共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Blue light induced the phosphorylation of a 116-kDa plasma-membrane-associated protein in dark-grown seedlings from Avena sativa L. The response was restricted to the phototropically sensitive tissue of the coleoptile tip. Surprisingly, this protein showed different properties in membrane preparations from plants that were grown for 3 d than in those from 5-d-old seedlings. In contrast to the younger coleoptiles, in 5-d-old seedlings phosphorylation of the 116-kDa protein depended strictly on the addition of Triton X-100 or other non-ionic detergents and was not abolished when the membranes were pretreated with trypsin. These latter membranes were also characterized by the appearance of two additional bluelight-regulated phosphoproteins of slightly lower molecular masses, exhibiting properties similar to the 116-kDa protein from 3-d-old plants. The data, together with solubilization studies, indicate that the 116-kDa protein is strongly membrane-bound only at the very beginning of seedling development and becomes more loosely associated in the course of coleoptile growth. In addition, we demonstrate that the capacity of the light-activated photoreceptor to recover photosensitivity in the dark also can occur under in-vitro conditions.Abbreviations LM-proteins
lower molecular mass phosphoproteins, 100 kDa and 95 kDa
- NPM
N-phenylmaleimide
We thank Dr. W.R. Briggs and Dr. P. Reymond (Carnegie Institution of Washington, Stanford, USA) for helpful discussion at the beginning of this work. The work was supported by the Deutsche Forschungsgemeinschaft, Bonn, and the Fonds der Chemischen Industrie, Frankfurt, Cooperation was supported by a travel grant from NATO. 相似文献
3.
Carol S. Surowy Nathan A. Berger 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,847(3)
A series of proteins are covalently labeled when human lymphocytes are incubated with [32P]NAD+. The majority of this labeling is effectively inhibited when the lymphocytes are coincubated with 3-aminobenzamide, a potent inhibitor of poly(ADP-ribose) polymerase. However, labeling of a 72 000 molecular weight protein was resistant to the inhibitory effect of 3-aminobenzamide. Labeling of this protein from [32P]NAD+ was shown to be Mg2+-dependent. The 72 000 molecular weight protein could also be labeled on incubation with [α-32P]ATP, [γ-32P]ATP and [32P]orthophosphate, but not from [3H]NAD+ or [14C]NAD+. In the present study, we show that the 72 000 molecular weight protein is not ADP-ribosylated but rather, phosphorylated on incubation with [32P]NAD+. This phosphorylation appears to occur via an Mg2+-dependent conversion of NAD+ to AMP with the eventual utilization of the α-phosphate for phosphorylation of the 72 000 molecular weight protein. 相似文献
4.
P2X3 and P2X2+3 receptors are present on sensory neurons, where they contribute not only to transient nociceptive responses, but also to
hypersensitivity underlying pathological pain states elicited by nerve injuries. Increased signalling through P2X3 and P2X2+3 receptors may arise from an increased routing to the plasma membrane and/or gain of function of pre-existing receptors. An
obvious effector mechanism for functional modulation is protein kinase C (PKC)-mediated phosphorylation, since all P2X family
members share a conserved consensus sequence for PKC, TXR/K, within the intracellularly located N-terminal domain. Contradictory
reports have been published regarding the exact role of this motif. In the present study, we confirm that site-directed elimination
of the potential phosphor-acceptor threonine or the basic residue in the P+2 position of the TXR/K sequence accelerates desensitization
of P2X2 receptors and abolishes P2X3 receptor function. Moreover, the PKC activator phorbol 12-myristate 13-acetate increased P2X3 (but not P2X2) receptor-mediated currents. Biochemically, however, we were unable to demonstrate by various experimental approaches a direct
phosphorylation of wild-type P2X2 and P2X3 receptors expressed in both Xenopus laevis oocytes and HEK293 cells. In conclusion, our data support the view that the TXR/K motif plays an important role in P2X function
and that phorbol 12-myristate 13-acetate is capable of modulating some P2X receptor subtypes. The underlying mechanism, however,
is unlikely to involve direct PKC-mediated P2X receptor phosphorylation. 相似文献
5.
