首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 572 毫秒
1.
Quinolinic acid (QUIN), a well known excitotoxin that produces a pharmacological model of Huntington's disease in rats and primates, has been shown to evoke degenerative events in nerve tissue via NMDA receptor (NMDAr) overactivation and oxidative stress. In this study, the antioxidant selenium (as sodium selenite) was tested against different markers of QUIN-induced neurotoxicity under both in vitro and in vivo conditions. In the in vitro experiments, a concentration-dependent effect of selenium was evaluated on the regional peroxidative action of QUIN as an index of oxidative toxicity in rat brain synaptosomes. In the in vivo experiments, selenium (0.625 mg per kg per day, i.p.) was administered to rats for 5 days, and 2 h later animals received a single unilateral striatal injection of QUIN (240 nmol/ micro L). Rats were killed 2 h after the induction of lesions with QUIN to measure lipid peroxidation and glutathione peroxidase (GPx) activity in striatal tissue. In other groups, the rotation behavior, GABA content, morphologic alterations, and the corresponding ratio of neuronal damage were all evaluated as additional markers of QUIN-induced striatal toxicity 7 days after the intrastriatal injection of QUIN. Selenium decreased the peroxidative action of QUIN in synaptosomes both from whole rat brain and from the striatum and hippocampus, but not in the cortex. A protective concentration-dependent effect of selenium was observed in QUIN-exposed synaptosomes from whole brain and hippocampus. Selenium pre-treatment decreased the in vivo lipid peroxidation and increased the GPx activity in QUIN-treated rats. Selenium also significantly attenuated the QUIN-induced circling behavior, the striatal GABA depletion, the ratio of neuronal damage, and partially prevented the morphologic alterations in rats. These data suggest that major features of QUIN-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that selenium partially protects against QUIN toxicity.  相似文献   

2.
Excitotoxicity elicited by overactivation of N-methyl-D-aspartate receptors is a well-known characteristic of quinolinic acid-induced neurotoxicity. However, since many experimental evidences suggest that the actions of quinolinic acid also involve reactive oxygen species formation and oxidative stress as major features of its pattern of toxicity, the use of antioxidants as experimental tools against the deleterious effects evoked by this neurotoxin becomes more relevant. In this work, we investigated the effect of a garlic-derived compound and well-characterized free radical scavenger, S-allylcysteine, on quinolinic acid-induced striatal neurotoxicity and oxidative damage. For this purpose, rats were administered S-allylcysteine (150, 300 or 450 mg/kg, i.p.) 30 min before a single striatal infusion of 1 microl of quinolinic acid (240 nmol). The lower dose (150 mg/kg) of S-allylcysteine resulted effective to prevent only the quinolinate-induced lipid peroxidation (P < 0.05), whereas the systemic administration of 300 mg/kg of this compound to rats decreased effectively the quinolinic acid-induced oxidative injury measured as striatal reactive oxygen species formation (P < 0.01) and lipid peroxidation (P < 0.05). S-Allylcysteine (300 mg/kg) also prevented the striatal decrease of copper/zinc-superoxide dismutase activity (P < 0.05) produced by quinolinate. In addition, S-allylcysteine, at the same dose tested, was able to reduce the quinolinic acid-induced neurotoxicity evaluated as circling behavior (P < 0.01) and striatal morphologic alterations. In summary, S-allylcysteine ameliorates the in vivo quinolinate striatal toxicity by a mechanism related to its ability to: (a) scavenge free radicals; (b) decrease oxidative stress; and (c) preserve the striatal activity of Cu,Zn-superoxide dismutase (Cu,Zn-SOD). This antioxidant effect seems to be responsible for the preservation of the morphological and functional integrity of the striatum.  相似文献   

