首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amplification of a particular DNA fragment from a mixture of organisms by PCR is a common first step in methods of examining microbial community structure. The use of group-specific primers in community DNA profiling applications can provide enhanced sensitivity and phylogenetic detail compared to domain-specific primers. Other uses for group-specific primers include quantitative PCR and library screening. The purpose of the present study was to develop several primer sets targeting commonly occurring and important groups. Primers specific for the 16S ribosomal sequences of Alphaproteobacteria, Betaproteobacteria, Bacilli, Actinobacteria, and Planctomycetes and for parts of both the 18S ribosomal sequence and the internal transcribed spacer region of Basidiomycota were examined. Primers were tested by comparison to sequences in the ARB 2003 database, and chosen primers were further tested by cloning and sequencing from soil community DNA. Eighty-five to 100% of the sequences obtained from clone libraries were found to be placed with the groups intended as targets, demonstrating the specificity of the primers under field conditions. It will be important to reevaluate primers over time because of the continual growth of sequence databases and revision of microbial taxonomy.  相似文献   

2.
The Universal Method (UM) described here will allow the detection of any bacterial rDNA leading to the identification of that bacterium. The method should allow prompt and accurate identification of bacteria. The principle of the method is simple; when a pure PCR product of the 16S gene is obtained, sequenced, and aligned against bacterial DNA data base, then the bacterium can be identified. Confirmation of identity may follow. In this work, several general 16S primers were designed, mixed and applied successfully against 101 different bacterial isolates. One mixture, the Golden mixture7 (G7) detected all tested isolates (67/67). Other golden mixtures; G11, G10, G12, and G5 were useful as well. The overall sensitivity of the UM was 100% since all 101 isolates were detected yielding intended PCR amplicons. A selected PCR band from each of 40 isolates was sequenced and the bacterium identified to species or genus level using BLAST. The results of the UM were consistent with bacterial identities as validated with other identification methods; cultural, API 20E, API 20NE, or genera and species specific PCR primers. Bacteria identified in the study, covered 34 species distributed among 24 genera. The UM should allow the identification of species, genus, novel species or genera, variations within species, and detection of bacterial DNA in otherwise sterile samples such as blood, cerebrospinal fluid, manufactured products, medical supplies, cosmetics, and other samples. Applicability of the method to identifying members of bacterial communities is discussed. The approach itself can be applied to other taxa such as protists and nematodes.  相似文献   

3.
The zonation of anaerobic methane-cycling Archaea in hydrothermal sediment of Guaymas Basin was studied by general primer pairs (mcrI, ME1/ME2, mcrIRD) targeting the alpha subunit of methyl coenzyme M reductase gene (mcrA) and by new group-specific mcrA and 16S rRNA gene primer pairs. The mcrIRD primer pair outperformed the other general mcrA primer pairs in detection sensitivity and phylogenetic coverage. Methanotrophic ANME-1 Archaea were the only group detected with group-specific primers only. The detection of 14 mcrA lineages surpasses the diversity previously found in this location. Most phylotypes have high sequence similarities to hydrogenotrophs, methylotrophs, and anaerobic methanotrophs previously detected at Guaymas Basin or at hydrothermal vents, cold seeps, and oil reservoirs worldwide. Additionally, five mcrA phylotypes belonging to newly defined lineages are detected. Two of these belong to deeply branching new orders, while the others are new species or genera of Methanopyraceae and Methermicoccaceae. Downcore diversity decreases from all groups detected in the upper 6 cm (∼2 to 40°C, sulfate measurable to 4 cm) to only two groups below 6 cm (>40°C). Despite the presence of hyperthermophilic genera (Methanopyrus, Methanocaldococcus) in cooler surface strata, no genes were detected below 10 cm (≥60°C). While mcrA-based and 16S rRNA gene-based community compositions are generally congruent, the deeply branching mcrA cannot be assigned to specific 16S rRNA gene lineages. Our study indicates that even among well-studied metabolic groups and in previously characterized model environments, major evolutionary branches are overlooked. Detecting these groups by improved molecular biological methods is a crucial first step toward understanding their roles in nature.  相似文献   