Summary The regulation of voltage-dependent Ca2+ channels by protein phosphorylation and dephosphorylation was studied using tonoplast-free cells ofNitellopsis. Since the Ca2+-channel activation has a dominant role in the membrane excitation of tonoplast-free cells (T. Shiina and M. Tazawa,J. Membrane Biol.
96:263–276, 1987), it seems to be reasonable to assume that any change of the membrane excitability reflects a modulation of the Ca2+ channel. When agents that enhance phosphoprotein dephosphorylation (protein kinase, inhibitor, phosphoprotein phosphatase-1, -2A) were introduced to the intracellular surface of the plasmalemma (twice-perfused tonoplast-free cells), the membrane potential depolarized and the membrane resistance decreased under current-clamp experiments. By contrast, when cells were challenged with agents that enhance protein phosphorylation (phosphoprotein phosphatase inhibitor-1, -naphthylphosphate), the membrane potential hyperpolarized, and the membrane resistance increased. When phosphoprotein phosphatase-1 or -2A was perfused, the current-voltage (I–V) curve which was obtained under ramp voltage-clamp condition exhibited the so-called N-shaped characteristic, indicating an acceleration of the Ca2+-channel activation. This effect was suppressed by the addition of phosphoprotein phosphatase inhibitors. ATP--S, which is assumed to stimulate protein phosphorylation, decreased the inward current in theI–V curve. The dependence of the Ca2+-channel activation on intracellular ATP was different between the once-perfused and twice-perfused cells. In once-perfused cells, the membrane excitability was reduced by low intracellular ATP concentration. By contrast, in twice-perfused cells, excitability was enhanced by ATP. 相似文献
6.
The polysomal pattern of the dinoflagellate Gonyaulax polyedra, cultured under constant conditions, demonstrates a circadian rhythm. The relative amount of polysomes increases during the phase corresponding to the previous night period (=subjective night phase) when the rate of protein synthesis reaches its maximum (Cornelius et al., 1985, Planta 160, 365–370). Cell-free extracts were isolated at different circadian phase. The rate of protein synthesis in the extracts changed rhythmically in the same manner as the rate of protein synthesis in vivo. Substances in the postribosomal supernatants influenced the protein-synthesis rate of the cell-free system, depending on the phase when they were isolated: night factors stimulated protein synthesis in day extracts whereas day factors inhibited protein synthesis in night extracts. These effects were abolished by heating the postribosomal supernatant. In-vitro phosphorylation in parallel probes showed changes in the pattern of phosphorylated proteins. Phosphorylation of one of the proteins (95 kDa) was decreased after addition of night factor(s) and increased after addition of day factor(s). Cyclic-AMP enhanced the rates of protein synthesis and phosphorylation in the day extracts.Abbreviations cAMP
cyclic-AMP
- CT
circadian time
- D (N)
subjective day (night)phase 相似文献
7.
Soon-Kwang Hong Atsushi Matsumoto Sueharu Horinouchi Teruhiko Beppu 《Molecular & general genetics : MGG》1993,236(2-3):347-354
Summary In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and -[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism. 相似文献
8.
Summary The addition of juvenile hormone I (JH I) to membrane preparations of the follicle cells from vitellogenic follicles of the insect Rhodnius prolixus causes a significant increase in the phosphorylation of a 100 kDa polypeptide; and ouabain, a specific inhibitor of Na+K+-ATPase, eliminates this effect. H-7 (1-(5-isoquinolinesulfonyl)-2-methylpiperazine), an inhibitor of protein kinase C (PKC), also eliminates the JH-dependent phosphorylation of this polypeptide. PDBU (phorbol-12, 13-dibutyrate), an activator of PKC, mimics the action of JH in increasing the phosphorylation of the 100 kDa polypeptide. Because these findings parallel the action of JH in causing the patency, the appearance of large spaces between the follicle cells through which vitellogenin gains access to the oocyte surface, they suggest that phosphorylation of one or more membrane proteins is a key event in the development of patency in response to JH. The 100 kDa polypeptide may represent the a-subunit of Na+K+-ATPase. 相似文献
9.
