首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arabidopsis UDP-sugar pyrophosphorylase (AtUSP, EC 2.7.7.64) is a broad substrate pyrophosphorylase that exhibits activity with GlcA-1-P, Gal-1-P and Glc-1-P. Immunoblots using polyclonal antibodies raised to recombinant AtUSP demonstrated the presence of two USP isoforms of approximately 70 kDa (USP1) and 66 kDa (USP2) in crude extracts of Arabidopsis tissues. The 66 kDa isoform was not the result of proteolytic cleavage of USP1 during extraction. Trypsin digestion of bands on SDS gels corresponding to the location of the two isoforms followed by tandem mass spectrometry confirmed that USP peptides were present in both bands. Both USP isoforms were detected in the cytosol as determined by immunoblots of cellular fractions obtained by differential centrifugation. However, some USP1 was also detected in the microsomal fraction. Immunoprecipitation assays demonstrated that AtUSP antibodies removed USP activity (UDP-GlcA→GlcA-1-P) measured in floret extracts. These results indicate that USP is the only pyrophosphorylase that utilizes UDP-GlcA as a substrate and suggest that it serves as the terminal enzyme of the myo-inositol oxidation pathway.  相似文献   

2.
Nucleotide sugars are activated forms of monosaccharides and key intermediates of carbohydrate metabolism in all organisms. The availability of structurally diverse nucleotide sugars is particularly important for the characterization of glycosyltransferases. Given that limited methods are available for preparation of nucleotide sugars, especially their useful non-natural derivatives, we introduced herein an efficient one-step three-enzyme catalytic system for the synthesis of nucleotide sugars from monosaccharides. In this study, a promiscuous UDP-sugar pyrophosphorylase (USP) from Arabidopsis thaliana (AtUSP) was used with a galactokinase from Streptococcus pneumoniae TIGR4 (SpGalK) and an inorganic pyrophosphatase (PPase) to effectively synthesize four UDP-sugars. AtUSP has better tolerance for C4-derivatives of Gal-1-P compared to UDP-glucose pyrophosphorylase from S. pneumoniae TIGR4 (SpGalU). Besides, the nucleotide substrate specificity and kinetic parameters of AtUSP were systematically studied. AtUSP exhibited considerable activity toward UTP, dUTP and dTTP, the yield of which was 87%, 85% and 84%, respectively. These results provide abundant information for better understanding of the relationship between substrate specificity and structural features of AtUSP.  相似文献   

3.
PCR amplification of cDNA prepared from poly(A)+ RNA from aerial parts of Arabidopsis thaliana, using degenerate nucleotide primers based on conserved regions between the large and small subunits of ADP-glucose pyrophosphorylase (AGP), yielded four different cDNAs of ca. 550 nucleotides each. Based on derived amino acid sequences, the identities between the clones varied from 49 to 69%. Sequence comparison to previously published cDNAs for AGP from various species and tissues has revealed that three of the amplified cDNAs (ApL1, ApL2 and ApL3) correspond to the large subunit of AGP, and one cDNA (ApS) encodes the small subunit of AGP. Both ApL1 and ApS were subsequently found to be present in a cDNA library made from Arabidopsis leaves. All four PCR products are encoded by single genes, as found by genomic Southern analysis.  相似文献   