4.
Oligonucleotide Primers for PCR Amplification of Coelomate Introns   总被引:6,自引:0,他引:6  
Abstract Seven novel oligonucleotide primer pairs for polymerase chain reaction amplification of introns from nuclear genes in coelomates were designed and tested. Each pair bound to adjacent exons that are separated by a single intron in most coelomate species. The primer sets amplified introns in species as widely separated by the course of evolution as oysters (Mollusca: Protostoma) and salmon (Chordata: Deuterostoma). Each primer set was tested on a further 6 coelomate species and found to amplify introns in most cases. These primer sets may therefore be useful tools for developing nuclear DNA markers in diverse coelomate species for studies of population genetics, phylogenetics, or genome mapping.  相似文献   

5.
A highly sensitive quantitative PCR detection method has been developed and applied to the distribution analysis of human intestinal bifidobacteria by combining real-time PCR with Bifidobacterium genus- and species-specific primers. Real-time PCR detection of serially diluted DNA extracted from cultured bifidobacteria was linear for cell counts ranging from 106 to 10 cells per PCR assay. It was also found that the method was applicable to the detection of Bifidobacterium in feces when it was present at concentrations of >106 cells per g of feces. Concerning the distribution of Bifidobacterium species in intestinal flora, the Bifidobacterium adolescentis group, the Bifidobacterium catenulatum group, and Bifidobacterium longum were found to be the three predominant species by examination of DNA extracted from the feces of 46 healthy adults. We also examined changes in the population and composition of Bifidobacterium species in human intestinal flora of six healthy adults over an 8-month period. The results showed that the composition of bifidobacterial flora was basically stable throughout the test period.  相似文献   

6.
Assumptions on the matching specificity of group-specific bacterial primers may bias the interpretation of environmental microbial studies. As available sequence data continue growing, the performance of primers and probes needs to be reevaluated. Here, we present an evaluation of several commonly used and one newly designed Bacteroidetes-specific primer (CF418). First, we revised the in silico primer coverage and specificity with the current SILVA and RDP databases. We found minor differences with previous studies, which could be explained by the chosen databases, taxonomies, and matching criteria. We selected eight commonly used Bacteroidetes primers and tested them with a collection of assorted marine bacterial isolates. We also used the denaturing gradient gel electrophoresis (DGGE) approach in environmental samples to evaluate their ability to yield clear and diverse band patterns corresponding to Bacteroidetes phylotypes. Among the primers tested, CF968R did not provide satisfactory results in DGGE, although it exhibited the highest in silico coverage for Flavobacteria. Primers CFB560 and CFB555 presented undesirable features, such as requiring nested protocols or presence of degeneracies. Finally, the new primer CF418 and primer CF319a were used to explore the Bacteroidetes dynamics throughout a 1-year cycle in Mediterranean coastal waters (Blanes Bay Microbial Observatory). Both primers provided clear and diverse banding patterns, but the low specificity of CF319a was evidenced by 83.3?% of the bands sequenced corresponding to nontarget taxa. The satisfactory DGGE banding patterns and the wide diversity of sequences retrieved from DGGE bands with primer CF418 prove it to be a valuable alternative for the study of Bacteroidetes communities, recovering a wide range of phylotypes within the group.  相似文献   

