首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method for rapid concentration and purification of influenza virus by adsorption on and elution from an insoluble polyelectrolyte is described. To accomplish this task, influenza virus had to be rendered stable at pH 4 to 5, since viruses adsorb to the polyelectrolyte more efficiently at this pH range. A precipitate which forms in influenza harvests under acid conditions in the cold can be removed by ammonium sulfate at a concentration which traps the precipitate but not the virus. Thus, ammonium sulfate-treated influenza virus in allantoic fluid could be readily concentrated on the polyelectrolyte. Elution yielded a virus concentrate essentially free of nonviral proteins.  相似文献   

2.
Methods were developed for detecting and concentrating enteric viruses in municipal solid waste landfill leachates. Poliovirus added to a leachate was not readily detectable, possibly because the virus was adsorbed to the leachate particulates. The masking effects associated with suspended solids in the leachate were overcome by adding a final 0.1 M sodium (tetra)ethylenediaminetetraacetate concentration to the leachate. A sodium (tetra)ethylenediaminetetraacetate-treated leachate could be clarified by filtration at pH 8.0 without a loss of virus. The clarified and sodium (tetra)ethylenediaminetetraacetate-treated leachate contained interfering materials of an anionic nature which prevented virus adsorption to epoxy-fiber glass filters. This interfering effect was overcome by treating the leachate with an anion-exchange resin. Viruses in the resin-treated leachate were concentrated by adjusting the leachate to pH 3.5, adding AlCl(3) to a final 0.005 M concentration, adsorbing the viruses to an epoxy-fiber glass virus adsorbent, and eluting the adsorbed viruses in a small volume. When this method was used to concentrate poliovirus 100-fold in a variety of leachates, the average virus recovery efficiency was 37%. With the methods described in this study, it should be possible to efficiently monitor solid waste disposal site leachates for enteric viruses.  相似文献   

3.
For virus recovery from sewage, a mixture of talc and Celite was tested as a possible inexpensive substitute for polyelectrolyte 60 (PE 60). After adjustment of pH to 6 and the addition of 45-60 plaque forming units (PFU)/ml of poliovirus type I (Sabin) to the sewage sample under test, 100 ml of it was passed through either a PE 60 (400 mg) or a talc (300 mg)-Celite (100 mg) layer; the layer-adsorbed virus was eluted with 10 ml of 10% fetal calf serum (FCS) in saline (pH 7.2). In these experiments, PE 60 layers recovered 73-80% (mean 76%) of the input virus. In comparison, virus recoveries with the talc-Celite layers were 65-70% (mean 68%). Passage of 5 litres of raw sewage (containing 50 to 1.26 X 10(5) PFU/100 ml of the poliovirus) through the talc (15 g)-Celite (5 g) layers and virus elution with 50 ml of 10% FCS in saline gave virus recoveries of 33-63% (mean 49%). Except for pH adjustment and prefiltration through two layers of gauze to remove large solids, no other sample pretreatment was found to be necessary. Application of this technique to recovery of indigenous viruses from field samples of raw sewage and effluents has been highly satisfactory.  相似文献   

4.
Insoluble polyelectrolytes (PE60) were used for the concentration of viruses from stool specimens, confirming the results of Wallis et al. (1969). Ten percent suspensions inoculated with poliovirus type 3 were used in these experiments. A small number of stool specimens from patients naturally infected with enteroviruses were also tested. Preferential adsorption of viruses to PE60 was maximum at a pH range of 4.5 to 6.0. The elution of the adsorbed viruses was optimal at pH 8.5. Other parameters were also investigated. Electron microscopy was used successfully to detect the eluted viruses.  相似文献   

