首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sustained elevation of intracellular calcium by Ca2+ release–activated Ca2+ channels is required for lymphocyte activation. Sustained Ca2+ entry requires endoplasmic reticulum (ER) Ca2+ depletion and prolonged activation of inositol 1,4,5-trisphosphate receptor (IP3R)/Ca2+ release channels. However, a major isoform in lymphocyte ER, IP3R1, is inhibited by elevated levels of cytosolic Ca2+, and the mechanism that enables the prolonged activation of IP3R1 required for lymphocyte activation is unclear. We show that IP3R1 binds to the scaffolding protein linker of activated T cells and colocalizes with the T cell receptor during activation, resulting in persistent phosphorylation of IP3R1 at Tyr353. This phosphorylation increases the sensitivity of the channel to activation by IP3 and renders the channel less sensitive to Ca2+-induced inactivation. Expression of a mutant IP3R1-Y353F channel in lymphocytes causes defective Ca2+ signaling and decreased nuclear factor of activated T cells activation. Thus, tyrosine phosphorylation of IP3R1-Y353 may have an important function in maintaining elevated cytosolic Ca2+ levels during lymphocyte activation.  相似文献   

2.
Stimulation of B lymphocytes through their antigen receptor (BCR) results in rapid increases in tyrosine phosphorylation on a number of proteins and induces both an increase of phosphatidylinositol and mobilization of cytoplasmic free calcium. The BCR associates with two classes of tyrosine kinase: Src-family kinase (Lyn, Fyn, Blk or Lck) and Syk kinase. To dissect the functional roles of these two types of kinase in BCR signaling, lyn-negative and syk-negative B cell lines were established. Syk-deficient B cells abolished the tyrosine phosphorylation of phospholipase C-gamma 2, resulting in the loss of both inositol 1,4,5-trisphosphate (IP3) generation and calcium mobilization upon receptor stimulation. Crosslinking of BCR on Lyn-deficient cells evoked a delayed and slow Ca2+ mobilization, despite the normal kinetics of IP3 turnover. These results demonstrate that Syk mediates IP3 generation, whereas Lyn regulates Ca2+ mobilization through a process independent of IP3 generation.  相似文献   

3.
A sperm-induced intracellular Ca2+ signal ([Ca2+]i) underlies the initiation of embryo development in most species studied to date. The inositol 1,4,5 trisphosphate receptor type 1 (IP3R1) in mammals, or its homologue in other species, is thought to mediate the majority of this Ca2+ release. IP3R1-mediated Ca2+ release is regulated during oocyte maturation such that it reaches maximal effectiveness at the time of fertilization, which, in mammalian eggs, occurs at the metaphase stage of the second meiosis (MII). Consistent with this, the [Ca2+]i oscillations associated with fertilization in these species occur most prominently during the MII stage. In this study, we have examined the molecular underpinnings of IP3R1 function in eggs. Using mouse and Xenopus eggs, we show that IP3R1 is phosphorylated during both maturation and the first cell cycle at a MPM2-detectable epitope(s), which is known to be a target of kinases controlling the cell cycle. In vitro phosphorylation studies reveal that MAPK/ERK2, one of the M-phase kinases, phosphorylates IP3R1 at at least one highly conserved site, and that its mutation abrogates IP3R1 phosphorylation in this domain. Our studies also found that activation of the MAPK/ERK pathway is required for the IP3R1 MPM2 reactivity observed in mouse eggs, and that eggs deprived of the MAPK/ERK pathway during maturation fail to mount normal [Ca2+]i oscillations in response to agonists and show compromised IP3R1 function. These findings identify IP3R1 phosphorylation by M-phase kinases as a regulatory mechanism of IP3R1 function in eggs that serves to optimize [Ca2+]i release at fertilization.  相似文献   

4.
T cell receptor activation induces inositol 1,4,5 trisphosphate (IP3)-mediated calcium signaling that is essential for cell metabolism and survival. Moreover, inhibitors of IP3 or pharmacological agents that disrupt calcium homeostasis readily induce autophagy. Using a glucocorticoid-sensitive CD4/CD8 positive T cell line, we found that dexamethasone prevented both IP3-mediated and spontaneous calcium signals within a timeframe that correlated with the induction of autophagy. We determined that this loss in IP3-mediated calcium signaling was dependent upon the downregulation of the Src kinase Fyn at the mRNA and protein level. Because it has previously been shown that Fyn positively regulates IP3-mediated calcium release by phosphorylating Type I IP3 receptors (IP3R1), we investigated the effect of glucocorticoids on IP3R1 phosphorylation at Tyr353. Accordingly, glucocorticoid-mediated downregulation of Fyn prevented IP3R1 phosphorylation at Tyr353. Moreover, selective knockdown of Fyn or treatment with a Src inhibitor also attenuated IP3-mediated calcium release and induced autophagy. Collectively, these data indicate that glucocorticoids promote autophagy by inhibiting IP3-dependent calcium signals. These findings carry important therapeutic implications given the widespread use of dexamethasone as both a chemotherapeutic and immunosuppressive agent.Key words: autophagy, calcium, Fyn, IP3 receptor, dexamethasone  相似文献   

