge to actin.  相似文献   

15.
Yamamoto K  Kawabata H 《PloS one》2011,6(12):e29414

Background

We ordinarily perceive our voice sound as occurring simultaneously with vocal production, but the sense of simultaneity in vocalization can be easily interrupted by delayed auditory feedback (DAF). DAF causes normal people to have difficulty speaking fluently but helps people with stuttering to improve speech fluency. However, the underlying temporal mechanism for integrating the motor production of voice and the auditory perception of vocal sound remains unclear. In this study, we investigated the temporal tuning mechanism integrating vocal sensory and voice sounds under DAF with an adaptation technique.

Methods and Findings

Participants produced a single voice sound repeatedly with specific delay times of DAF (0, 66, 133 ms) during three minutes to induce ‘Lag Adaptation’. They then judged the simultaneity between motor sensation and vocal sound given feedback. We found that lag adaptation induced a shift in simultaneity responses toward the adapted auditory delays. This indicates that the temporal tuning mechanism in vocalization can be temporally recalibrated after prolonged exposure to delayed vocal sounds. Furthermore, we found that the temporal recalibration in vocalization can be affected by averaging delay times in the adaptation phase.

Conclusions

These findings suggest vocalization is finely tuned by the temporal recalibration mechanism, which acutely monitors the integration of temporal delays between motor sensation and vocal sound.  相似文献   

16.
Ultrasound imaging (USI) of muscle thickness offers different insights into musculoskeletal function than kinematics, kinetics, and surface electromyography (sEMG), however it is unknown how USI-derived measures correlate to traditional measures during walking. The purpose of this study was to compare USI-derived gluteus maximus (GMAX) and medius (GMED) thickness measures to tri-planar hip kinematics and kinetics, and GMED thickness to sEMG amplitude. Fourteen females walked on a treadmill at 1.34 m/s. GMAX and GMED thickness, hip tri-planar kinematics, kinetics, and GMED sEMG were simultaneously recorded. USI-derived thickness measures were compared to other biomechanical outcomes using cross-correlation analyses, computed at each 1% (11-ms) of the gait cycle with lag times from −20% to 20%. GMED and GMAX thickness measures were most strongly correlated with hip extension and abduction angles at 150–220-ms lags (cross-correlation coefficients [CCF]: −0.34; −0.83). GMED thickness was most correlated to abduction and external rotation moments simultaneously (CCF: −0.28; −0.47). GMAX thickness and flexion moments were most strongly correlated at a 66-ms lag (CCF: 0.33). GMED sEMG amplitude was most strongly correlated to muscle thickness at a 99-ms lag (CCF: 0.39). These results elucidate the unique information provided from USI-derived measures of gluteal muscle thickness during walking.  相似文献   

17.
Myofilament length-dependent activation is a universal property of striated muscle, yet the molecular mechanisms that underlie this phenomenon are incompletely understood. Additionally, the rate by which sarcomere length (SL) is sensed and then transduced to form length-dependent activation is unknown. Here, using isolated guinea-pig myocardium, we employed a rapid solution-switch single myofibril technique that allows for the study of contractile action/relaxation dynamics in the virtual absence of diffusion delays. We compared contraction kinetics obtained at submaximal activation at steady-state SL with contractions observed after rapid SL ramps to that same SL just before activation. Neither the activation and relaxation kinetics nor the final submaximal force development differed significantly between the two contraction modes for SL ramps as fast as 5 ms. We conclude that the transduction of the length signal by the cardiac sarcomere to modulate thin filament activation levels occurs virtually instantaneously, possibly resulting from structural rearrangements of the contractile proteins.  相似文献   

18.
In contraction of skeletal muscle a delay exists between the onset of electrical activity and measurable tension. This delay in electromechanical coupling has been stated to be between 30 and 100 ms. Thus, in rapid movements it may be possible for electromyographic (EMG) activity to have terminated before force can be detected. This study was designed to determine the dependence of the EMG-tension delay upon selected initial conditions at the time of muscle activation. The right forearms of 14 subjects were passively oscillated by a motor-driven dynamometer through flexion-extension cycles of 135 deg at an angular velocity of approximately equal to 0.5 rad/s. Upon presentation of a visual stimulus the subjects maximally contracted the relaxed elbow flexors during flexion, extension, and under isometric conditions. The muscle length at the time of the stimulus was the same in all three conditions. An on-line computer monitoring surface EMG (Biceps and Brachioradialis) and force calculated the electromechanical delay. The mean value for the delay under eccentric condition, 49.5 ms, was significantly different (p less than 0.05) from the delays during isometric (53.9 ms) and concentric activity (55.5 ms). It is suggested that the time required to stretch the series elastic component (SEC) represents the major portion of the measured delay and that during eccentric muscle activity the SEC is in a more favorable condition for rapid force development.  相似文献   

19.
We consider the effect of distributed delays in neural feedback systems. The avian optic tectum is reciprocally connected with the isthmic nuclei. Extracellular stimulation combined with intracellular recordings reveal a range of signal delays from 3 to 9 ms between isthmotectal elements. This observation together with prior mathematical analysis concerning the influence of a delay distribution on system dynamics raises the question whether a broad delay distribution can impact the dynamics of neural feedback loops. For a system of reciprocally connected model neurons, we found that distributed delays enhance system stability in the following sense. With increased distribution of delays, the system converges faster to a fixed point and converges slower toward a limit cycle. Further, the introduction of distributed delays leads to an increased range of the average delay value for which the system's equilibrium point is stable. The system dynamics are determined almost exclusively by the mean and the variance of the delay distribution and show only little dependence on the particular shape of the distribution.  相似文献   

20.
Electromechanical delay (EMD) is the time lag between muscle activation and force development. Using very high frame rate ultrasound, both electrochemical and mechanical processes involved in EMD can be assessed. Percutaneous electrical stimulations at submaximal intensity are often used to stimulate a specific target muscle. The aim of this study was to determine whether stimulus intensity alters the delay between stimulation and the onset of muscle fascicules motion (Dm), the onset of myotendinous junction motion (Dt), and force production (EMD). Ten participants underwent two electrically evoked contractions, with the probe maintained either the biceps brachii muscle belly or the distal myotendinous junction of the biceps brachii, for six stimulus intensities (30%, 50%, 70%, 90%, 110% and 130% of the lowest intensity inducing the maximal involuntary force production, Imax). In addition, inter-day reliability was tested in nine participants at both 70% and 90% of Imax. Dm, Dt and EMD were significantly longer (p < 0.001) at very low (30% and 50% of Imax) compared to higher intensities (70%, 90%, 110% and 130% of Imax). Inter-day reliability of EMD, Dm, and Dt was good (coefficient of variation ranged from 6.8% to 12.5%, i.e. SEM lower than 0.79 ms). These results indicate that the stimulus intensity needs to be standardized to perform longitudinal evaluation and/or to make between-subject comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号