5.
Replication of Ibaraki virus was not inhibited by 5-iodo-2′-deoxyuridine, indicating that the virus is an RNA virus. The virus was resistant to ether, chloroform and deoxycholate, sensitive to trypsin, very labile at acidic pH but stable at pH 6.4 or higher, and was resistant to repeated freezing and thawing. The virus was readily inactivated at 56 C or higher, was fairly stable at 37 C, and very stable at 4 C, while it rapidly lost infectivity when stored frozen at —20 C. The virus was readily sedimented by centrifugation at 40 000Xg for 60 min. It readily passed through membrane filters of 200 mμ pore size, passed through 100 μfilters but only with some titer loss and did not through 50 mμ filters. In these tests, the bluetongue virus used as a control behaved in the same manner as Ibaraki virus. These findings provide additional evidence for the similarity of Ibaraki virus to bluetongue virus which had been previously demonstrated on the basis of seasonal incidence, symptomatology and pathology of the diseases caused by these viruses and the behavior of the viruses in cell cultures, embryonated eggs and laboratory animals. The present study, however, provided no evidence for any serological relation between these two viruses. More Information is needed to reach a final decision on the classification of Ibaraki virus, particularly regarding the morphology of the virion, the doublestrandedness of the viral RNA and other basic features.  相似文献   

6.
The concentration of viruses from sewage by adsorption on and elution from an insoluble cross-linked copolymer of maleic anhydride is described. Viruses either added to sewage or naturally contained in sewage were preferentially adsorbed to this polyelectrolyte at a pH range of 5.0 to 6.0 and were eluted at pH 8.0 to 9.0. In a 2-month survey of viruses in sewage in the spring (April to May 1968), when viruses are at low levels, efficient and economical detection of these agents was accomplished with the polyelectrolyte-concentration method. This method lends itself to the detection of viruses present in minute amounts in fecal samples, urine, sewage, and other natural waters. Large volumes of these fluids can be treated with the polymer described, and virus can be concentrated sufficiently for detection.  相似文献   

7.
The spike glycoprotein E2 of Sindbis virus (SIN) is synthesized in the infected cell as a PE2 precursor protein, which matures through cleavage by a cellular furin-like protease. Previous work has shown that SIN mutants impaired in PE2 cleavage are noninfectious on BHK-21 cells, the block in infection being localized at a step after virus-receptor interaction but prior to RNA replication. Here, we studied the membrane fusion properties of SIN PE2 cleavage mutants and observed that these viruses are impaired in their ability to form an E1 homotrimer and to fuse with liposomes at a mildly acidic pH. The block in spike rearrangement and fusion could be overridden by exposure of the mutant viruses to very low pH (<4.5). Cleavage mutants with second-site resuscitating mutations in PE2 were highly infectious for BHK-21 cells. The ability of these viruses to form E1 homotrimers and to fuse at a mildly acidic pH was completely restored despite a sustained lack of PE2 cleavage.  相似文献   

8.
Membrane filter adsorption-elution is an efficient method for concentration and partial purification of several types of viruses from various aqueous solutions. For efficient virus adsorption to negatively charged filters, the sample is adjusted to pH 3.5 and trivalent salts are added before filtration. Since influenza virus is sensitive to extremes in pH, it cannot be concentrated by ordinary filters. Zeta Plus filters, which have a net positive charge of up to 5 or 6, were evaluated for the concentration of influenza virus from infectious allantoic fluids. Influenza virus efficiently adsorbed to Zeta Plus filters at pH 6, and addition of salts was not necessary. Adsorbed virus was eluted in a small volume of 2% bovine serum albumin plus 1 M NaCl at pH 10. By this procedure, viruses in 100 ml of allantoic fluid were concentrated to a final volume of 8 ml, with an average recovery efficiency of 71.0%.  相似文献   