3.
Quinolinic acid (QUIN) is an endogenous excitotoxin acting on N-methyl-D-aspartate (NMDA) receptors, that leads to neurotoxic damage resembling the alterations observed in Huntington's disease. Two major end-points of QUIN induced neurotoxicity are both circling behavior (CB) and lipid peroxidation (LP). Recently, nitric oxide (NO) has been implicated as a mediator of cell injury in some neurological disorders, thus, NO as a free radical might be involved in QUIN-induced neurotoxicity and oxidative stress. In the present study we evaluated the possible role of NO on QUIN-induced neurotoxicity, by measuring nitric oxide synthase activity (NOS), before and after QUIN-induced damage and by evaluating the effect of NOS inhibition on acute QUIN-induced CB and LP. Rats were striatally microinjected with QUIN (240 nmol/1l). QUIN administration increased NOS activity by 327% as compared to control values and this enhancement was inhibited by i.v. pretreatment with a NOS inhibitor the NG-nitro-L-arginine methyl ester (L-NAME) (10 mg/kg). QUIN-induced CB was also attenuated by pretreatment of rats with 1, 5, 10 and 15 mg/kg of L-NAME by –37, –55, –62 and –74% vs QUIN respectively. Similarly, L-NAME also reduced by 32% the QUIN-induced LP. These findings suggest that enhanced NOS activity may participate in QUIN-induced neurotoxicity and oxidative stress.  相似文献   

4.
Excitotoxicity and disrupted energy metabolism are major events leading to nerve cell death in neurodegenerative disorders. These cooperative pathways share one common aspect: triggering of oxidative stress by free radical formation. In this work, we evaluated the effects of the antioxidant and energy precursor, levocarnitine ( l -CAR), on the oxidative damage and the behavioral, morphological, and neurochemical alterations produced in nerve tissue by the excitotoxin and free radical precursor, quinolinic acid (2,3-pyrindin dicarboxylic acid; QUIN), and the mitochondrial toxin, 3-nitropropionic acid (3-NP). Oxidative damage was assessed by the estimation of reactive oxygen species formation, lipid peroxidation, and mitochondrial dysfunction in synaptosomal fractions. Behavioral, morphological, and neurochemical alterations were evaluated as markers of neurotoxicity in animals systemically administered with l -CAR, chronically injected with 3-NP and/or intrastriatally infused with QUIN. At micromolar concentrations, l -CAR reduced the three markers of oxidative stress stimulated by both toxins alone or in combination. l -CAR also prevented the rotation behavior evoked by QUIN and the hypokinetic pattern induced by 3-NP in rats. Morphological alterations produced by both toxins (increased striatal glial fibrillary acidic protein-immunoreactivity for QUIN and enhanced neuronal damage in different brain regions for 3-NP) were reduced by l -CAR. In addition, l -CAR prevented the synergistic action of 3-NP and QUIN to increase motor asymmetry and depleted striatal GABA levels. Our results suggest that the protective properties of l -CAR in the neurotoxic models tested are mostly mediated by its characteristics as an antioxidant agent.  相似文献   

5.
In rats rendered hyperlipidemic by ip administration of Triton WR-1339, the ip administration of zopiclone at doses of 1.25, 2.5, 5.0, 7.5, 10.0 and 15.0 mg/kg, a cyclopyrrolone acting upon the central benzodiazepine receptors, induces very significant reductions of total lipids, total cholesterol, and triglycerides, at nearly all of the doses. The most active dose was 5.0 mg/kg. The blood glucose level was diminished by doses of 1.25, 2.5, 7.5 and 15.0 mg/kg and it was not changed by the rest of the other doses.  相似文献   

6.
Copper toxicity is associated with formation of reactive oxygen species, which are capable to oxidize proteins. The selective removal of the latter by the 20S proteasome is considered an essential part of the cell antioxidant defense system. The aim of the present study was to investigate whether peptidase activities of rat liver proteasomes were affected by chronic (40 mg CuSO(4)/rat/daily with the drinking water for 2 weeks) and acute (20 mg/kg CuSO(4), s.c.) copper treatment. To evaluate the role of proteasome, its inhibitor MG132 was also used. The degree of copper-induced oxidative stress (OS), established by measuring lipid peroxidation, protein oxidation, and cellular glutathione level, as well as activities of antioxidant enzymes--catalase, superoxide dismutase, and gultathionine peroxidase, depended on the mode of copper administration. Chronic copper administration (mild oxidative stress) did not affect proteasome activities, whereas acute copper treatment (severe oxidative stress) caused a decline in chymotryptic- and tryptic-like activities. The treatment of copper-loaded animals with MG132 did not change copper-induced alterations in the tested indices, except an additional increase in protein oxidation and inhibition of glutathionine peroxidase activity. The results suggested that the in vivo copper-induced oxidative stress was associated with changes in the catalytic activity of proteasome.  相似文献   