4.
Lectin receptor-like kinases (Lectin RLKs) are a large family of receptor-like kinases with an extracellular legume lectin-like domain. There are approximately 45 such receptor kinases in Arabidopsis thaliana. Surprisingly, although receptor-like kinases in general are well investigated in Arabidopsis, relatively little is known about the functions of members of the Lectin RLK family. A number of studies implicated members of this family in various functions, such as disease resistance, stress responses, hormone signaling, and legume-rhizobium symbiosis. Our current work demonstrated that mutation in one Lectin RLK gene led to male sterility in Arabidopsis. The sterility was due to defects in pollen development. Pollen development proceeded normally in the mutant until anther stage 8. After that, all pollen grains deformed and collapsed. Mature pollen grains were much smaller than wild-type pollen grains, glued together, and totally collapsed. Therefore, the mutant was named sgc, standing for small, glued-together, and collapsed pollen mutant. The mutant phenotype appeared to be caused by an unidentified sporophytic defect due to the mutation. As revealed by analysis of the promoter-GUS transgenic plants and the gene expression analysis using RT-PCR, the gene showed an interesting temporal and spatial expression pattern: it had no or a low expression in young flowers (roughly before anther stage 6), reached a maximum level around stages 6-7, and then declined gradually to a very low level in young siliques. No expression was detected in microspores or pollen. Together, our data demonstrated that SGC Lectin RLK plays a critical role in pollen development.  相似文献   

5.
Michael W. Hess 《Planta》1993,189(1):139-149
The structure and development of the inner pectocellulosic pollen wall, the intine, was re-examined using high-pressure freezing with subsequent freeze substitution in Ledebouria socialis Roth, a monocotyledonous angiosperm. The bilayered intine is formed immediately after differentiation of the endexine. Similar to somatic cell walls, intine matrix substances originate from the Golgi apparatus and leave the cytoplasm via exocytosis. Exintine development starts with the apposition of intine matrix substances to the inner polysaccharide layer of the endexine (termed inner endexine), leading to irregular cell-wall ingrowths. Subsequently the inner endexine becomes intensely infiltrated with intine matrix substances; this process is interpreted as transformation of the inner endexine into intine. Along the aperture region, cell-wall matrix substances are unevenly deposited to such an extent that more or less radially oriented tubules filled with cytoplasm remain within the growing exintine. These tubules subsequently become cut off from the microspore cytoplasm by selective membrane fusions, leading to the incorporation of ground cytoplasm and ribosomes into the exintine. Exintine formation is completed prior to the first mitotic division of the pollen grain whereas the endintine is formed as a homogeneous thin layer after mitosis. Both transformation of the inner endexine by infiltration and passive incorporation of cytoplasm and ribosomes into the exintine by membrane fusions are novel features and are only observed in optimally freeze-fixed, freeze-substituted samples; general aspects of ultrastructure preservation in high-pressure-frozen, freeze-substituted plant cells are discussed as well. Modifications of the Golgi apparatus and post-Golgi-apparatus structures during pollen wall development are correlated with increasing and decreasing polysaccharide exocytosis, respectively. These evenls strictly coincide with the formation of morphologically and chemically different pollen wall layers and therefore seem to reflect the different deposition patterns of the predominant cell-wall polysaccharides.Abbreviations ER endoplasmic reticulum - FS freeze substitution - HPF high-pressure freezing - MS microspore(s) - PATAg periodic acid-thiocarbohydrazine-silver proteinate - PGS post-Golgi-apparatus structures - UA-Pb uranyl acetatelead I am grateful to Dr. Martin Müller (Institut für Zellbiologie, ETH-Zürich) for the kind permission to use the high-pressure freezer and the freeze-substitution unit at his laboratory. I wish to thank Prof. M. Hesse, Mag. M.G. Schlag (Institut für Botanik, Universität Wien) and Dr. I. Lichtscheidl (Institut für Pflanzenphysiologie, Universität Wien) for helpfull discussions. Thanks are also due to A. Glaser and W. Urbancik for excellent technical assistence and to the Stadtgärtnerei Zürich for providing the plant material. This work was supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.  相似文献   

