首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The activities of enzymes involved in fatty acid synthesis in the human liver (sample taken during abdominal surgery) and in the livers of some animals were studied. 2. Fatty acid synthase, ATP-citrate lyase and malic enzyme activities were found to be from 4 to 70-fold lower in human liver than in rat or bird livers. 3. The activities of hexose monophosphate shunt dehydrogenases in human liver were from half to almost equal to the corresponding activities in birds, but much lower than in rat liver. 4. The activities of all enzymes listed above in human and beef liver were very similar (except fatty acid synthase which was undetectable in the beef liver). 5. Very high activity of NADP-linked isocitrate dehydrogenase was found in livers of all species tested. 6. These results are discussed in relation to the role of the human liver in lipogenesis. 7. The activities of the enzymes generating NADPH in human liver taken during abdominal surgery were similar to the activities observed in the tissue obtained post mortem. 8. This suggested that post mortem tissue may be used as a reliable human material for some enzyme assays. 9. Thus we also examined the activity of malic enzyme in post mortem human kidney cortex, heart, skeletal muscle and brain. 10. Relatively high activity of NADP-linked malic enzyme has been observed in human brain.  相似文献   

2.
The activity of uracil-DNA glycosylase (UDG) was studied for livers of 13 mammalian species belonging to four orders. DNA contents were also measured in isolated hepatocytes. The enzymatic activity was shown to increase with the increase in the mean ploidy of liver parenchymal cells. The activity of UDG was 20 times as high when the mean liver cell ploidy of different mammalian species doubled. A reverse dependence between the UDG activity and species life spans is also revealed.  相似文献   

3.
The chalone-antichalone activity in the mollusc (anodonta), fish, frog, bird, mammalians liver preparations is determined. Inspite of the fact that chalone-antichalone content varies greatly in different animals livers, in most of them the chalone-antichalone ratio is approximately equal and doesn't increases 2.0. In the frog livers during the hibernation period the chalone is not determined. Its synthesis begins at the hibernation exit and it becomes active in the spring-time.  相似文献   

4.
A species difference in the intercellular adhesive selectivity of mixtures of embryonic liver cells is reported. This is first quantitative assessment of species differences in the intercellular adhesive properties of embryonic cells. A collecting aggregate assay, a new double-label assay procedure, and histological and autoradiographic procedures were used to elucidate the intercellular adhesive selectivity of developing mammalian and avian liver cells. Evidence is presented that the reported adhesive differences are not due to the different cell types composing the respective embryonic mammalian and avian livers. Finally, such heterolgous-homotypic selectivity of adhesion is not a property of all tissues, since it is shown that developing brain cells (mesencephalon) do not exhibit the avove intercellular adhesive selectivity (mammalian vs. avian). These findings provide further support for the hypothesis that generic identity as well as cell type may play an important part in determining the intercellular adhesive behavior of heterologous-homotypic mixtures of embryonic cells. A possible evolutionary divergence of morphogenetic mechanisms is discussed.  相似文献   

5.
Identification of mammalian aspartate-4-decarboxylase   总被引:1,自引:0,他引:1  
Several animal tissues were examined for aspartate-4-decarboxylase (EC 4.1.1.12) activity. Highest activity was seen in murine livers, in rodent livers, and in rodent kidneys. The rat liver enzyme was membrane associated and could be solubilized and partially purified with the aid of detergents. The purification studies, and studies on the stoichiometry and kinetics of the reaction, showed that aspartate is directly converted to alanine. Such a metabolic reaction had not been reported before in animals. The rat liver enzyme differed significantly from the microbial aspartate-4-decarboxylases. Among other things, the rat liver beta-decarboxylase could be purified away from a cysteine sulfinate desulfinase activity. Also, unlike the bacterial enzymes, the mammalian beta-decarboxylase could not be inactivated by preincubation with aspartate or cysteine sulfinate. These later observations strongly suggest that the mammalian aspartate-4-decarboxylase does not have an inherent transaminase activity. Like many decarboxylases, rat liver aspartate-4-decarboxylase could be inhibited by reagents which react with carbonyl groups; however, the enzyme showed no dependence on pyridoxal 5'-phosphate.  相似文献   