7.
A relationship between formation of reactive oxygen species (ROS) and energy depletion has been proposed to play an important role in mediating methamphetamine (METH)-induced neurotoxicity. To evaluate this relationship, we examined the effect of the spin-trap agent, alpha-phenyl-N-tert-butyl nitrone (PBN) on hyperthermia and self-injurious behavior (SIB) and striatal dopamine (DA) depletion produced by METH (4 injections of 4 mg/kg, 2 hr intervals, s.c.) in BALB/c mice. Repeated administration of METH induced hyperthermia, incidence of SIB and striatal DA depletion (84% after 3 days). Pretreatment with PBN (4 injections of 60 or 120 mg/kg, i.p.) reduced METH-induced hyperthermia, but did not significantly attenuate METH-induced SIB or the striatal DA depletion. On the other hand, pretreatment with high doses of PBN (4 injections of 180 or 240 mg/kg, i.p.) protected against METH-induced hyperthermia and SIB, and PBN (180 mg/kg) also completely protected against the acute striatal DA depletion 60 min after the last injection of the drug. However, the long-lasting striatal DA depletion was only attenuated by 52 or 56%, respectively. These results indicate that METH-induced hyperthermia contributes to, but is not solely responsible for METH-induced neurotoxicity, and supports a role for formation of ROS and other mechanisms in the generation of METH-induced striatal dopaminergic neurotoxicity. In addition, the difference in the efficacy of PBN to protect against the acute or long-lasting striatal DA depletion induced by METH may indicate that both ROS formation and other mechanisms are required for METH-induced neurotoxicity to develop.  相似文献   

8.
Ma  Yan  Zhu  Mingkun  Miao  Liping  Zhang  Xiaoyun  Dong  Xinyang  Zou  Xiaoting 《Biological trace element research》2018,186(1):185-198
Over the last decade, there has been an increased concern about the health risks from exposure to arsenic at low doses, because of their neurotoxic effects on the developing brain. The exact mechanism underlying arsenic-induced neurotoxicity during sensitive periods of brain development remains unclear, although enhanced oxidative stresses, leading to mitochondrial dysfunctions might be involved. Here, we highlight the generation of reactive oxygen species (ROS) and oxidative stress which leads to mitochondrial dysfunctions and apoptosis in arsenic-induced developmental neurotoxicity. Here, the administration of sodium arsenite at doses of 2 or 4 mg/kg body weight in female rats from gestational to lactational (GD6-PD21) resulted to increased ROS, led to oxidative stress, and increased the apoptosis in the frontal cortex, hippocampus, and corpus striatum of developing rats on PD22, compared to controls. Enhanced levels of ROS were associated with decreased mitochondrial membrane potential and the activity of mitochondrial complexes, and hampered antioxidant levels. Further, neuronal apoptosis, as measured by changes in the expression of pro-apoptotic (Bax, Caspase-3), anti-apoptotic (Bcl2), and stress marker proteins (p-p38, pJNK) in arsenic-exposed rats, was discussed. The severities of changes were found to more persist in the corpus striatum than in other brain regions of arsenic-exposed rats even after the withdrawal of exposure on PD45 as compared to controls. Therefore, our results indicate that perinatal arsenic exposure leads to abrupt changes in ROS, oxidative stress, and mitochondrial functions and that apoptotic factor in different brain regions of rats might contribute to this arsenic-induced developmental neurotoxicity.  相似文献   