5.
《Autophagy》2013,9(7):912-921
T cell receptor activation induces inositol 1,4,5 trisphosphate (IP3)-mediated calcium signaling that is essential for cell metabolism and survival. Moreover, inhibitors of IP3 or pharmacological agents that disrupt calcium homeostasis readily induce autophagy. Using a glucocorticoid-sensitive CD4/CD8 positive T cell line, we found that dexamethasone prevented both IP3-mediated and spontaneous calcium signals within a timeframe that correlated with the induction of autophagy. We determined that this loss in IP3-mediated calcium signaling was dependent upon the downregulation of the Src kinase Fyn at the mRNA and protein level. Because it has previously been shown that Fyn positively regulates IP3-mediated calcium release by phosphorylating Type I IP3 receptors (IP3R1), we investigated the effect of glucocorticoids on IP3R1 phosphorylation at Tyr353. Accordingly, glucocorticoid-mediated downregulation of Fyn prevented IP3R1 phosphorylation at Tyr353. Moreover, selective knockdown of Fyn or treatment with a Src inhibitor also attenuated IP3-mediated calcium release and induced autophagy. Collectively, these data indicate that glucocorticoids promote autophagy by inhibiting IP3-dependent calcium signals. These findings carry important therapeutic implications given the widespread use of dexamethasone as both a chemotherapeutic and immunosuppressive agent.  相似文献   

6.
The resistance of inositol 1,4,5-trisphosphate receptor (IP3R)-deficient cells to multiple forms of apoptosis demonstrates the importance of IP3-gated calcium (Ca2+) release to cellular apoptosis. However, the specific upstream biochemical events leading to IP3-gated Ca2+ release during apoptosis induction are not known. We have shown previously that the cyclin-dependent kinase 1/cyclin B (cdk1/CyB or cdc2/CyB) complex phosphorylates IP3R1 in vitro and in vivo at Ser421 and Thr799. In this study, we show that: 1) the cdc2/CyB complex directly interacts with IP3R1 through Arg391, Arg441, and Arg871; 2) IP3R1 phosphorylation at Thr799 by the cdc2/CyB complex increases IP3 binding; and 3) cdc2/CyB phosphorylation increases IP3-gated Ca2+ release. Taken together, these results demonstrate that cdc2/CyB phosphorylation positively regulates IP3-gated Ca2+ signaling. In addition, identification of a CyB docking site(s) on IP3R1 demonstrates, for the first time, a direct interaction between a cell cycle component and an intracellular calcium release channel. Blocking this phosphorylation event with a specific peptide inhibitor(s) may constitute a new therapy for the treatment of several human immune disorders.  相似文献   

7.
Fas receptor is a member of the tumor necrosis factor-alpha family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum-mediated calcium release in a mechanism dependent on phospholipase C-gamma1 (PLC-gamma1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-gamma1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-gamma1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.  相似文献   

8.
Following T cell antigen receptor (TCR) engagement, the protein tyrosine kinase (PTK) ZAP-70 is rapidly phosphorylated on several tyrosine residues, presumably by two mechanisms: an autophosphorylation and a trans-phosphorylation by the Src-family PTK Lck. These events have been implicated in both positive and negative regulation of ZAP-70 activity and in coupling this PTK to downstream signaling pathways in T cells. We show here that Tyr315 and Tyr319 in the interdomain B of ZAP-70 are autophosphorylated in vitro and become phosphorylated in vivo upon TCR triggering. Moreover, by mutational analysis, we demonstrate that phosphorylation of Tyr319 is required for the positive regulation of ZAP-70 function. Indeed, overexpression in Jurkat cells and in a murine T cell hybridoma of a ZAP-70 mutant in which Tyr319 was replaced by phenylalanine (ZAP-70-Y319F) dramatically impaired anti-TCR-induced activation of the nuclear factor of activated T cells and interleukin-2 production, respectively. Surprisingly, an analogous mutation of Tyr315 had little or no effect. The inhibitory effect of ZAP-70-Y319F correlated with a substantial loss of its activation-induced tyrosine phosphorylation and up-regulation of catalytic activity, as well as with a decreased in vivo capacity to phosphorylate known ZAP-70 substrates, such as SLP-76 and LAT. Collectively, our data reveal the pivotal role of Tyr319 phosphorylation in the positive regulation of ZAP-70 and in TCR-mediated signaling.  相似文献   

