首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Physiological roles of the two distinct chloroplast-targeted ferredoxin-NADP+ oxidoreductase (FNR) isoforms in Arabidopsis thaliana were studied using T-DNA insertion line fnr1 and RNAi line fnr2 . In fnr2 FNR1 was present both as a thylakoid membrane-bound form and as a soluble protein, whereas in fnr1 the FNR2 protein existed solely in soluble form in the stroma. The fnr2 plants resembled fnr1 in having downregulated photosynthetic properties, expressed as low chlorophyll content, low accumulation of photosynthetic thylakoid proteins and reduced carbon fixation rate when compared with wild type (WT). Under standard growth conditions the level of F0'rise' and the amplitude of the thermoluminescence afterglow (AG) band, shown to correlate with cyclic electron transfer (CET), were reduced in both fnr mutants. In contrast, when plants were grown under low temperatures, both fnr mutants showed an enhanced rate of CET when compared with the WT. These data exclude the possibility that distinct FNR isoforms feed electrons to specific CET pathways. Nevertheless, the fnr2 mutants had a distinct phenotype upon growth at low temperature. The fnr2 plants grown at low temperature were more tolerant against methyl viologen (MV)-induced cell death than fnr1 and WT. The unique tolerance of fnr2 plants grown at low temperature to oxidative stress correlated with an increased level of reduced ascorbate and reactive oxygen species (ROS) scavenging enzymes, as well as with a scarcity in the accumulation of thylakoid membrane protein complexes, as compared with fnr1 and WT. These results emphasize a critical role for FNR2 in the redistribution of electrons to various reducing pathways, upon conditions that modify the photosynthetic capacity of the plant.  相似文献   

2.
Arabidopsis thaliana contains two photosynthetically competent chloroplast‐targeted ferredoxin‐NADP+ oxidoreductase (FNR) isoforms that are largely redundant in their function. Nevertheless, the FNR isoforms also display distinct molecular phenotypes, as only the FNR1 is able to directly bind to the thylakoid membrane. We report the consequences of depletion of FNR in the F1 (fnr1 × fnr2) and F2 (fnr1 fnr2) generation plants of the fnr1 and fnr2 single mutant crossings. The fnr1 × fnr2 plants, with a decreased total content of FNR, showed a small and pale green phenotype, accompanied with a marked downregulation of photosynthetic pigment‐protein complexes. Specifically, when compared with the wild type (WT), the quantum yield of photosystem II (PSII) electron transport was lower, non‐photochemical quenching (NPQ) was higher and the rate of P700+ re‐reduction was faster in the mutant plants. The slight over‐reduction of the plastoquinone pool detected in the mutants resulted in the adjustment of the reactive oxygen species (ROS) scavenging systems, as both the content and de‐epoxidation state of xanthophylls, as well as the content of α‐tocopherol, were higher in the leaves of the mutant plants when compared with the WT. The fnr1 fnr2 double mutant plants, which had no detectable FNR and possessed an extremely downregulated photosynthetic machinery, survived only when grown heterotrophically in the presence of sucrose. Intriguingly, the fnr1 fnr2 plants were still capable of sustaining the biogenesis of a few malformed chloroplasts.  相似文献   

3.
Absorbance changes associated with the oxidation and reduction of cytochrome f belong to the classical observations about the interaction of the two photosystems. A complex induction pattern of cytochrome f oxidation results, if both photosystems are excited simultaneously. This indicates a light-modulated regulation of the photosynthetic electron transport, which we examined for intact biological systems of decreasing complexity. The ferredoxin-NADP+-oxidoreductase (FNR) is suggested to be activated by light and inactivated in the dark. This is pointed out by the kinetics of variable fluorescence and by the influence of different artificial electron acceptors on the cytochrome f kinetics. The photoreduction of NADP+ by carefully prepared thylakoids demonstrates the activation process directly.This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

4.
The redox-enzyme ferredoxin-NADP-oxidoreductase has been shown to be activated by light and inactivated in the dark. This review will summarize recent data concerning the biochemical characterization of the enzyme compared to its in-vivo activation. Further-more the mechanism of this activation process is discussed as a conformational change caused by the light-driven proton gradient.Abbreviations cyt cytochrome - fd ferredoxin - FNR1 large form of ferredoxin-NADP-oxidoreductase - FNRox oxidized FNR - FNRred reduced FNR - FNRs small form of FNR - FNRsq FNR-semiquinone  相似文献   