6.
Nucleotide sugars and the enzymes that are responsible for their synthesis are indispensable for the production of complex carbohydrates and, thus, for elaboration of a protective cellular coat for many organisms such as the protozoan parasite Leishmania. These activated sugars are synthesized de novo or derived from salvaged monosaccharides. In addition to UDP-glucose (UDP-Glc) pyrophosphorylase, which catalyzes the formation of UDP-Glc from substrates UTP and glucose-1-phosphate, Leishmania major and plants express a UDP-sugar pyrophosphorylase (USP) that exhibits broad substrate specificity in vitro. The enzyme, likely involved in monosaccharide salvage, preferentially generates UDP-Glc and UDP-galactose, but it may also activate other hexose- or pentose-1-phosphates such as galacturonic acid-1-phosphate or arabinose-1-phosphate. In order to gain insight into structural features governing the differences in substrate specificity, we determined the crystal structure of the L. major USP in the APO-, UTP-, and UDP-sugar-bound conformations. The overall tripartite structure of USP exhibits a significant structural homology to other nucleotidyldiphosphate-glucose pyrophosphorylases. The obtained USP structures reveal the structural rearrangements occurring during the stepwise binding process of the substrates. Moreover, the different product complexes explain the broad substrate specificity of USP, which is enabled by structural changes in the sugar binding region of the active site.  相似文献   

7.
One of the rare weak points of the model plant Arabidopsis is the technical problem associated with the germination of its male gametophyte and the generation of the pollen tube in vitro. Arabidopsis pollen being tricellular has a notoriously low in vitro germination compared to species with bicellular pollen. This drawback strongly affects the reproducibility of experiments based on this cellular system. Together with the fact that pollen collection from this species is tedious, these are obstacles for the standard use of Arabidopsis pollen for experiments that require high numbers of pollen tubes and for which the percentage of germination needs to be highly reproducible. The possibility of freeze-storing pollen after bulk collection is a potential way to solve these problems, but necessitates methods that ensure continued viability and reproducible capacity to germinate. Our objective was the optimization of germination conditions for Arabidopsis pollen that had been freeze-stored. We optimized the concentrations of various media components conventionally used for in vitro pollen germination. We found that in general 4 mM calcium, 1.62 mM boric acid, 1 mM potassium, 1 mM magnesium, 18% sucrose at pH 7 and a temperature of 22.5°C are required for optimal pollen germination. However, different experimental setups may deviate in their requirements from this general protocol. We suggest how to optimally use these optimized methods for different practical experiments ranging from morphological observations of pollen tubes in optical and electron microscopy to their bulk use for molecular and biochemical analyses or for experimental setups for which a specific medium stiffness is critical. F. Bou Daher and Y. Chebli contributed equally to this study.  相似文献   

8.
Glucosidase II, one of the early N-glycan processing enzymes and a major player in the glycoprotein folding quality control, has been described as a soluble heterodimer composed of α and β subunits. Here we present the first characterization of a plant glucosidase II α subunit at the molecular level. Expression of the Arabidopsis α subunit restored N-glycan maturation capacity in Schizosaccharomyces pombe α− or αβ−deficient mutants, but with a lower efficiency in the last case. Inactivation of the α subunit in a temperature sensitive Arabidopsis mutant blocked N-glycan processing after a first trimming by glucosidase I and strongly affected seedling development. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Cecilia D’Alessio and Thomas Paccalet have equal contributions to this work An erratum to this article can be found at  相似文献   

9.
10.
Flavonols are plant metabolites suggested to serve a vital role in fertilization of higher plants. Petunia and maize plants mutated in their flavonol biosynthesis are not able to set seed after self-pollination. We have investigated the role of these compounds in Arabidopsis thaliana. Like in all other plant species, high levels of flavonols could be detected in pollen of wild-type A. thaliana. No flavonols were detected in reproductive organs of the A. thaliana tt4 mutant in which the chs gene is mutated. Surprisingly, this mutant did set seed after self-fertilization and no pollen tube growth aberrations were observed in vivo. The role of flavonols during fertilization of Arabidopsis is discussed.Abbreviations CHS chalcone synthase - TLC thin-layer chromatography  相似文献   

11.
γ-Glutamyltransferase from fruiting bodies of Lentinus edodes was further tested for its activation by chaotropic ions such as SCN?, NO3?, Cl?, Br?, I?, F? and C1O4?. The thiocyanate ion increased the Km value for γ-glutamyl-p-nitroanilide without affecting the Vmax value of the reaction, whereas other anions as represented by NO3? and Br? increased the Vmax without affecting the Km. Jhe inactivation of the enzyme by the SH group-orienting reagents, iodoacetamide and hydrogen peroxide, was stimulated by SCN? but not by the other anions.