9.
B-cell activation mediated through the antigen receptor is dependent on activation of protein tyrosine kinases (PTKs) such as Lyn and Syk and subsequent phosphorylation of various signaling proteins. Here we report on the identification and characterization of the B-cell scaffold protein with ankyrin repeats (BANK), a novel substrate of tyrosine kinases. BANK is expressed in B cells and is tyrosine phosphorylated upon B-cell antigen receptor (BCR) stimulation, which is mediated predominantly by Syk. Overexpres sion of BANK in B cells leads to enhancement of BCR-induced calcium mobilization. We found that both Lyn and inositol 1,4,5-trisphosphate receptor (IP(3)R) associate with the distinct regions of BANK and that BANK promotes Lyn-mediated tyrosine phosphorylation of IP(3)R. Given that IP(3)R channel activity is up-regulated by its tyrosine phosphorylation, BANK appears to be a novel scaffold protein regulating BCR-induced calcium mobilization by connecting PTKs to IP(3)R. Because BANK expression is confined to functional BCR-expressing B cells, BANK-mediated calcium mobilization may be specific to foreign antigen-induced immune responses rather than to signaling required for B-cell development.  相似文献   

10.
The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gated channels activated by the second messenger inositol 1,4,5-trisphosphate. Channel function is modulated via cross-talk with other signaling pathways including those mediated by kinases and phosphatases. In particular IP3Rs are known to be regulated by cAMP-dependent protein kinase (PKA) phosphorylation. In the present study we show that PKA and the protein phosphatases PP1 and PP2A are components of the IP3R1 macromolecular signaling complex. PKA phosphorylation of IP3R1 increases channel activity in planar lipid bilayers. These studies indicate that regulation of IP3R1 function via PKA phosphorylation involves components of a macromolecular signaling complex.  相似文献   

11.
Activation of downstream signals by the long form of the leptin receptor   总被引:24,自引:0,他引:24  
The adipocyte-derived hormone leptin signals the status of body energy stores by activating the long form of the leptin receptor (LRb). Activation of LRb results in the activation of the associated Jak2 tyrosine kinase and the transmission of downstream phosphotyrosine-dependent signals. We have investigated the signaling function of mutant LRb intracellular domains under the control of the extracellular erythropoietin (Epo) receptor. By using this system, we confirm that two tyrosine residues in the intracellular domain of murine LRb become phosphorylated to mediate LRb signaling; Tyr(985) controls the tyrosine phosphorylation of SHP-2, and Tyr(1138) controls STAT3 activation. We furthermore investigated the mechanisms by which LRb controls downstream ERK activation and c-fos and SOCS3 message accumulation. Tyr(985)-mediated recruitment of SHP-2 does not alter tyrosine phosphorylation of Jak2 or STAT3 but results in GRB-2 binding to tyrosine-phosphorylated SHP-2 and is required for the majority of ERK activation during LRb signaling. Tyr(985) and ERK activation similarly mediate c-fos mRNA accumulation. In contrast, SOCS3 mRNA accumulation requires Tyr(1138)-mediated STAT3 activation. Thus, the two LRb tyrosine residues that are phosphorylated during receptor activation mediate distinct signaling pathways as follows: SHP-2 binding to Tyr(985) positively regulates the ERK --> c-fos pathway, and STAT3 binding to Tyr(1138) mediates the inhibitory SOCS3 pathway.  相似文献   

12.
Several studies have shown that PKA-mediated phosphorylation of IP3R1 at serines S1588 and S1755 enhances the receptor's ability to mobilize Ca2+. In contrast, much less is known about whether Ca2+ mobilization via IP3R2 and IP3R3 is regulated by PKA. We report here that IP3R2 is only very weakly phosphorylated in response to PKA activation and is probably not a physiological substrate for this kinase. IP3R3, however, is known to be phosphorylated by PKA at three sites (S916, S934, and S1832) and, thus, we examined how phosphorylation of these sites affects Ca2+ mobilization in DT40-3KO cells stably expressing either exogenous wild-type or mutant IP3R3s; an antibody raised against phospho-serine 934 of IP3R3 was used to demonstrate that the exogenous IP3R3s are strongly phosphorylated in response to PKA activation. Surprisingly, our data show that IP3R3-mediated Ca2+ mobilization is unaffected by phosphorylation of S916, S934, and S1832. In contrast, phosphorylation of exogenous IP3R1 (monitored with an antibody against phospho-serine 1755) enhances Ca2+ mobilization, indicating that DT40-3KO cells have the capacity to respond to phosphorylation of IP3Rs. Overall, these data suggest that modification of Ca2+ flux may not be the primary effect of IP3R3 phosphorylation by PKA.  相似文献   