7.
目的:以人丝裂原活化蛋白激酶3(mitogen-activated protein kinase 3, ) 基因结构为例,利用不同生物相关软件分析、 设计和筛选合适的定量PCR 引物。方法:利用NCBI 的Gene 数据库查找人基因的参考序列、UniGene 数据库查找标准 参考序列;并用在线软件如Spidey, UCSC, Ensembl 等分析基因结构;利用Primer3,Oligo6,IDT 等软件进行引物设计;用MFOLD 程序分析基因二级结构后,选择引物可定位的外显子位置;利用电子PCR进行引物扩增特异性的检验;最后通过实验检验引物的 扩增效果。结果:从程序软件推荐的引物列表中筛选出一对能特异扩增人基因的引物。结论:基因结构分析软件有助于定 量PCR 引物的设计。  相似文献   

8.
A multivariate regression, partial least square (PLS) approach was used to optimize a polymerase chain reaction (PCR) method for mixed communities. This approach, in contrast to univariate ones, provided information on the relative influence of the different factors to be optimized, as well as the interactions between factors. Models that predicted the outcome of further optimization were constructed from the initial experiments and verified experimentally. The models constructed were able to predict the outcome of a second set of experiments with high accuracy. PCR-amplification of DNA from environmental samples is often the first step in microbial community fingerprinting. Inhibitors and low cell numbers in the samples can cause problems with yield, for which compensation is normally made by increasing the number of cycles in the PCR-amplification reaction. Increasing the number of cycles, however, can cause other problems such as heteroduplex formation and increased bias. To avoid these problems the effects of different times of denaturing, annealing, and extension on yield were investigated for 2 different samples, one that consisted of a mixture of 9 laboratory strains, and one that represented the microbial community from the surface of the red alga Delisea pulchra. The multivariate approach showed, in addition to the successful optimization of yield, that the different factors affected the PCR depending on sample type. Annealing time had the largest effect on yield for the mixture of laboratory strains, whereas extension time was most important for the D. pulchra community. We suggest that multivariate optimization is a useful tool for PCR optimization and can be used irrespectively of the particular factors that are being investigated.  相似文献   

9.
The main aim of this study was to evaluate the specificity of three commonly used 16S rRNA gene-based polymerase chain reaction (PCR) primer sets for bacterial community analysis of samples contaminated with eukaryotic DNA. The specificity of primer sets targeting the V3, V3-V5, and V6-V8 hypervariable regions of the 16S rRNA gene was investigated in silico and by community fingerprinting of human and fish intestinal samples. Both in silico and PCR-based analysis revealed cross-reactivity of the V3 and V3-V5 primers with the 18S rRNA gene of human and sturgeon. The consequences of this primer anomaly were illustrated by denaturing gradient gel electrophoresis (DGGE) profiling of microbial communities in human feces and mixed gut of Siberian sturgeon. DGGE profiling indicated that the cross-reactivity of 16S rRNA gene primers with nontarget eukaryotic DNA might lead to an overestimation of bacterial biodiversity. This study has confirmed previous sporadic indications in literature indicating that several commonly applied 16S rRNA gene primer sets lack specificity toward bacteria in the presence of eukaryotic DNA. The phenomenon of cross-reactivity is a potential source of systematic error in all biodiversity studies where no subsequent analysis of individual community amplicons by cloning and sequencing is performed.  相似文献   

10.
Primers that contain portions noncomplementary to the target region are usually used to add to the PCR product a utility sequence such as a restriction site or a universal probe binding site. We have demonstrated that primers with short 5'AT-rich overhangs increase real-time PCR fluorescent signal. The improvement is particularly significant for difficult to amplify templates, such as highly variable viral sequences or bisulfite-treated DNA.  相似文献   

11.
PCR Primers for Metazoan Nuclear 18S and 28S Ribosomal DNA Sequences   总被引:1,自引:0,他引:1  

Background

Metagenetic analyses, which amplify and sequence target marker DNA regions from environmental samples, are increasingly employed to assess the biodiversity of communities of small organisms. Using this approach, our understanding of microbial diversity has expanded greatly. In contrast, only a few studies using this approach to characterize metazoan diversity have been reported, despite the fact that many metazoan species are small and difficult to identify or are undescribed. One of the reasons for this discrepancy is the availability of universal primers for the target taxa. In microbial studies, analysis of the 16S ribosomal DNA is standard. In contrast, the best gene for metazoan metagenetics is less clear. In the present study, we have designed primers that amplify the nuclear 18S and 28S ribosomal DNA sequences of most metazoan species with the goal of providing effective approaches for metagenetic analyses of metazoan diversity in environmental samples, with a particular emphasis on marine biodiversity.