Connie M. Williams Guichang Zhang Marek Michalak D. D. Cass 《Sexual plant reproduction》1997,10(2):83-88
To examine possible calcium (Ca2+)-mediated prefertilization events in male gametes of higher plants, we studied protein phosphorylation and the Ca2+-binding proteins, calmodulin and calreticulin, in sperm cells isolated from maize (Zea mays L.) pollen in the presence and absence of Ca2+. Using immunoblotting, we detected calmodulin and calreticulin and Ca2+-induced variations. Exposure of sperm cells to 1 mM Ca2+ for 1 h increased calmodulin content by 136% compared with the control. Ca2+ had little effect on calreticulin at 1 h, but induced a 34% increase after 3 h. Phosphorylation of proteins was low in 1 h-control
and Ca2+-treated cells. However, a 13-fold increase in phosphorylation of a 18-kDa protein was found at 12 h in the presence of Ca2+. Ca2+-induced changes in calmodulin, calreticulin and protein phosphorylation observed in maize sperm cells may reflect prefertilization
changes in vivo that facilitate sperm cell fusion with egg and central cells.
Received: 26 July 1996 / Revision accepted: 7 February 1997 相似文献
10.
Bai GR Yang LH Huang XY Sun FZ 《Biochemical and biophysical research communications》2006,348(4):1319-1327
Type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) is a widely expressed intracellular calcium-release channel found in many cell types. The operation of IP(3)R1 is regulated through phosphorylation by multiple protein kinases. Extracellular signal-regulated kinase (ERK) has been found involved in calcium signaling in distinct cell types, but the underlying mechanisms remain unclear. Here, we present evidence that ERK1/2 and IP(3)R1 bind together through an ERK binding motif in mouse cerebellum in vivo as well as in vitro. ERK-phosphorylating serines (Ser 436) was identified in mouse IP(3)R1 and Ser 436 phosphorylation had a suppressive effect on IP(3) binding to the recombinant N-terminal 604-amino acid residues (N604). Moreover, phosphorylation of Ser 436 in R(224-604) evidently enhance its interaction with the N-terminal "suppressor" region (N223). At last, our data showed that Ser 436 phosphorylation in IP(3)R1 decreased Ca(2+) releasing through IP(3)R1 channels. 相似文献
11.
Protein kinases and phosphatases are responsible for several cellular events mediated by protein phosphorylation and dephosphorylation. Among these events are cell growth and differentiation and cellular metabolism. Casein kinase I (CKI) and casein kinase II (CKII) are involved in the phosphorylation of several substrates. Endogenous protein phosphorylation and casein kinase activity were investigated in the megagametophyte of the native Brazilian conifer Araucaria angustifolia, during seed development. It was observed that a number of different polypeptides are phosphorylated in vitro in the three megagametophyte stages of development tested (from globular, cotyledonary and mature embryos, respectively) and the phosphate was incorporated mainly in serine residues. The use of okadaic acid and vanadate in the phosphorylation reactions increased phosphate incorporation in several polypeptides suggesting the presence of serine/threonine as well as tyrosine phosphatases in the megagametophyte. Also, the results obtained in experiments with CKII inhibitor, GTP as phosphate donor, RNA hybridizations, and in-gel kinase assays indicate the presence of CKII in the A. angustifolia megagametophyte. 相似文献
12.
Daphne C. Elliott Marie Geytenbeek 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》1985,845(3):317-323
Proteins from crown gall tissue labelled in vivo with [32P]orthophosphate were analysed by SDS-polyacrylamide gel electrophoresis. The major phosphorylated proteins were of 50.6 and 48.3 kDa, with minor bands at 80.1, 73.9, 68, 40.4, 30, 21.5, 20.2 and 15.2 kDa. Partial hydrolysates of total 32P-labelled proteins were analysed in a number of ways. A two-dimensional separation on paper by electrophoresis in pyridine/acetic acid at pH 3.5 followed by chromatography in isobutyric acid/0.5 M ammonia revealed radioactive spots coincident with phosphoserine and phosphothreonine markers and only partially coincident with the phosphotyrosine marker. Two-dimensional electrophoresis at pH 1.9 followed by pH 3.5, however, unequivocally showed the presence of phosphotyrosine after elution of the phosphotyrosine marker. Phosphoserine, phosphothreonine and phosphotyrosine were present in the ratio 89.4:8.5:2.1. This is a much higher level of phosphotyrosine than normally found in animal cells. The three phosphoamino acids were confirmed by chromatography with authentic samples in four solvent systems on cellulose or silica TLC, and by dansylation followed by silica TLC. The radioactive compound running almost coincident with phosphotyrosine on two-way electrophoresis, pH 3.5, followed by chromatography in isobutyric acid/0.5 M ammonia was identified tentatively as uridine 5′-monophosphate on the basis of electrophoretic and chromatographic behaviour. Further experiments to compare normal (growing and non-growing) tobacco callus and T37-transformed cells did not give markedly different ratios of the three phosphoamino acids, although the rapidly-growing normal tobacco (i.e., plus cytokinin) appeared to have a greater abundance of the two minor phosphoamino acids (approx. 2-times). The lack of effect of transformation is in contrast to animal cells where transformation results in a 10-fold increase in the virally affected cells. 相似文献
13.