13.
14.
We have shown that the caveolar Na/K-ATPase transmits ouabain signals via multiple signalplexes. To obtain the information on the composition of such complexes, we separated the Na/K-ATPase from the outer medulla of rat kidney into two different fractions by detergent treatment and density gradient centrifugation. Analysis of the light fraction indicated that both PLC-gamma1 and IP3 receptors (isoforms 2 and 3, IP3R2 and IP3R3) were coenriched with the Na/K-ATPase, caveolin-1 and Src. GST pulldown assays revealed that the central loop of the Na/K-ATPase alpha1 subunit interacts with PLC-gamma1, whereas the N-terminus binds IP3R2 and IP3R3, suggesting that the signaling Na/K-ATPase may tether PLC-gamma1 and IP3 receptors together to form a Ca(2+)-regulatory complex. This notion is supported by the following findings. First, both PLC-gamma1 and IP3R2 coimmunoprecipitated with the Na/K-ATPase and ouabain increased this interaction in a dose- and time-dependent manner in LLC-PK1 cells. Depletion of cholesterol abolished the effects of ouabain on this interaction. Second, ouabain induced phosphorylation of PLC-gamma1 at Tyr(783) and activated PLC-gamma1 in a Src-dependent manner, resulting in increased hydrolysis of PIP2. It also stimulated Src-dependent tyrosine phosphorylation of the IP3R2. Finally, ouabain induced Ca(2+) release from the intracellular stores via the activation of IP3 receptors in LLC-PK1 cells. This effect required the ouabain-induced activation of PLC-gamma1. Inhibition of Src or depletion of cholesterol also abolished the effect of ouabain on intracellular Ca(2+).  相似文献   

15.
16.
Two approaches have been utilized to investigate the role of individual SH2 domains in growth factor activation of phospholipase C-gamma1 (PLC-gamma1). Surface plasmon resonance analysis indicates that the individual N-SH2 and C-SH2 domains are able to specifically recognize a phosphotyrosine-containing peptide corresponding to Tyr 1021 of the platelet-derived growth factor (PDGF) beta receptor. To assess SH2 function in the context of the full-length PLC-gamma1 molecule as well as within the intact cell, PLC-gamma1 SH2 domain mutants, disabled by site-directed mutagenesis of the N-SH2 and/or C-SH2 domain(s), were expressed in Plcg1(-/-) fibroblasts. Under equilibrium incubation conditions (4 degrees C, 40 min), the N-SH2 domain, but not the C-SH2 domain, was sufficient to mediate significant PLC-gamma1 association with the activated PDGF receptor and PLC-gamma1 tyrosine phosphorylation. When both SH2 domains in PLC-gamma1 were disabled, the double mutant did not associate with activated PDGF receptors and was not tyrosine phosphorylated. However, no single SH2 mutant was able to mediate growth factor activation of Ca2+ mobilization or inositol 1,4,5-trisphosphate (IP3) formation. Subsequent kinetic experiments demonstrated that each single SH2 domain mutant was significantly impaired in its capacity to mediate rapid association with activated PDGF receptors and become tyrosine phosphorylated. Hence, when assayed under physiological conditions necessary to achieve a rapid biological response (Ca2+ mobilization and IP3 formation), both SH2 domains of PLC-gamma1 are essential to growth factor responsiveness.  相似文献   

17.
Tyrosine phosphorylation of CD19 in pre-B and mature B cells.   总被引:12,自引:0,他引:12       下载免费PDF全文
Cross-linking of B cell surface immunoglobulins (sIg) results in activation of mature B cells and stimulates a molecular signaling mechanism for antigen-specific B cell expansion and differentiation. This signaling pathway is dependent on tyrosine (Tyr) phosphorylation and results in the activation of sIg-associated src family kinases and p72SYK. Rapid Tyr phosphorylation occurs on multiple protein substrates. Here we show that activation of B cells by cross-linking sIg results in an increase in Tyr phosphorylation of the lineage-restricted B cell surface antigen CD19, and show that it is a major substrate of activated Tyr kinase following sIg stimulation. Lower levels of constitutive CD19 Tyr phosphorylation occurred in most sIg+ mature B cell lines examined and in normal dense tonsillar B cells. We also find that when CD19 is Tyr-phosphorylated it becomes competent to interact with SH2 domains suggesting a mechanism whereby, following B cell activation, CD19 could be linked to intracellular signaling pathways. In sIg- pre-B cell lines, CD19 was expressed but was not constitutively phosphorylated on tyrosine. Upon CD19 cross-linking, Tyr phosphorylation of CD19 was induced in sIg- pre-B cell lines. CD19 cross-linking also directly induced Tyr phosphorylation of CD19 and other substrates in mature B cells. The ability of CD19 to signal in the absence of sIg expression may provide important stimulation in pre-B cell development.  相似文献   