The activator anions protected the enzyme against its inactivation by chemical modification with 2,3-butanedione in borate. Their efficiency was parallel to the activator potency of the respective anions, except for SCN? which provided less protection than expected from its activation potency. These dissociable effects of activator anions might be explained by two different mechanisms; binding of SCN? to a basic group to bring about a significant change in protein conformation and binding of other anions by electrostatic and hydrophobic forces to an arginyl residue located near the active site of the enzyme.  相似文献   

12.
Wang WY  Zhang L  Xing S  Ma Z  Liu J  Gu H  Qin G  Qu LJ 《遗传学报》2012,39(2):81-92
VPS 15 protein is a component of the phosphatidylinositol 3-kinase complex which plays a pivotal role in the development of yeast and mammalian cells.The knowledge about the function of its homologue in plants remains limited.Here we report that AtVPS15, a homologue of yeast VPS15p in Arabidopsis,plays an essential role in pollen germination.Homozygous T-DNA insertion mutants of AtVPS15 could not be obtained from the progenies of self-pollinated heterozygous mutants.Reciprocal crosses between atvpslS mutants and wild-type Arabidopsis revealed that the T-DNA insertion was not able to be transmitted by male gametophytes.DAPI staining, Alexander’s stain and scanning electron microscopic analysis showed that atvpsl5 heterozygous plants produced pollen grains that were morphologically indistinguishable from wild-type pollen,whereas in vitro germination experiments revealed that germination of the pollen grains was defective.GUS staining analysis of transgenic plants expressing the GUS reporter gene driven by the AtVPS15 promoter showed that AtVPSI5 was mainly expressed in pollen grains.Finally,DUALmembrane yeast two-hybrid analysis demonstrated that AtVPS15 might interact directly with AtVPS34.These results suggest that AtVPS15 is very important for pollen germination,possibly through modulation of the activity of PI3-kinase.  相似文献   

13.
14.
15.
16.
Ragweed pollen: The aeroallergen is spreading in Italy   总被引:1,自引:0,他引:1  
Presently in Europe, ragweed pollen as an aeroallergen is not as important as Poaceae,Parietaria or Betulaceae, even if in some countries the plant is beginning to influence the local composition of the airborne pollen spectra. In northern Italy, the presence of ragweed airborne pollen has only been reported since the beginning of the 1980’s and it is increasingly spreading from year to year. Given this situation, the allergologists have begun to regard the potential risk of sensitisation to ragweed pollen with much attention. Up to now, such pollen has not been included in the routine allergological tests. In 1995 in some sites of northern Italy (Turin, Milan, Trieste), the concentration values of ragweed pollen were remarkable (∼ 20–30 p/m3) and on the increase with respect to the previous years. This investigation aims at focusing the atmospheric concentration trend on this new aeroallergen (Ambrosia sp.) in Italy from 1991 throughout 1995.  相似文献   

17.
Qin G  Ma Z  Zhang L  Xing S  Hou X  Deng J  Liu J  Chen Z  Qu LJ  Gu H 《Cell research》2007,17(3):249-263
Pollen germination on the surface of compatible stigmatic tissues is an essential step for plant fertilization. Here we report that the Arabidopsis mutant bcll is male sterile as a result of the failure ofpollen germination. We show that the bcll mutant allele cannot be transmitted by male gametophytes and no homozygous bcll mutants were obtained. Analysis of pollen developmental stages indicates that the bcll mutation affects pollen germination but not pollen maturation. Molecular analysis demonstrates that the failure of pollen germination was caused by the disruption of AtBECLIN 1. AtBECLIN 1 is expressed predominantly in mature pollen and encodes a protein with significant homology to Beclin1/Atg6/Vps30 required for the processes of autophagy and vacuolar protein sorting (VPS) in yeast. We also show that AtBECLIN 1 is required for normal plant development, and that genes related to autophagy, VPS and the glycosylphosphatidylinositol anchor system, were affected by the deficiency of AtBECLIN 1.  相似文献   