Glucose uptake and lactate production in cells exposed to CoCl(2) and in cells overexpressing the Glut-1 glucose transporter 总被引:1,自引:0,他引:1
Glut-1-mediated glucose transport is augmented in response to a variety of conditions and stimuli. In this study we examined the metabolic fate of glucose in cells in which glucose transport is stimulated by exposure to CoCl(2), an agent that stimulates the expression of a set of hypoxia-responsive genes including several glycolytic enzymes and the Glut-1 glucose transporter. Similarly, we determined the metabolic fate of glucose in stably transfected cells overexpressing Glut-1. Exposure of Clone 9 liver cell line, 3T3-L1 fibroblasts, and C(2)C(12) myoblasts to CoCl(2) resulted in an increase glucose uptake and in the activity of glucose phosphorylation ("hexokinase") and lactate dehydrogenase. In cells treated with CoCl(2), the net increase in glucose taken up was accounted for by its near-complete conversion to lactate. Cells stably transfected to overexpress Glut-1 also exhibited enhanced net uptake of glucose with the near-complete conversion of the increased glucose taken up to lactate; however, the effect in these cells was observed in the absence of any change in the activity of two glycolytic enzymes examined. These findings suggest that in cells in which glucose transport is rate-limiting for glucose metabolism, enhancement of the glucose entry step per se results in a near-complete conversion of the extra glucose to lactate. 相似文献
14.
Pierantoni GM Esposito F Tornincasa M Rinaldo C Viglietto G Soddu S Fusco A 《The Journal of biological chemistry》2011,286(33):29005-29013
HIPK2 is a serine/threonine kinase that acts as a coregulator of an increasing number of factors involved in cell survival and proliferation during development and in response to different types of stress. Here we report on a novel target of HIPK2, the cyclin-dependent kinase inhibitor p27(kip1). HIPK2 phosphorylates p27(kip1) in vitro and in vivo at serine 10, an event that accounts for 80% of the total p27(kip1) phosphorylation and plays a crucial role in the stability of the protein. Indeed, HIPK2 depletion by transient or stable RNA interference in tumor cells of different origin was consistently associated with strong reduction of p27(kip1) phosphorylation at serine 10 and of p27(kip1) stability. An initial evaluation of the functional relevance of this HIPK2-mediated regulation of p27(kip1) revealed a contribution to cell motility, rather than to cell proliferation, but only in cells that do not express wild-type p53. 相似文献
15.
A soluble Ca(2+)-dependent protein kinase (CDPK) was isolated from seedlings of the short-day plant Pharbitis nil and purified to homogeneity. Activity of Pharbitis nil CDPK (PnCDPK) was strictly dependent on the presence of Ca(2+) (K(0,5)=4,9 microM). The enzyme was autophosphorylated on serine and threonine residues and phosphorylated a wide diversity of substrates only on serine residues. Histone III-S and syntide-2 were the best phosphate acceptors (K(m) for histone III-S=0,178 mg ml(-1)). Polyclonal antibodies directed to a regulatory region of the soybean CDPK recognized 54 and 62 kDa polypeptides from Pharbitis nil. However, only 54 kDa protein was able to catalyse autophosphorylation and phosphorylation of substrates in a Ca(2+)-dependent manner. CDPK autophosphorylation was high in 5-day-old Pharbitis nil seedlings grown under non-inductive continuous white light and was reduced to one-half of its original when plants were grown in the long inductive night. Also, the pattern of proteins phosphorylation has changed. After 16-h-long inductive night phosphorylation of endogenous target (specific band of 82 kDa) increased in the presence of calcium ions. It may suggest that Ca(2+)-dependent protein kinase is involved in this process and it is dependent on light/dark conditions. 相似文献
16.