18.
Src family tyrosine kinases play a key role in T-cell antigen receptor (TCR) signaling. They are responsible for the initial tyrosine phosphorylation of the receptor, leading to the recruitment of the ZAP-70 tyrosine kinase, as well as the subsequent phosphorylation and activation of ZAP-70. Molecular and genetic evidence indicates that both the Fyn and Lck members of the Src family can participate in TCR signal transduction; however, it is unclear to what extent they utilize the same signal transduction pathways and activate the same downstream events. We have addressed this issue by examining the ability of Fyn to mediate TCR signal transduction in an Lck-deficient T-cell line (JCaM1). Fyn was able to induce tyrosine phosphorylation of the TCR and recruitment of the ZAP-70 kinase, but the pattern of TCR phosphorylation was altered and activation of ZAP-70 was defective. Despite this, the SLP-76 adapter protein was inducibly tyrosine phosphorylated, and both the Ras-mitogen-activated protein kinase and the phosphatidylinositol 4, 5-biphosphate signaling pathways were activated. TCR stimulation of JCaM1/Fyn cells induced the expression of the CD69 activation marker and inhibited cell growth, but NFAT activation and the production of interleukin-2 were markedly reduced. These results indicate that Fyn mediates an alternative form of TCR signaling which is independent of ZAP-70 activation and generates a distinct cellular phenotype. Furthermore, these findings imply that the outcome of TCR signal transduction may be determined by which Src family kinase is used to initiate signaling.  相似文献   

19.
Synapsins are synaptic vesicle-associated phosphoproteins implicated in the regulation of neurotransmitter release. Synapsin I is the major binding protein for the SH3 domain of the kinase c-Src in synaptic vesicles. Its binding leads to stimulation of synaptic vesicle-associated c-Src activity. We investigated the mechanism and role of Src activation by synapsins on synaptic vesicles. We found that synapsin is tyrosine phosphorylated by c-Src in vitro and on intact synaptic vesicles independently of its phosphorylation state on serine. Mass spectrometry revealed a single major phosphorylation site at Tyr(301), which is highly conserved in all synapsin isoforms and orthologues. Synapsin tyrosine phosphorylation triggered its binding to the SH2 domains of Src or Fyn. However, synapsin selectively activated and was phosphorylated by Src, consistent with the specific enrichment of c-Src in synaptic vesicles over Fyn or n-Src. The activity of Src on synaptic vesicles was controlled by the amount of vesicle-associated synapsin, which is in turn dependent on synapsin serine phosphorylation. Synaptic vesicles depleted of synapsin in vitro or derived from synapsin null mice exhibited greatly reduced Src activity and tyrosine phosphorylation of other synaptic vesicle proteins. Disruption of the Src-synapsin interaction by internalization of either the Src SH3 or SH2 domains into synaptosomes decreased synapsin tyrosine phosphorylation and concomitantly increased neurotransmitter release in response to Ca(2+)-ionophores. We conclude that synapsin is an endogenous substrate and activator of synaptic vesicle-associated c-Src and that regulation of Src activity on synaptic vesicles participates in the regulation of neurotransmitter release by synapsin.  相似文献   

20.
Calcium (Ca2+) release from the endoplasmic reticulum (ER) controls numerous cellular functions including proliferation, and is regulated in part by inositol 1,4,5-trisphosphate receptors (IP3Rs). IP3Rs are ubiquitously expressed intracellular Ca2+-release channels found in many cell types. Although IP3R-mediated Ca2+ release has been implicated in cellular proliferation, the biochemical pathways that modulate intracellular Ca2+ release during cell cycle progression are not known. Sequence analysis of IP3R1 reveals the presence of two putative phosphorylation sites for cyclin-dependent kinases (cdks). In the present study, we show that cdc2/CyB, a critical regulator of eukaryotic cell cycle progression, phosphorylates IP3R1 in vitro and in vivo at both Ser(421) and Thr(799) and that this phosphorylation increases IP3 binding. Taken together, these results indicate that IP3R1 may be a specific target for cdc2/CyB during cell cycle progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号