5.
Ferredoxin-NADP+ reductase (FNR, EC I.18.1.2) from the green algae Chlorella fusca Shihira et Kraus 211–15, was purified to homogeneity. The molecular mass was 36.8 kDa as determined by SDS-polyacrylamide gel electrophoresis. The enzyme exhibits the typical spectrum of a flavoprotein with an absorption maximum at 459 nm and an A273/459 ratio of 7.2. It contains one mol of FAD per mol of protein and the calculated extinction coefficient is 9.8 m M cm−1. Four different forms of the purified enzyme were detected by isoelectric focusing (pI between 5.4 and 5.9), even when protease inhibitors were used during the first steps of the purification. Kinetic parameters were determined for several FNR-catalyzed reactions. NADP+ photoreduction gave comparable rates when either ferredoxin or flavodoxin was used.  相似文献   

6.
Yu QB  Li G  Wang G  Sun JC  Wang PC  Wang C  Mi HL  Ma WM  Cui J  Cui YL  Chong K  Li YX  Li YH  Zhao Z  Shi TL  Yang ZN 《Cell research》2008,18(10):1007-1019
Chloroplast is a typical plant cell organelle where photosynthesis takes place. In this study, a total of 1 808 chloroplast core proteins in Arabidopsis thaliana were reliably identified by combining the results of previously published studies and our own predictions. We then constructed a chloroplast protein interaction network primarily based on these core protein interactions. The network had 22 925 protein interaction pairs which involved 2 214 proteins. A total of 160 previously uncharacterized proteins were annotated in this network. The subunits of the photosynthetic complexes were modularized, and the functional relationships among photosystem Ⅰ (PSI), photosystem Ⅱ (PSII), light harvesting complex of photosystem Ⅰ (LHC Ⅰ) and light harvesting complex of photosystem Ⅰ (LHC Ⅱ) could be deduced from the predicted protein interactions in this network. We further confirmed an interaction between an unknown protein AT1G52220 and a photosynthetic subunit PSI-D2 by yeast two-hybrid analysis. Our chloroplast protein interaction network should be useful for functional mining of photosynthetic proteins and investigation of chloroplast-related functions at the systems biology level in Arabidopsis.  相似文献   

7.
A gene down-regulated in Nicotiana benthamiana after bamboo mosaic virus (BaMV) infection had high identity to the nuclear-encoded chloroplast ferredoxin NADP+ oxidoreductase gene (NbFNR). NbFNR is a flavoenzyme involved in the photosynthesis electron transport chain, catalysing the conversion of NADP+ into NADPH. To investigate whether NbFNR is involved in BaMV infection, we used virus-induced gene silencing to reduce the expression of NbFNR in leaves and protoplasts. After BaMV inoculation, the accumulation of BaMV coat protein and RNA was significantly reduced. The transient expression of NbFNR fused with orange fluorescent protein (OFP) localized in the chloroplasts and elevated the level of BaMV coat protein. These results suggest that NbFNR could play a positive role in regulating BaMV accumulation. Expressing a mutant that failed to translocate to the chloroplast did not assist in BaMV accumulation. Another mutant with a catalytic site mutation could support BaMV accumulation to some extent, but accumulation was significantly lower than that of the wild type. In an in vitro replication assay, the replicase complex with FNR inhibitor, heparin, the RdRp activity was reduced. Furthermore, BaMV replicase was revealed to interact with NbFNR in yeast two-hybrid and co-immunoprecipitation experiments. Overall, these results suggest that NbFNR localized in the chloroplast with functional activity could efficiently assist BaMV accumulation.  相似文献   