18.
In angiosperms the late pollen actins (LPAs) are strongly expressed in mature pollen and pollen tubes and at much lower levels in ovules. Four Arabidopsis lines with homozygous knockout mutations in the four individual LPA genes displayed normal flowers, pollen, and seed set. However, when all four LPAs were silenced simultaneously with a single RNA interference (RNAi) construct targeting the 3′UTR of each mRNA, obvious reproductive defects were observed. Western analysis of various Late Pollen actin RNA interference (LPRi) epialleles showed total LPA protein and RNA expression levels were knocked down from 0% to 95% compared to wild-type levels. Reciprocal crosses with the RNAi lines demonstrated that lowered LPA expression was associated with defects in both male and female fertility. Strong epialleles showed significant reductions in normal silique and seed production and were nearly sterile. Dissection of the siliques from moderate LPRi epialleles revealed many unfertilized ovules, increased numbers of aborted seeds, and decreased numbers of healthy seeds. Microscopic analysis of LPRi pollen indicated that the pollen shape and size were normal, but pollen germinated poorly. While multiple LPA genes may have some functional redundancy, the combined expression of multiple LPA genes appears essential to normal male and female reproductive development.  相似文献   

19.
An Arabidopsis deletion mutant was fortuitously identified from the alpha population of T-DNA insertional mutants generated at the University of Wisconsin Arabidopsis Knockout Facility. Segregation and reciprocal crosses indicated that the mutant was a gametophytic pollen sterile mutant. Pollen carrying the mutation has the unusual phenotype that it is viable, but cannot germinate. Thus, the mutant was named pollen germination defective mutant 1 (pgd1), based on the pollen phenotype. Flanking sequences of the T-DNA insertion in the pgd1 mutant were identified by thermal asymmetric interlaced (TAIL) PCR. Sequencing of bands from TAIL PCR revealed that the T-DNA was linked to the gene XLG1, At2g23460, at its downstream end, while directly upstream of the T-DNA was a region between At2g22830 and At2g22840, which was 65 genes upstream of XLG1. Southern blotting and genomic PCR confirmed that the 65 genes plus part of XLG1 were deleted in the pgd1 mutant. A 9,177 bp genomic sequence containing the XLG1 gene and upstream and downstream intergenic regions could not rescue the pgd1 pollen phenotype. One or more genes from the deleted region were presumably responsible for the pollen germination defect observed in the pgd1 mutant. Because relatively few mutations have been identified that affect pollen germination independent of any effect on pollen viability, this mutant line provides a new tool for identification of genes specifically involved in this phase of the reproductive cycle.  相似文献   

20.
Summary Cytogenetic examination of transgenic Arabidopsis thaliana (L.) Heynh. plants obtained by Agrobacterium-mediated gene transfer to cotyledon- and root-explants or by direct gene transfer into protoplasts revealed a high percentage of tetraploid or aneuploid transformants. Depending on the transformation procedure used, 13% (root explant transformation), 33% (cotyledon explant transformation), or 38% (direct gene transfer) of the transformants showed aberrant ploidy levels. A good correlation between the ploidy level of a plant and the size of its pollen grains was observed. This allows quick and simple testing of the ploidy level of transgenic Arabidopsis plants.Abbreviations AM Arabidopsis medium - ANOVA analysis of variance - DAPI 4,6-Diamidino-2-phenylindole - PEG polyethyleneglycol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号