Antonella Pantaleo Emanuela Ferru Franco Carta Franca Mannu Giuliana Giribaldi Rosa Vono Antonio J. Lepedda Proto Pippia Francesco Turrini 《Proteomics》2010,10(19):3469-3479
Phosphorylation of erythrocyte membrane proteins has been previously documented following infection and intracellular growth of the malarial parasite, Plasmodium falciparum in red cells. Much of this data dealt with phosphorylation of serine residues. In this study, we report detailed characterization of phosphorylation of serine and tyrosine residues of red cell membrane proteins following infection by P falciparum. Western blot analysis using anti‐phosphotyrosine and anti‐phosphoserine antibodies following 2‐DE in conjunction with double channel laser‐induced infrared fluorescence enabled accurate assessment of phosphorylation changes. Tyrosine phosphorylation of band 3 represented the earliest modification observed during parasite development. Band 3 tyrosine phosphorylation observed at the ring stage appears to be under the control of Syk kinase. Serine and tyrosine phosphorylation of additional cytoskeletal, trans‐membrane and membrane associated proteins was documented as intracellular development of parasite progressed. Importantly, during late schizont stage of parasite maturation, we observed widespread protein dephosphorylation. In vitro treatments that caused distinct activation of red cell tyrosine and serine kinases elicited phosphorylative patterns similar to what observed in parasitized red blood cell, suggesting primary involvement of erythrocyte kinases. Identification of tyrosine phosphorylations of band 3, band 4.2, catalase and actin which have not been previously described in P. falciparum infected red cells suggests new potential regulatory mechanisms that could modify the functions of the host cell membrane. 相似文献
17.
Osuna L Coursol S Pierre JN Vidal J 《Biochemical and biophysical research communications》2004,315(2):428-433
We have shown previously that fibroblasts derived from fat or dermal tissue differ in their functional properties, such as proliferation rate and contractile properties. To study these differences further, two-dimensional electrophoresis (2D PAGE) was performed on proteins isolated from cultured subcutaneous fat and dermal fibroblasts. The 2D gels were screened for proteins that were differentially expressed in all donors (n = 5). Five protein spots were subjected to further analysis by mass spectrometry. Two proteins could be identified: brain acid soluble protein 1 (BASP1) and cellular retinoic acid binding protein-II (CRABP-II). CRABP-II is of interest in terms of re-epithelialisation and was clearly expressed in dermal fibroblasts but not in fat fibroblasts. Real time PCR was performed to confirm the 2D data on CRABP-II. The CRABP-II mRNA level was significantly increased in dermal tissue and cultured dermal fibroblasts compared to fat tissue and cultured fat-derived fibroblasts, respectively. The mode of action of CRABP-II in skin is to mediate retinoic acid activity. Retinoic acid is known to inhibit migration and to stimulate differentiation of keratinocytes. The expression of CRABP-II by dermal fibroblasts implicates a role for these fibroblasts in wound re-epithelialisation, in contrast to subcutaneous fat-derived fibroblasts. 相似文献
18.