6.
Fetal-rat liver explants cultured in a defined protein-free medium containing dexamethasone, corticosterone or cortisol (all 2 microM) exhibit precocious development of UDPglucuronyltransferase activity to o-aminophenol. Transferase activity in 14-day fetal livers cultured with the glucocorticoids for 3 days rises from virtually zero to 5 times the activity seen in fresh 17 day fetal liver. With 15-day fetal livers, precocity was also observed, but to a lesser degree. Precocity always required addition of glucocorticoids, though explants were viable without them. Protein synthesis, not activation, was probably involved, for assays were performed in a range of digitonin concentrations to ensure 'optimal' activation; also, precocious development of transferase activity and uptake of [14C]-leucine into protein exhibited parallel behaviour during inhibition by, and recovery from, cycloheximide-pulsing. This is the first demonstration of a protein-synthesis-dependent stimulation of fetal mammalian UDPglucuronyltransferase by known compounds of endogenous origin. Results with other substrates are discussed.  相似文献   

7.
Plasmodium gallinaceum typically causes sub-clinical disease with low mortality in its primary host, the Indian jungle fowl Gallus sonnerati. Domestic chickens of European origin, however, are highly susceptible to this avian malaria parasite. Here we describe the development of P. gallinaceum in young White Leghorn chicks with emphasis on the primary exoerythrocytic phase of the infection. Using various regimens for infection, we found that P. gallinaceum induced a transient primary exoerythrocytic infection followed by a fulminant lethal erythrocytic phase. Prerequisite for the appearance of secondary exoerythrocytic stages was the development of a certain level of parasitaemia. Once established, secondary exoerythrocytic stages could be propagated from bird to bird for several generations without causing fatalities. Infected brains contained large secondary exoerythrocytic stages in capillary endothelia, while in the liver primary and secondary erythrocytic stages developed primarily in Kupffer cells and remained smaller. At later stages, livers exhibited focal hepatocyte necrosis, Kupffer cell hyperplasia, stellate cell proliferation, inflammatory cell infiltration and granuloma formation. Because P. gallinaceum selectively infected Kupffer cells in the liver and caused a histopathology strikingly similar to mammalian species, this avian Plasmodium species represents an evolutionarily closely related model for studies on the hepatic phase of mammalian malaria.  相似文献   

8.
Glucokinase (GCK) is a key enzyme involved in hepatic glucose metabolism as well as in glucose homeostasis regulation. In mammals, GCK is regulated in vivo by a regulatory protein (GCKR) through a nucleus-to-cytoplasm translocation enhanced by fructose 1-phosphate and counteracted by fructose 6-phosphate. There were no previous evidences in literature regarding the presence of GCKR in livers of other vertebrates like fish and bird. Accordingly, in the present study we assessed GCKR presence in chicken, trout, carp, and goldfish hepatic homogenates. The results obtained demonstrate for the first time the presence of a GCKR-like protein in the liver of those species, with molecular weight (68 kDa) and biochemical properties similar to those described in mammals. Several of the biochemical properties of rainbow trout GCKR-like protein were closer to the mammalian model whereas those of chicken protein were specific. We also compared the presence and properties of GCKR-like protein in livers of different teleost species that exhibit different tolerances to glucose such as rainbow trout (intolerant) and goldfish and common carp (tolerant). The results showed that the most powerful GCKR-like protein was found in the most intolerant species, whereas the inhibition exerted by GCKR-like protein in tolerant species was closer to chicken than to rat. Furthermore, the response of GCKR-like protein in liver of rainbow trout fed with a diet rich in carbohydrates was compared with the rat model under extreme glycemic conditions. We found that despite trout GCKR-like protein was less active and expressed than in rat, the response against glycemic changes took place in the same direction, and the ratio GCKR-like protein:GCK was affected in a similar way.  相似文献   