9.
The most likely shellfish to be harvested if sportfishing is reinstated in San Francisco Bay is the Japanese cockle Tapes japonica. The virus levels present in these shellfish are unknown and need to be evaluated before the shellfish beds are open. Towards this end, a procedure for recovering and concentrating enteric viruses from these clams has been evaluated. Effective elution of poliovirus from clam tissues was found to occur with pH 9.5 glycine-buffered saline rather than with the pH 7.5 fluid utilized by other investigators on oysters. Poliovirus desorption was combined with Cat-Floc clarification to remove cytotoxicity from clam tissue homogenates. For assay purpose, viruses were concentrated by mixing the glycine supernatant with a beef extract solution, lowering the pH, and suspending the resulting floc in a small volume of phosphate buffer. This simple technique successfully recovered an average of 73% of the poliovirus added to clam homogenates at levels of 93 and 660 plaque-forming units per 100 g. Coxsackievirus B2 was isolated from clams exposed to raw sewage.  相似文献   

10.
A method is described that improved the detection of viruses in fecal samples by electron microscopy. The virus particles were concentrated, and much of the background debris was removed by adsorption of viruses on meat protein added to the fecal sample at a low pH and a low salt concentration. Viruses were eluted by raising the pH and the salt concentration. Further concentration was achieved by acid precipitation and vacuum dialysis.  相似文献   

11.
A method is described that improved the detection of viruses in fecal samples by electron microscopy. The virus particles were concentrated, and much of the background debris was removed by adsorption of viruses on meat protein added to the fecal sample at a low pH and a low salt concentration. Viruses were eluted by raising the pH and the salt concentration. Further concentration was achieved by acid precipitation and vacuum dialysis.  相似文献   

12.
K Klappe  J Wilschut  S Nir  D Hoekstra 《Biochemistry》1986,25(25):8252-8260
A kinetic and quantitative characterization of the fusion process between Sendai virus and phospholipid vesicles is presented. Membrane fusion was monitored in a direct and continuous manner by employing an assay which relies on the relief of fluorescence self-quenching of the probe octadecylrhodamine B chloride which was located in the viral membrane. Viral fusion activity was strongly dependent on the vesicle lipid composition and was most efficient with vesicles solely consisting of acidic phospholipids, particularly cardiolipin (CL). This result implies that the fusion of viruses with liposomes does not display an absolute requirement for specific membrane receptors. Incorporation of phosphatidylcholine (PC), rather than phosphatidylethanolamine (PE), into CL bilayers strongly inhibited fusion, suggesting that repulsive hydration forces interfere with the close approach of viral and target membrane. Virus-liposome fusion products were capable of fusing with liposomes, but not with virus. In contrast to fusion with erythrocyte membranes, fusion between virus and acidic phospholipid vesicles was triggered immediately, did not strictly depend on viral protein conformation, and did not display a pH optimum around pH 7.5. On the other hand, with vesicles consisting of PC, PE, cholesterol, and the ganglioside GD1a, the virus resembled more closely the fusogenic properties that were seen with erythrocyte target membranes. Upon decreasing the pH below 5.0, the viral fusion activity increased dramatically. With acidic phospholipid vesicles, maximal activity was observed around pH 4.0, while with GD1a-containing zwitterionic vesicles the fusion activity continued to increase with decreasing pH down to values as low as 3.0.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The efficiency of a system developed for the recovery of viruses contaminating large quantities of vegetables was investigated in the laboratory and tested in the field. Viruses seeded onto a number of leafy vegetables in the laboratory were eluted with a phosphate-buffered saline solution (pH 9.0). The eluate was clarified by glass wool filtration, and any viruses present were concentrated by adsorption to a Filterite pleated cartridge filter, eluted with 3% beef extract (pH 9.0), and further concentrated by organic flocculation. At least 24 liters of vegetable eluate could be concentrated to 70 to 80 ml, equivalent to a greater than 99.5% reduction in volume. With this system, poliovirus was recovered with a mean efficiency of 58% for all vegetables tested. Adenovirus was recovered from lettuce with a slightly lower mean efficiency (55%). Poliovirus was recovered from large quantities of cabbage for up to 5 days in the field after spray irrigation of relatively low levels of virus, even when heavy rain fell before sampling.  相似文献   