8.
An Arabidopsis thaliana mutant, crr7 (chlororespiratory reduction), was isolated using chlorophyll fluorescence imaging to detect reduced activity in NAD(P)H dehydrogenase (NDH). The chloroplast NDH complex is considered to have originated from cyanobacteria in which the NDH complex is involved in respiration, photosystem I (PSI) cyclic electron transport and CO2 uptake. In higher plants the NDH complex functions in PSI cyclic electron transport within the chloroplast. Despite exhaustive biochemical approaches, the entire subunit composition of the NDH complex is unclear in both cyanobacteria and chloroplasts. In crr7 accumulation of the NDH complex was specifically impaired. In vivo analysis of electron transport supported the specific loss of the NDH complex in crr7. CRR7 (At5g39210) encodes a protein of 156 amino acids, including a putative plastid target signal, and does not contain any known motifs. In contrast to CRR2 and CRR4, involved in the expression of chloroplast ndh genes, CRR7 is conserved in cyanobacterial genomes. Although CRR7 did not contain any transmembrane domains, it localized to the membrane fraction of the chloroplast. CRR7 was unstable in the crr2-2 mutant background, in which the expression of ndhB was impaired. These results strongly suggest that CRR7 is a novel subunit of the chloroplast NDH complex.  相似文献   

9.
Phosphatidylglycerol (PG) is the only phospholipid in the thylakoid membranes of chloroplasts of plants, and it is also found in extraplastidial membranes including mitochondria and the endoplasmic reticulum. Previous studies showed that lack of PG in the pgp1‐2 mutant of Arabidopsis deficient in phosphatidylglycerophosphate (PGP) synthase strongly affects thylakoid biogenesis and photosynthetic activity. In the present study, the gene encoding the enzyme for the second step of PG synthesis, PGP phosphatase, was isolated based on sequence similarity to the yeast GEP4 and Chlamydomonas PGPP1 genes. The Arabidopsis AtPGPP1 protein localizes to chloroplasts and harbors PGP phosphatase activity with alkaline pH optimum and divalent cation requirement. Arabidopsis pgpp1‐1 mutant plants contain reduced amounts of chlorophyll, but photosynthetic quantum yield remains unchanged. The absolute content of plastidial PG (34:4; total number of acyl carbons:number of double bonds) is reduced by about 1/3, demonstrating that AtPGPP1 is involved in the synthesis of plastidial PG. PGP 34:3, PGP 34:2 and PGP 34:1 lacking 16:1 accumulate in pgpp1‐1, indicating that the desaturation of 16:0 to 16:1 by the FAD4 desaturase in the chloroplasts only occurs after PGP dephosphorylation.  相似文献   

10.
Early seedling development in plants depends on the biogenesis of chloroplasts from proplastids, accompanied by the formation of thylakoid membranes. An Arabidopsis thaliana gene, AtTerC , whose gene product shares sequence similarity with bacterial tellurite resistance C (TerC), is shown to be involved in a critical step required for the normal organization of prothylakoids and transition into mature thylakoid stacks. The AtTerC gene encodes an integral membrane protein, which contains eight putative transmembrane helices, localized in the thylakoid of the chloroplast, as shown by localization of an AtTerC–GFP fusion product in protoplasts and by immunoblot analysis of subfractions of chloroplasts. T-DNA insertional mutation of AtTerC resulted in a pigment-deficient and seedling-lethal phenotype under normal light conditions. Transmission electron microscopic analysis revealed that mutant etioplasts had normal prolamellar bodies (PLBs), although the prothylakoids had ring-like shapes surrounding the PLBs. In addition, the ultrastructures of mutant chloroplasts lacked thylakoids, did not have grana stacks, and showed numerous globular structures of varying sizes. Also, the accumulation of thylakoid membrane proteins was severely defective in this mutant. These results suggest that the AtTerC protein plays a crucial role in prothylakoid membrane biogenesis and thylakoid formation in early chloroplast development.  相似文献   

11.
Although all ferredoxin-NADP+ reductases (FNRs) catalyze the same reaction, i.e. the transfer of reducing equivalents between NADP(H) and ferredoxin, they belong to two unrelated families of proteins: the plant-type and the glutathione reductase-type of FNRs. Aim of this review is to provide a general classification scheme for these enzymes, to be used as a framework for the comparison of their properties. Furthermore, we report on some recent findings, which significantly increased the understanding of the structure-function relationships of FNRs, i.e. the ability of adrenodoxin reductase and its homologs to catalyze the oxidation of NADP+ to its 4-oxo derivative, and the properties of plant-type FNRs from non-photosynthetic organisms. Plant-type FNRs from bacteria and Apicomplexan parasites provide examples of novel ways of FAD- and NADP(H)-binding. The recent characterization of an FNR from Plasmodium falciparum brings these enzymes into the field of drug design.  相似文献   