9.
Artemether (AM), a highly effective treatment for multidrug-resistant malaria and a component of artemisinin combination therapy, has been associated with some neurotoxicity following repeated high doses. This study was aimed at investigating the effect of AM on pentobarbitone sleep and electrical activities in rats. Wistar rats received AM i.p. at 3 dose levels: 1.5, 7.5, and 15 mg/kg, whereas control rats received 0.2 mL of the vehicle (3% v/v Tween 80). AM administered 20 min before pentobarbitone had no significant effect on the onset and duration of sleep. However, after a 7-day pretreatment, AM dose-dependently prolonged pentobarbitone sleep, as did chloramphenicol. Electroencephalogram and electromyogram recordings 20 min after pretreatment showed that AM (15 mg/kg) exhibited inhibitory activity similar to chlorpromazine as opposed to the excitatory effect of amphetamine. When pretreated for 7 days, rats receiving 1.5 mg/kg AM also showed inhibitory activity of the cortical centres, whereas desynchronization of the optic tectum and reticular formation was observed in rats pretreated with 7.5 and 15 mg/kg AM. The present data suggest that although the therapeutic equivalent dose of 1.5 mg/kg AM had no appreciable effects on pentobarbitone sleep but caused reduced electrical activity in rats, higher doses have more profound effects on both indices.  相似文献   

10.
Methamphetamine epidemic has a broad impact on world’s health care system. Its abusive potential and neurotoxic effects remain a challenge for the anti-addiction therapies. In addition to oxidative stress, mitochondrial dysfunction and apoptosis, excitotoxicity is also involved in methamphetamine induced neurotoxicity. The N-methyl-D-aspartate (NMDA) type of glutamate receptor is thought to be one of the predominant mediators of excitotoxicity. There is growing evidence that NMDA receptor antagonists could be one of the therapeutic options to manage excitotoxicity. Amantadine, a well-tolerated and modestly effective antiparkinsonian agent, was found to possess NMDA antagonistic properties and has shown to release dopamine from the nerve terminals. The current study aimed to evaluate the effect of amantadine pre-treatment against methamphetamine induced neurotoxicity. Results showed that methamphetamine treatment had depleted striatal dopamine, generated of reactive oxygen species and decreased activity of complex I in the mitochondria. Interestingly, amantadine, at high dose (10 mg/kg), did not prevent dopamine depletion moreover it exacerbated the behavioral manifestations of methamphetamine toxicity such as akinesia and catalepsy. Only lower dose of amantadine (1 mg/kg) produced significant scavenging of the reactive oxygen species induced by methamphetamine. Overall results from the present study suggest that amantadine should not be used concomitantly with methamphetamine as it may results in excessive neurotoxicity.  相似文献   

11.
Antioxidants have possible therapeutic value in neurodegenerative disorders, although they may have pro-oxidant effects under certain conditions. Glutathione (GSH) is a key free radical scavenger. N-acetylcysteine (NAC) bolsters GSH and intracellular cysteine and also has effective free radical scavenger properties. The effects of chronic NAC administration (50 mg/kg/day, 500 mg/kg/day, 1500 mg/kg/day × 21 days) on cellular markers of oxidative status was studied in striatum of healthy male Sprague-Dawley rats as well as in animals with apparent striatal oxidative stress following chronic haloperidol treatment (1.5 mg/kg/day × 3 weeks). In non-haloperidol treated animals, NAC 50 and 500 mg/kg did not affect oxidative status, although NAC 1,500 mg/kg significantly increased striatal superoxide levels, decreased lipid peroxidation and increased consumption of reduced glutathione (GSH). Haloperidol alone evoked a significant increase in superoxide and lipid peroxidation. All NAC doses blocked haloperidol induced increases in superoxide levels, while NAC 500 mg/kg and 1,500 mg/kg prevented haloperidol-associated lipid peroxidation levels and also increased the GSSG/GSH ratio. NAC may protect against conditions of striatal oxidative stress, although possible pro-oxidative actions at high doses in otherwise healthy individuals, e.g. to offset worsening of neurodegenerative illness, should be viewed with caution.  相似文献   