14.
The efficiency of a system developed for the recovery of viruses contaminating large quantities of vegetables was investigated in the laboratory and tested in the field. Viruses seeded onto a number of leafy vegetables in the laboratory were eluted with a phosphate-buffered saline solution (pH 9.0). The eluate was clarified by glass wool filtration, and any viruses present were concentrated by adsorption to a Filterite pleated cartridge filter, eluted with 3% beef extract (pH 9.0), and further concentrated by organic flocculation. At least 24 liters of vegetable eluate could be concentrated to 70 to 80 ml, equivalent to a greater than 99.5% reduction in volume. With this system, poliovirus was recovered with a mean efficiency of 58% for all vegetables tested. Adenovirus was recovered from lettuce with a slightly lower mean efficiency (55%). Poliovirus was recovered from large quantities of cabbage for up to 5 days in the field after spray irrigation of relatively low levels of virus, even when heavy rain fell before sampling.  相似文献   

15.
Concentration of enteroviruses from estuarine water.   总被引:11,自引:10,他引:1       下载免费PDF全文
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

16.
Pleated cartridge filters readily adsorb viruses in estuarine water at low pH containing aluminum chloride. Adsorbed viruses are efficiently recovered by treating filters with glycine buffer at high pH. By using these procedures, it was possible to recover approximately 70% of the poliovirus added to 400 liters of estuarine water in 3 liters of filter eluate. Reconcentration of virus in the filter eluate in small volumes that are convenient for viral assays was more difficult. Reconcentration methods described previously for eluates from filters that process tap water or treated wastewater were inadequate when applied to eluates from filters used to process estuarine water containing large amounts of organic compounds. Two methods were found to permit efficient concentration of virus in filter eluates in small volumes. In both methods, virus in 3 liters of filter eluate was adsorbed to aluminum hydroxide flocs and then recovered in approximately 150 ml of buffered fetal calf serum. Additional reductions in volume were achieved by ultrafiltration or hydroextraction. By using these procedures 60 to 80% of the virus in 3 liters of filter eluate could be recovered in a final volume of 10 to 40 ml.  相似文献   

17.
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.  相似文献   

18.
Single-step concentration of porcine enterovirus strain T80 by adsorption to the polyelectrolyte PE60 gave virus concentration factors of 35- to 88-fold in terms of plaque-forming units, with recovery rates of 22 to 75% of total virus present in the original virus suspension. Concentration by separation in an aqueous polymer two-phase system gave virus concentration factors of 56- to 105-fold and recovery rates of 37 to 107%. In the latter procedure, sodium dextran sulfate appeared to have no effect on plaque numbers, although plaques were sharper and clearer when this substance was incorporated in the overlay. The failure of sonication of virus concentrated by either procedure to increase plaque numbers indicated the absence of virus aggregates in the concentrates. T80 virus was not effectively concentrated by cobalt chloride or polyethylene glycol precipitation or by adsorption to either aluminium hydroxide or calcium hydrogen phosphate.  相似文献   

19.
Concentration of enteroviruses from large volumes of water   总被引:42,自引:38,他引:4       下载免费PDF全文
An improved method for concentrating viruses from large volumes of clean waters is described. It was found that, by acidification, viruses in large volumes of water could be efficiently adsorbed to epoxy-fiber-glass and nitrocellulose filters in the absence of exogenously added salts. Based upon this finding, a modified version of our previously described virus concentration system was developed for virus monitoring of clean waters. In this procedure the water being tested is acidified by injection of N HCl prior to passage through a virus adsorber consisting of a fiber-glass cartridge depth filter and an epoxy-fiber-glass membrane filter in series. The adsorbed viruses are then eluted with a 1-liter volume of pH 11.5 eluent and reconcentrated by adsorption to and elution from a small epoxy-fiber-glass filter series. With this method small quantities of poliovirus in 100-gallon (378.5-liter) volumes of tapwater were concentrated nearly 40,000-fold with an average virus recovery efficiency of 77%.  相似文献   

20.
The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号