12.
Chloroplast NAD(P)H dehydrogenase (NDH) is a homolog of the bacterial NADH dehydrogenase NDH-1 and is involved in cyclic electron transport around photosystem I. In higher plants, 14 subunits of the NDH complex have been identified. The subunit that contains the electron donor-binding site or an electron donor to NDH has not been determined. Arabidopsis crr1 (chlororespiratory reduction 1) mutants were isolated by chlorophyll fluorescence imaging on the basis of their lack of NDH activity. CRR1 is homologous to dihydrodipicolinate reductase (DHPR), which functions in a lysine biosynthesis pathway. However, the dihydrodipicolinate-binding motif was not conserved in CRR1, and the crr1 defect was specific to accumulation of the NDH complex, implying that CRR1 is not involved in lysine biosynthesis in Arabidopsis. Similarly to other nuclear-encoded genes for NDH subunits, CRR1 was expressed only in photosynthetic tissue. CRR1 contained a NAD(P)H-binding motif and was a candidate electron donor-binding subunit of the NDH complex. However, CRR1 was detected in the stroma but not in the thylakoid membranes, where the NDH complex is localized. Furthermore, CRR1 was stable in crr2-2 lacking the NDH complex. These results suggest that CRR1 is involved in biogenesis or stabilization of the NDH complex, possibly via the reduction of an unknown substrate.  相似文献   

13.
In higher plants, development of the chloroplasts must be coordinated with development of the leaf. In order to study the signals that synchronize these two developmental processes, we have isolated virescent (delayed in greening) mutants of Arabidopsis thaliana. Two such mutants that have pale-green young leaves which gradually green more fully during leaf maturation have been partially characterized. The two, vir1 and vir2, are due to separate nuclear recessive mutations. The pale leaves of vir1 and vir2 both had reduced 77°K fluorescence emission at 730–734 nm relative to that at 686–687 nm, indicating a reduction in the relative amount of LHC I compared to WT. As leaves greened, the amount of LHC I increased to near wildtype levels. The shift in the fluorescence emission peak from 730 nm to 734 nm, characteristic of maturing LHC I, was seen for vir1, but not vir2, suggesting that vir1 is a regulatory mutant while vir2 may be defective in a specific aspect(s) of LHC I function.Abbreviations D dark - EMS ethyl methanesulfonate - er erecta - gl1 glabrous1 - L light - LHC I light harvesting complex of Photosystem I - LHC II light harvesting complex of Photosystem II - M2 second generation of mutagenized seed - M3 third generation of mutagenized seed - vir virescent - WT wildtype  相似文献   

14.
Ferredoxin (Fd) is a small [2Fe‐2S] cluster‐containing protein found in all organisms performing oxygenic photosynthesis. Fd is the first soluble acceptor of electrons on the stromal side of the chloroplast electron transport chain, and as such is pivotal to determining the distribution of these electrons to different metabolic reactions. In chloroplasts, the principle sink for electrons is in the production of NADPH, which is mostly consumed during the assimilation of CO2. In addition to this primary function in photosynthesis, Fds are also involved in a number of other essential metabolic reactions, including biosynthesis of chlorophyll, phytochrome and fatty acids, several steps in the assimilation of sulphur and nitrogen, as well as redox signalling and maintenance of redox balance via the thioredoxin system and Halliwell‐Asada cycle. This makes Fds crucial determinants of the electron transfer between the thylakoid membrane and a variety of soluble enzymes dependent on these electrons. In this article, we will first describe the current knowledge on the structure and function of the various Fd isoforms present in chloroplasts of higher plants and then discuss the processes involved in oxidation of Fd, introducing the corresponding enzymes and discussing what is known about their relative interaction with Fd.  相似文献   