12.
Currently, obesity is considered a systemic inflammation; however, the effects of obesity on the vulnerability of dopaminergic neurons to oxidative stress are not fully defined. We evaluated the effects of high-fat diet-induced obesity (HF DIO) on neurotoxicity in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Eight weeks after a HF or matched normal diet, a severe decrease in the levels of striatal dopamine and of nigral microtubule-associated protein 2, manganese superoxide dismutase, and tyrosine hydroxylase was observed in obese mice treated with subtoxic doses of MPTP (20 mg/kg) compared with the matched lean group. In addition, the levels of nitrate/nitrite and thiobarbituric acid-malondialdehyde adducts in the substantia nigra of obese mice were reciprocally elevated or suppressed by MPTP. Interestingly, striatal nNOS phosphorylation and dopamine turnover were elevated in obese mice after MPTP treatment, but were not observed in lean mice. The nitrotyrosine immunoreactivity for evaluation of nigral nitrogenous stress in obese mice with MPTP was higher than that in matched lean mice. At higher doses of MPTP (60 mg/kg), the mortality was higher in obese mice than in lean mice. These results suggest that DIO may increase the vulnerability of dopaminergic neurons to MPTP via increased levels of reactive oxygen and nitrogen species, and the role of nNOS phosphorylation in the MPTP toxicities and dopamine homeostasis should be further evaluated.  相似文献   

13.
Methamphetamine (METH) produces dopaminergic neurotoxicity by the production of reactive oxygen (ROS) and nitrogen (RNS) species. The role of free radicals has also been implicated in the process of aging. The present study was designed to evaluate whether METH-induced dopaminergic neurotoxicity and hyperthermia is a result of peroxynitrite production and if these effects correlate with age. One-, six- and 12-month-old male rats (n = 8) were administered a single dose of METH (0, 5, 10, 20, and 40 mg/kg, intraperitoneally). The formation of 3-nitrotyrosine (3-NT) as a marker of peroxynitrite production as well as dopamine and its metabolites DOPAC and HVA were measured in the striatum 4-h after METH-administration. Rectal temperature was monitored every 30 min after METH administration until 4 h. At 40 mg/kg METH, a 100% mortality in 12-month-old animals was observed, whereas no deaths occurred in 1- or 6-month-old rats. An age-dependent increase in hyperthermia was observed after METH-administration. A similar pattern of dose-dependent increase in the formation of 3-NT and in the depletion of dopamine and its metabolites with age was observed in the striatum. Furthermore, no effect was observed at 5 mg/kg METH in 1-month-old animals, whereas the effect was significant in 6- and 12-month-old animals. These data suggest that aging increases the susceptibility of the animals toward METH-induced peroxynitrite generation and striatal dopaminergic neurotoxicity.  相似文献   

14.
Potassium bromate (KBrO3) is a prooxidant and carcinogen, inducing thyroid tumors. Melatonin and indole-3-propionic acid (IPA) are effective antioxidants. Some antioxidative effects of propylthiouracil (PTU)--a thyrostatic drug--have been found. The aim of the study was to compare protective effects of melatonin, IPA, and PTU against lipid peroxidation in the thyroids, collected from rats treated with KBrO3, and in homogenates of porcine thyroids, incubated in the presence of KBrO3. Wistar rats were administered KBrO3 (110 mg/kg b.w., i.p., on the 10th day of the experiment) and/or melatonin, or IPA (0.0645 mmol/kg b.w., i.p., twice daily, for 10 days), or PTU (0.025% solution in drinking water, for 10 days). Homogenates of porcine thyroids were incubated for 30 min in the presence of KBrO3 (5 mM) plus one of the antioxidants: melatonin (0.01, 0.1, 0.5, 1.0, 5.0, 7.5 mM), or IPA (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM), or PTU (0.01, 0.1, 0.5, 1.0, 5.0, 7.5, 10.0 mM). The level of lipid peroxidation products (MDA + 4-HDA) was measured spectrophotometrically in thyroid homogenates. In vivo pretreatment with either melatonin or with IPA or with PTU decreased lipid peroxidation caused by KBrO3--injections in rat thyroid gland. Under in vitro conditions, PTU (5.0, 7.5, and 10.0 mM), but neither melatonin nor IPA, reduced KBrO3-related lipid peroxidation in the homogenates of porcine thyroids. In conclusion, melatonin and IPA may be of great value as protective agents under conditions of exposure to KBrO3.  相似文献   