9.
Akagi S  Sato K  Ohmori S 《Amino acids》2004,26(3):235-242
Summary. In general, threonine is metabolized by reaction catalyzed by threonine-3-dehydrogenase (TDH), threonine dehydratase (TH) or threonine aldolase (TA). The activities of these three enzymes were compared in the liver of Japanese quails and rats. The animals were fed a standard or threonine rich-diet, or fasted for 3 days. The specific activity of TDH in the liver from quail fed a standard diet was 11 times higher than that in the liver from rats fed a standard diet. The TDH activities in the livers of the fasting and 5% threonine-rich diet groups of quail were 3 and 2 times higher than those in the livers from quail fed the standard diet, respectively. The TH activity in the liver of rats fed a standard diet was 14 times higher than that in the liver of quail fed a standard diet. The TH activity in the rat liver after fasting was 2.3 times higher than that of the standard diet control. The activity of TA in the livers of rat and quail were so low that its role in threonine metabolism in both animals seemed to be negligible. These results suggest that threonine is a ketogenic amino acid in the quail liver, while it is a glucogenic in the rat liver.  相似文献   

10.
To study the role of 5-methylcytidine in the aminoacylation of mammalian tRNA, bulk tRNA specifically deficient in 5-methylcytidine was isolated from the livers of mice treated with 5-azacytidine (18 mg/kg) for 4 days. For comparison, more extensively altered tRNA was isolated from the livers of mice treated with DL-ethionine (100 mg/kg) plus adenine (48 mg/kg) for 3 days. The amino acid acceptor capacity of these tRNAs was determined by measuring the incorporation of one of eight different 14C-labeled amino acids or a mixture of 14C-labeled amino acids in homologous assays using a crude synthetase preparation isolated from untreated mice. The 5-methylcytidine-deficient tRNA incorporated each amino acid to the same extent as fully methylated tRNA. The tRNA from DL-ethionine-treated livers showed an overall decreased amino-acylation capacity for all amino acids tested. The 5-methylcytidine-deficient tRNA from DL-ethionine-treated mice were further characterized as substrates in homologous rate assays designed to determine the Km and V of the aminoacylation reaction using four individual 14C-labeled amino acids and a mixture of 14C-labeled amino acids. The Km and V of the reactions for all amino acids tested using 5-methylcytidine-deficient tRNA as substrate were essentially the same as for fully methylated tRNA. However, the Km and V were increased when liver tRNA from mice treated with DL-ethionine plus adenine was used as substrate in the rate reaction with [14C]lysine as label. Our results suggest that although extensively altered tRNA is a poorer substrate than control tRNA in both extent and rate of aminoacylation, 5-methylcytidine in mammalian tRNA is not involved in the recognition of the tRNA by the synthetase as measured by aminoacylation activity.  相似文献   

11.
The immunoidentified human fetal liver and adrenal microsomal contents of cytochromes P450IIIA and P450XVIIA1 were compared to the metabolism of steroids and ethylmorphine. In fetal liver microsomes, 16 alpha-hydroxylation of dehydroepiandrosterone (DHA) was catalyzed at a high rate in almost all investigated specimens and accompanied by a high ethylmorphine N-demethylase activity. Progesterone 16 alpha- and 17 alpha-hydroxylation was found only in the livers with the highest DHA 16 alpha-hydroxylation activities, while 21-hydroxylation of progesterone was catalyzed only occasionally in these samples. In fetal adrenal microsomes, 21-hydroxylation of progesterone to 11-desoxycorticosterone (DOC) and 11-desoxycortisol (DOCOL) was catalyzed. In contrast to fetal liver, the adrenals also catalyzed the 17 alpha-hydroxylation of pregnenolone and the formation of DHA from 17 alpha-OH-pregnenolone. 16 alpha-hydroxylation of DHA and ethylmorphine N-demethylation were modest in the adrenals. P450IIIA/HLp was immunoidentified in all investigated liver specimens except two (18/20) in which no ethylmorphine N-demethylation or 16 alpha-hydroxylation of DHA was found. P450XVIIA1 bands were observed in 8/20 blots of liver specimens, but there was no correlation between the density of these bands and the 17 alpha-hydroxylation of progesterone. All 11 fetal adrenal samples catalyzed DHA 16 alpha-hydroxylation, although only 8 were positive for P450IIIA/HLp. All investigated adrenals were positive in regard of the P450XVIIA1 band, except one (8/9) with a low 17 alpha-hydroxylation of progesterone. All adrenal specimens catalyzed 21-hydroxylation of progesterone and contained P450C21 bands in immunoblots and all samples catalyzed the formation of DOC and DOCOL from progesterone. Our findings in the fetal livers show a correlation between the DHA 16 alpha-hydroxylation and immunoidentified P450IIIA/HLp bands. In adrenals, there was a correlation between the immunoidentified P450XVIIA1 bands and the 17 alpha-hydroxylation of progesterone.  相似文献   