Methodology/Principal Findings

Conserved regions suitable for designing PCR primers were identified using 14,503 and 1,072 metazoan sequences of the nuclear 18S and 28S rDNA regions, respectively. The sequence similarity of both these newly designed and the previously reported primers to the target regions of these primers were compared for each phylum to determine the expected amplification efficacy. The nucleotide diversity of the flanking regions of the primers was also estimated for genera or higher taxonomic groups of 11 phyla to determine the variable regions within the genes.

Conclusions/Significance

The identified nuclear ribosomal DNA primers (five primer pairs for 18S and eleven for 28S) and the results of the nucleotide diversity analyses provide options for primer combinations for metazoan metagenetic analyses. Additionally, advantages and disadvantages of not only the 18S and 28S ribosomal DNA, but also other marker regions as targets for metazoan metagenetic analyses, are discussed.  相似文献   

12.
Here we describe a quantitative PCR-based approach to estimating the relative abundances of major taxonomic groups of bacteria and fungi in soil. Primers were thoroughly tested for specificity, and the method was applied to three distinct soils. The technique provides a rapid and robust index of microbial community structure.  相似文献   

13.
A PCR-based assay for identification of six species of Pratylenchus common in California is described. In this assay, five forward species-specific primers were designed from the internal variable portion of the D3 expansion region of the 26S rDNA and were each used with a single, common reverse primer. The optimized species-specific primers produced unique amplicons from their respective target and did not amplify DNA from other Pratylenchus species. With this assay we were able to identify single females to species level. This method obviates the need for subsequent RFLP or sequence analysis of the PCR product and can be used as a rapid diagnostic tool in epidemiological and management studies.  相似文献   

14.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified ribosomal DNA (rDNA) is routinely used to compare levels of diversity of microbial communities and to monitor population dynamics. While using PCR-DGGE to examine the bacteria in wine fermentations, we noted that several commonly used PCR primers for amplifying bacterial 16S rDNA also coamplified yeast, fungal, or plant DNA present in samples. Unfortunately, amplification of nonbacterial DNA can result in a masking of bacterial populations in DGGE profiles. To surmount this problem, we developed two new primer sets for specific amplification of bacterial 16S rDNA in wine fermentation samples without amplification of eukaryotic DNA. One primer set, termed WLAB1 and WLAB2, amplified lactic acid bacteria, while another, termed WBAC1 and WBAC2, amplified both lactic acid bacterial and acetic acid bacterial populations found in wine. Primer specificity and efficacy were examined with DNA isolated from numerous bacterial, yeast, and fungal species commonly found in wine and must samples. Importantly, both primer sets effectively distinguished bacterial species in wine containing mixtures of yeast and bacteria.  相似文献   

15.
引物间同源性和裂口对PCR扩增的影响   总被引:4,自引:0,他引:4  
采用PC/Gene软件对能扩增出特异睡不能扩增的PCR引物进行同源性比较,同源间“裂口(gaps)”差数的统计,得出源率小于或等于35%,“裂口”差数大于或等于3,是获得理想PCR扩增效果的关键参数之一的结论,为引物设计提供了一条直观的依据。  相似文献   

16.

Background

Multiplexing technologies, which allow for simultaneous detection of multiple nucleic acid sequences in a single reaction, can save a lot of time, cost and labor compared to traditional single reaction detection methods. However, the multiplexing method currently used requires precise handiwork and many complicated steps, making a new, simpler technique desirable. Oligonucleotides containing locked nucleic acid residues are an attractive tool because they have strong affinities for their complementary targets, they have been used to avoid dimer formation and mismatch hybridization and to enhance efficient priming. In this study, we aimed to investigate the use of locked nucleic acid pentamers for genomic DNA amplification and multiplex genotyping.