15.
It is of interest to document the effect of Emblica officinalis (E. officinalis) and Zingiber officinalae (Z. officinalae) leaf extract on reactive oxygen species, antioxidant potential changes in arsenic and lead-induced toxicity in male rats. We used 8 groups of adult male Wistar rats with 1 control group for this study. The animals were divided into Group I: Control and Group II: Lead and sodium arsenite induced rats (animals were induced for metal toxicity by the combined administration of arsenic (13.8 mg/ kg body weight) and lead (116.4 mg/kg body weight). These doses were administered by gastric intubation during 14 consecutive days using known standard procedures. Arsenic and lead induced rats treated with ethanolic extract of Emblica officinalis (60 mg/kg body weight/day, orally for 45 days) are group III rats. Group IV animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis (120 mg/kg body weight/day for 45 days). Group V animals are arsenic and lead induced rats treated orally with ethanolic extracts of Z. officinalae (60 mg/kg body weight/day for 45 days). Group VI animals are arsenic and lead induced rats orally treated with ethanolic extracts of Zingiber officinalis (120 mg/kg body weight/day for 45 days). Group VII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (60 + 60 mg/kg body weight/day for 45 days). Group VIII animals are arsenic and lead induced rats treated orally with ethanolic extracts of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day, orally for 45 days). Normal Control animals were treated orally with ethanolic extracts of E. officinalis (120mg/kg body weight) + Z. officinalae (120mg/kg body weight) for 45 days. The control and experimental animals were then subjected to analysis for oxidative stress markers such as H2O2, *OH, and lipid peroxidation (LPO), antioxidant enzymes in addition to liver and kidney function markers. Results: Arsenic and lead induced rats showed a significant increase in the levels of reactive oxygen species (H2O2, OH* and LPO) with concomitant alterations in the renal and liver tissues. However, enzymic and non-enzymic antioxidant levels were decreased. Nevertheless, an oral effective dose of E. officinalis and Z. officinalae (120 + 120 mg/kg body weight/day increased the antioxidant enzymes and retrieved the altered levels of ROS and LPO that were induced by arsenic and lead. Thus, we show that E. officinalis and Z. officinalae leaf extract exhibits nephroprotective and hepatoprotective role through the restoration of reactive oxygen species and antioxidant enzymes in the kidney and liver tissue of Arsenic and Lead-induced nephrotoxicity and hepatotoxicity in rats. Hence, E. officinalis and Z. officinalae leaf extract are potential therapeutic options for the treatment of metal toxicity-induced kidney and liver diseases.  相似文献   

16.
The effects of carboxyfullerene on a well-known neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenyl-pyridinium (MPP+) were investigated. In chloral hydrate-anesthetized rats, cytosolic cytochrome c was elevated in the infused substantia nigra 4 h after an intranigral infusion of MPP+. Five days after local application of MPP+, lipid peroxidation (LP) was elevated in the infused substantia nigra. Furthermore, dopamine content and tyrosine hydroxylase (TH)-positive axons were reduced in the ipsilateral striatum. Concomitant intranigral infusion of carboxyfullerene abolished the elevation in cytochrome c and oxidative injuries induced by MPP+. In contrast, systemic application of carboxyfullerene did not prevent neurotoxicity induced by intraperitoneal injection of MPTP. In mice, systemic administration of MPTP induced a dose-dependent depletion in striatal dopamine content. Simultaneous injection of carboxyfullerene (10 mg/kg) actually potentiated MPTP-induced reduction in striatal dopamine content. Furthermore, systemic administration of carboxyfullerene (30 mg/kg) caused death in the MPTP-treated mice. An increase in the striatal MPP+ level and reduction in hepatic P450 level were observed in the carboxyfullerene co-treated mice. These data showed that systemic application of carboxyfullerene appears to potentiate MPTP-induced neurotoxicity while local carboxyfullerene has been suggested as a neuroprotective agent. Furthermore, an increase in striatal MPP+ level may contribute to the potentiation by carboxyfullerene of MPTP-induced neurotoxicity.  相似文献   