12.
G Mannor  B Movsas  R S Yalow 《Life sciences》1984,34(14):1341-1345
The Michaelis constants (Km's) and maximum reaction velocities (Vmax's) for the degradation of beef insulin by livers from frogs, guinea pigs, rats, a rabbit, a dog and a pig were determined. The Km's for mammalian livers appear to be species-dependent and range from 0.25 microM to 0.65 microM. The Km for frog liver was somewhat lower, averaging 0.13 microM. The Km is independent of animal age, but the enzyme concentrations (Vmax) were greatly reduced in the fetal guinea pig and 3 day rat compared to the adult livers. There appears to be no relation between Km and the chemical dissimilarity between beef insulin and endogenous insulin of the species, since guinea pig liver insulinase had a Km (0.50 microM) intermediate between dog (0.47 microM) and pig (0.65 microM) liver insulinase although guinea pig insulin has a markedly different amino acid sequence and biologic activity.  相似文献   

13.
The nucleotide composition of 4s RNA from livers of rats fed with a diet containing 0.3% D-ethionine was found to be identical with that from untreated animals. In contrast, one single modified nucleotide was absent in 4s RNA from livers of rats fed with a 0.3% L-ethionine diet. The minor nucleo=tide was also absent in liver 4s RNA from rats fed with a 0.3% L-ethionine diet followed by ten days of normal food. It was identified after dephosphorylation by ultraviolet absorption spectra, cochromatography with authentic material and mass spectra as N(6)-dimethyladenosine. It is concluded that S-adenosylethionine, the primary product of L-ethionine in the liver, causes strong and selective inhibition of the specific RNA-methylase responsible for adenosine to N(6)-dimethyl=adenosine methylation in rat liver 4s RNA. Compared to the strong inhibition of N(6)-dimethyladenosine formation described here, L-ethionine-dependent ethylation of liver 4s RNA is far less efficient. The quantitation of l-methyladenosine, ribothymidine and 3'-terminal adenosine in this 4s RNA as well as its aminoacid acceptor activity is typical for tRNA; hence it may be concluded that N(6)-dimethyladenosine is a component of rat liver tRNA. This may demonstrate the first evidence for the existence of specifically methyl-deficient mammalian tRNA. A possible correlation between the activity of L-ethionine as a liver carcinogen and its ability to induce the formation of methyl-deficient tRNA by selectively inhibiting the synthesis of N(6)-dimethyladenosine on the tRNA level in the same organ is discussed.  相似文献   

14.
Increased vascular nitric oxide (NO) production has been implicated in the pathogenesis of the hyperdynamic circulation in liver cirrhosis. This study investigated the expression of three isoforms of NO synthase (NOS) in rat cirrhotic livers. Cirrhosis was induced by chronic bile duct ligation (BDL). NOS enzyme activity was assessed by L-citrulline generation. Competitive RT-PCR was performed to detect the mRNA levels of NOS. In situ hybridization was done to localize NOS mRNA. Protein expression of NOS was evaluated by Western blotting and immunohistochemistry. The L-citrulline assay showed that constitutive NOS (cNOS) enzymatic activity was decreased, while inducible NOS (iNOS) activity was increased in BDL livers. Both endothelial NOS (eNOS) and neuronal NOS (nNOS) mRNA were detected in BDL and sham rats, but with enhanced expression in BDL rats. eNOS protein was redistributed with less expression in sinusoidal endothelial cells, but the total levels in liver were not changed. nNOS was induced in hepatocytes of BDL rats, in contrast to only a weak signal observed around some blood vessels in sham livers. Intense mRNA and protein expression of iNOS was induced in livers of BDL rats and was localized in hepatocytes, with no or a negligible amount in control livers. In conclusion, iNOS was induced in cirrhotic liver with its activity increased. In contrast, cNOS activity was impaired, regardless of unchanged eNOS protein levels and enhanced nNOS expression. These results suggest that all three types of NOS have a role in cirrhosis, but their expression and regulation are different.  相似文献   