A burst of net CO2 uptake was observed during the first 3–4 min after the onset of illumination in both wild-type Chlamydomonas reinhardii in which carbonic anhydrase was chemically inhibited with ethoxyzolamide and in a mutant of C. reinhardii (ca-1-12-1C) deficient in carbonic anhydrase activity. The burst was followed by a rapid decrease in the CO2 uptake rate so that net evolution often occurred. After a 2–3 min period of CO2 evolution, net CO2 uptake again increased and ultimately reached a steady-state, positive rate. From [14CO2]-tracer studies it was determined that CO2 fixation proceeded at a nearly linear rate throughout the period of illumination. Thus, prior to reaching a steady state, there was a rapid accumulation of inorganic carbon inside the cells which apparently reached a supercritical concentration and the excess was excreted, causing a subsequent efflux of CO2. A post illumination burst of net CO2 efflux was also observed in ethoxyzolamide-inhibited wild type and ca-1 mutant cells, but not in the unihibited wild type. [14CO2]-tracer experiments revealed that this burst was the result of a collapse of a large internal inorganic carbon pool at the onset of darkness rather than a photorespiratory post-illumination burst. These results indicate that upon illumination, chemical or genetic inhibition of carbonic anhydrase initially causes an accumulation of excess inroganic carbon in C. reinhardii cells, and that unknown regulatory mechanisms correct for this imbalance by first excreting the excess inorganic carbon and then, after several dampened oscillations, achieving an equilibrium between bicarbonate uptake, bicarbonate dehydration, and CO2 fixation. 相似文献
19.
Esma R. Isenovic Maxence Fretaud Emina Sudar Bozidarka Zaric Pierre Marche 《Cell biology international》2009,33(3):386-392
Insulin (INS) via INS receptor acts as a mitogen in vascular smooth muscle cells (VSMCs) through stimulation of multiple signaling mechanisms, including p42/44 mitogen-activated protein kinase (ERK1/2) and phosphatidyl inositol-3 kinase (PI3K). In addition, cytosolic phospholipase 2 (cPLA2) is linked to VSMCs proliferation. However, the upstream mechanisms responsible for activation of cPLA2 are not well defined. Therefore, this investigation used primary cultured rat VSMCs to examine the role of PI3K and ERK1/2 in the INS-dependent phosphorylation of cPLA2 and proliferation induced by INS. Exposure of VSMCs to INS (100 nM) for 10 min increased the phosphorylation of cPLA2 by 1.5-fold (p < 0.01), which was blocked by the cPLA2 inhibitor MAFP (10 μM; 15 min). Similarly, the PI3K inhibitor LY294002 (10 μM; 15 min) and ERK1/2 inhibitor PD98059 (20 μM; 15 min) abolished the INS-mediated increase in cPLA2 phosphorylation by 59% (p < 0.001), and by 75% (p < 0.001), respectively. Further, inhibition of cPLA2 with cPLA2 inhibitor MAFP abolished the INS-stimulated ERK1/2 phosphorylation by 65% (p < 0.01). Incubation of rat VSMCs with INS resulted in an increase of VSMCs proliferation by 85% (p < 0.001). The effect of INS on VSMCs proliferation was significantly (p < 0.01) reduced by pretreatment with MAFP. Thus, we hypothesized that INS stimulates VSMCs proliferation via a mechanism involving the PI3K-dependent activation of cPLA2 and release of arachidonic acid (AA), which activates ERK1/2 and further amplifies cPLA2 activity. 相似文献
20.
Role of phosphorylation sites and the C2 domain in regulation of cytosolic phospholipase A2. 总被引:4,自引:0,他引:4
Cytosolic phospholipase A2 (cPLA2) mediates agonist-induced arachidonic acid release, the first step in eicosanoid production. cPLA2 is regulated by phosphorylation and by calcium, which binds to a C2 domain and induces its translocation to membrane. The functional roles of phosphorylation sites and the C2 domain of cPLA2 were investigated. In Sf9 insect cells expressing cPLA2, okadaic acid, and the calcium-mobilizing agonists A23187 and CryIC toxin induce arachidonic acid release and translocation of green fluorescent protein (GFP)-cPLA2 to the nuclear envelope. cPLA2 is phosphorylated on multiple sites in Sf9 cells; however, only S505 phosphorylation partially contributes to cPLA2 activation. Although okadaic acid does not increase calcium, mutating the calcium-binding residues D43 and D93 prevents arachidonic acid release and translocation of cPLA2, demonstrating the requirement for a functional C2 domain. However, the D93N mutant is fully functional with A23187, whereas the D43N mutant is nearly inactive. The C2 domain of cPLA2 linked to GFP translocates to the nuclear envelope with calcium-mobilizing agonists but not with okadaic acid. Consequently, the C2 domain is necessary and sufficient for translocation of cPLA2 to the nuclear envelope when calcium is increased; however, it is required but not sufficient with okadaic acid. 相似文献