17.
In normoglycemic and normolipidemic rats the i.p. injection of zopiclone induced an acceleration of fibrinolysis in a dose-dependent bell shaped manner and various changes of the blood glucose level. Total lipids, total cholesterol and triglyceride serum levels remained unaffected by doses of 1.25, 2.5 and 15.0 mg/kg, with the exception of the medium dose (5.0 mg/kg) and the next dose (10.0 mg/kg) which lowered them very significantly.  相似文献   

18.
EGb761 produces reversible inhibition of both monoamine oxidase (MAO) isoforms in the central nervous system. 1-Methyl-4-phenylpyridinium (MPP+) neurotoxicity is prevented by treatment with the MAO inhibitor pargyline. We investigated EGb761's effect on striatal MAO activity during MPP+ neurotoxicity. C-57 black mice were pretreated with EGb761 (10 mg/kg) daily for 17 days followed by administration of MPP+ (0.72 mg/kg). MPP+ enhanced striatal MAO (30%) activity at 6 h, and EGb761 prevented this effect. MAO-B activity in striatum was enhanced (70%) 6 h after MPP+ administration and was reduced to almost normal levels in EGb761 + MPP+ group compared to MPP+ group. Pretreatment with EGb761 partially prevented (32%) the striatal dopamine-depleting effect of MPP+ and prevented the reduction in striatal tyrosine hydroxylase activity (100%). Results suggest that EGb761 supplements may be effective in reducing MAO activity as well as enhancement in dopamine metabolism, thereby preventing MPP+-neurotoxicity.  相似文献   

19.
Methyl mercury (MeHg) is a developmental neurotoxin that causes irreversible cognitive damage in offspring of gestationally exposed mothers. Currently, no preventive drugs are established against MeHg developmental neurotoxicity. The neuroprotective effect of gestational administration of a flavanoid against in utero toxicity of MeHg is not explored much. Hence, the present study validated the effect of a bioactive flavanoid, fisetin, on MeHg developmental neurotoxicity outcomes in rat offspring at postnatal weaning age. Pregnant Wistar rats were simultaneously given MeHg (1.5 mg/kg b.w.) and two doses of fisetin (10 and 50 mg/kg b.w. in two separate groups) orally from gestational day (GD) 5 till parturition. Accordingly, after parturition, on postnatal day (PND) 24, weaning F1 generation rats were studied for motor and cognitive behavioural changes. Biochemical and histopathological changes were also studied in the cerebral cortex, cerebellum and hippocampus on PND 25. Administration of fisetin during pregnancy prevented behavioural impairment due to transplacental MeHg exposure in weaning rats. Fisetin decreased the levels of oxidative stress markers, increased enzymatic and non-enzymatic antioxidant levels and increased the activity of membrane-bound ATPases and cholinergic function in F1 generation rats. In light microscopic studies, fisetin treatment protected the specific offspring brain regions from significant morphological aberrations. Between the two doses of fisetin studied, 10 mg/kg b.w. was found to be more satisfactory and effective than 50 mg/kg b.w. The present study shows that intake of fisetin during pregnancy in rats ameliorated in utero MeHg exposure-induced neurotoxicity outcomes in postnatal weaning F1 generation rats.  相似文献   

20.
The anti-inflammatory effects of quinolinic acid in the rat   总被引:1,自引:0,他引:1  
Quinolinic acid (QUIN) levels are elevated in patients and animals suffering from chronic infectious diseases. In the present study, male Sprague-Dawley rats were used to test the anti-inflammatory effects of QUIN using the carrageenan (CGN)-induced paw edema assay and the CGN sponge assay. Results of these studies indicate that QUIN (30, 100 or 300 mg/kg i.p.) caused a reduction of carrageenan-induced inflammation by as much as 80% at the highest dose. Moreover, QUIN reduced exudate volume and inhibited leukocyte migration in the sponge granuloma assay. In another experiment, the anti-inflammatory activity of QUIN was eliminated in adrenalectomized rats. QUIN did not reduce edema caused by arachidonic acid, bradykinin or compound 48/80. Neither morphine nor naloxone altered the anti-inflammatory activity of QUIN. These results may suggest that QUIN exerts its anti-inflammatory activity through a direct action on neutrophils or vascular permeability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号