15.
拟南芥活性氧不敏感型突变体的筛选与特性分析   总被引:4,自引:0,他引:4  
采用 EMS化学诱变方法与 H2 O2 氧化胁迫选择 ,以根在重力作用下的弯曲生长为指标 ,筛选得到拟南芥活性氧不敏感型突变体。对突变体杂交后代遗传分析表明 ,突变株对活性氧不敏感性状为隐性单基因突变所致 ;生理生化分析表明突变体对 H2 O2 有很强的抗性 ,表现为气孔开度对 H2 O2 不敏感和 H2 O2 胁迫时较低的膜脂过氧化水平。运用 L SCM技术并结合 H2 O2 荧光探针 H2 DCFDA检测外源 ABA诱导保卫细胞内产生 H2 O2 的情况 ,结果显示突变体体内荧光强度比对照低 ,暗示了突变体体内消除 H2 O2 的能力可能有所提高 ,增强了植株对氧化胁迫的抗性。拟南芥活性氧不敏感突变体的筛选 ,不仅为人们深入研究活性氧在细胞内的作用提供良好的实验材料 ,而且还将大大加深人们对信号转导途径的再认识  相似文献   

16.
17.
18.
In most plants, a large fraction of photo-assimilated carbon is stored in the chloroplasts during the day as starch and remobilized during the subsequent night to support metabolism. Mutations blocking either starch synthesis or starch breakdown in Arabidopsis thaliana reduce plant growth. Maltose is the major product of starch breakdown exported from the chloroplast at night. The maltose excess 1 mutant (mex1), which lacks the chloroplast envelope maltose transporter, accumulates high levels of maltose and starch in chloroplasts and develops a distinctive but previously unexplained chlorotic phenotype as leaves mature. The introduction of additional mutations that prevent starch synthesis, or that block maltose production from starch, also prevent chlorosis of mex1. In contrast, introduction of mutations in disproportionating enzyme (DPE1) results in the accumulation of maltotriose in addition to maltose, and greatly increases chlorosis. These data suggest a link between maltose accumulation and chloroplast homeostasis. Microscopic analyses show that the mesophyll cells in chlorotic mex1 leaves have fewer than half the number of chloroplasts than wild-type cells. Transmission electron microscopy reveals autophagy-like chloroplast degradation in both mex1 and the dpe1/mex1 double mutant. Microarray analyses reveal substantial reprogramming of metabolic and cellular processes, suggesting that organellar protein turnover is increased in mex1, though leaf senescence and senescence-related chlorophyll catabolism are not induced. We propose that the accumulation of maltose and malto-oligosaccharides causes chloroplast dysfunction, which may by signaled via a form of retrograde signaling and trigger chloroplast degradation.  相似文献   

19.
The aim of this work was to investigate the effects on carbohydrate metabolism of a reduction in the capacity to degrade leaf starch in Arabidopsis. The major roles of leaf starch are to provide carbon for sucrose synthesis, respiration and, in developing leaves, for biosynthesis and growth. Wild-type plants were compared with plants of a starch-excess mutant line (sex4) deficient in a chloroplastic isoform of endoamylase. This mutant has a reduced capacity for starch degradation, leading to an imbalance between starch synthesis and degradation and the gradual accretion of starch as the leaves age. During the night the conversion of starch into sucrose in the mutant is impaired; the leaves of the mutant contained less sucrose than those of the wild type and there was less movement of 14C-label from starch to sucrose in radio-labelling experiments. Furthermore, the rate of assimilate export to the roots during the night was reduced in the mutant compared with the wild type. During the day however, photosynthetic partitioning was altered in the mutant, with less photosynthate partitioned into starch and more into sugars. Although the sucrose content of the leaves of the mutant was similar to the wild type during the day, the rate of export of sucrose to the roots was increased more than two-fold. The changes in carbohydrate metabolism in the mutant leaves during the day compensate partly for its reduced capacity to synthesize sucrose from starch during the night.  相似文献   

20.
Ethyl methane-sulfonate (EMS)-mutagenized Arabidopsis M2 populations were screened in low-K+ medium using the root-bending assay. Forty-two putative low-K+-tolerant ( lkt ) mutants were selected from 150?000 tested M2 seedlings, and two of these mutants maintained their low-K+-tolerant phenotype in their M3 generations, respectively. Genetic analysis showed that either one of these two mutants has a monogenic recessive mutation in a nuclear gene, and that the two mutations in two independent mutants are allelic to each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号