Results

We designed locked nucleic acid pentamers as universal PCR primers for genomic DNA amplification. The locked nucleic acid pentamers were able to prime amplification of the selected sequences within the investigated genomes, and the resulting products were similar in length to those obtained by restriction digest. In Real Time PCR of genomic DNA from three bacterial species, locked nucleic acid pentamers showed high priming efficiencies. Data from bias tests demonstrated that locked nucleic acid pentamers have equal affinities for each of the six genes tested from the Klebsiella pneumoniae genome. Combined with suspension array genotyping, locked nucleic acid pentamer-based PCR amplification was able to identify a total of 15 strains, including 3 species of bacteria, by gene- and species-specific probes. Among the 32 species used in the assay, 28 species and 50 different genes were clearly identified using this method.

Conclusion

As a novel genomic DNA amplification, the use of locked nucleic acid pentamers as universal primer pairs in conjunction with suspension array genotyping, allows for the identification of multiple distinct genes or species with a single amplification procedure. This demonstrates that locked nucleic acid pentamer-based PCR can be utilized extensively in pathogen identification.  相似文献   

17.
Volume 61, no. 1, p. 100, Table 3: in columns 7 and 8, row 3, "-" should read "+." [This corrects the article on p. 98 in vol. 61.].  相似文献   

18.
目的:通过比较不同年份红树林修复区的根际微生物结构,建立微生物区系与修复质量的相关性,为红树林修复提供理论借鉴。方法:采集4年、8年、10年红树林修复区以及原生红树林的根际微生物,利用末端限制性片段长度多态性技术(Terminal Restriction Fragment Length Polymorphism,T-RFLP)、聚类分析(Cluster Analysis,CA)、主成分分析法(Principal Component Analysis,PCA)、α多样性分析法、文氏图、稀释性曲线等分析方法,研究不同样本间根际微生物的群落组成并进行差异性对比。结果:通过分析不同修复年限间根际微生物的短片段重复序列(Short Tandem Repeat,STR)测序结果,发现三个不同修复时间的红树林修复区和原生红树林根际微生物间均存在差异,10年修复区更加接近原生红树林,4年和8年修复区享有更加相似的微生物群落,且同原生红树林间存在较大差异。结论:修复区红树林的根际微生物群落结构会逐步向着原生红树林根际微生物群落结构演替,但这一过程并非简单的加和式线性变化,而是存在复杂性和年份突变性的可能。  相似文献   

19.
目的:探讨多样本、多基因的单核苷酸突变基因分型操作的PCR - SSP的最优参数,建立最佳反应体系.方法:优化PCR - SSP反应中扩增体系参数,选取优化后的参数做为反应体系;在反应体系已优化的条件下,分别优化解链温度、循环参数.结果:优化后Mg2+、dNTPs、Taq酶、序列特异性引物、内对照引物、DNA模板在20μL反应体系中的终浓度分别为:3.75 μmol/L、0.5m mol/L、2.5U、0.5μmol/L、0.2μmol/L、0.15μg;采用改良的TouchDown做为循环参数,其中DNA变性时间至15min,增加5个起始循环.结论:成功建立了PCR - SSP反应的快速操作体系,扩增条带清晰,普通、琼脂糖凝胶电泳即可检测单核苷酸突变基因型.优化后的体系适合对人、小鼠等各类型DNA样本进行快速多基因单核苷酸多态性分型.  相似文献   

20.
Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products produced with this method were successfully applied in seamless genome editing. The fusion of two fragments by this method takes less than 0.5 day. The method is expected to facilitate various kinds of complex genetic engineering projects with enhanced efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号