15.
In newborn rats, lipoprotein lipase (LPL) activity was higher in the liver than in several other tissues, such as heart, diaphragm or lungs, and accounted for about 3% of total LPL activity in the body. There was no significant correlation between LPL activity in liver and in plasma. Thus transport of the enzyme from extrahepatic tissues was probably not the major source of LPL in liver. To study LPL biosynthesis directly, newborn rats were injected intraperitoneally with [35S]methionine, and LPL was isolated by immunoprecipitation and separation by SDS/polyacrylamide-gel electrophoresis. Radioactivity in LPL increased with a similar time course in all tissues studied, including the liver. Substantial synthesis of LPL was also demonstrated in isolated perfused livers from newborn rats, whereas synthesis was low in livers from adult rats. There was strong LPL immunofluorescence in livers from newborn rats, mainly within sinusoids and along the walls of larger vessels. This labelling disappeared after perfusion with heparin, which indicates that much of the enzyme is in contact with blood and can take part in lipoprotein metabolism.  相似文献   

16.
Multidrug resistance-associated proteins 1 and 2 (Mrp1 and Mrp2) are thought to mediate low-affinity ATP-dependent transport of reduced glutathione (GSH), but there is as yet no direct evidence for this hypothesis. The present study examined whether livers from the little skate (Raja erinacea) express an Mrp2 homologue and whether skate liver membrane vesicles exhibit ATP-dependent GSH transport activity. Antibodies directed against mammalian Mrp2-specific epitopes labeled a 180-kDa protein band in skate liver plasma membranes and stained canaliculi by immunofluorescence, indicating that skate livers express a homologous protein. Functional assays of Mrp transport activity were carried out using (3)H-labeled S-dinitrophenyl-glutathione (DNP-SG). DNP-SG was accumulated in skate liver membrane vesicles by both ATP-dependent and ATP-independent mechanisms. ATP-dependent DNP-SG uptake was of relatively high affinity [Michaelis-Menten constant (K(m)) = 32 +/- 9 microM] and was cis-inhibited by known substrates of Mrp2 and by GSH. Interestingly, ATP-dependent transport of (3)H-labeled S-ethylglutathione and (3)H-labeled GSH was also detected in the vesicles. ATP-dependent GSH transport was mediated by a low-affinity pathway (K(m) = 12 +/- 2 mM) that was cis-inhibited by substrates of the Mrp2 transporter but was not affected by membrane potential or pH gradient uncouplers. These results provide the first direct evidence for ATP-dependent transport of GSH in liver membrane vesicles and support the hypothesis that GSH efflux from mammalian cells is mediated by members of the Mrp family of proteins.  相似文献   

17.
Glucokinase (GK, hexokinase type IV) is required for the accumulation of glycogen in adult liver and hepatoma cells. Paradoxically, mammalian embryonic livers store glycogen successfully in the absence of GK. Here we address how mammalian embryonic livers, but not adult livers or hepatoma cells, manage to accumulate glycogen in the absence of this enzyme. Hexokinase type I or II (HKI, HKII) substitutes for GK in hepatomas and in embryonic livers. We engineered FTO2B cells, a hepatoma cell line in which GK is not expressed, to unveil the modifications required to allow them to accumulate glycogen. In the light of these results, we then examined glycogen metabolism in embryonic liver. Glycogen accumulation in FTO2B cells can be triggered through elevated expression of HKI or either of the protein phosphatase 1 regulatory subunits, namely PTG or G L. Between these two strategies to activate glycogen deposition in the absence of GK, embryonic livers choose to express massive levels of HKI and HKII. We conclude that although the GK/liver glycogen synthase tandem is ideally suited to store glycogen in liver when blood glucose is high, the substitution of HKI for GK in embryonic livers allows the HKI/liver glycogen synthase tandem to make glycogen independently of the glucose concentration in blood, although it requires huge levels of HK. Moreover, the physiological consequence of the HK isoform switch is that the embryonic liver safeguards its glycogen deposits, required as the main source of energy at birth, from maternal starvation.  相似文献   

18.
We present evidence that a foreign gene driven by natural mammalian regulatory elements can be targeted to hepatocytes and the resultant gene expression made to persist. This was accomplished using a soluble DNA carrier system consisting of two covalently linked components: 1) a polycation, poly-L-lysine, that can bind DNA in a strong but non-damaging interaction, and 2) an asialoglycoprotein which can be targeted specifically to hepatocytes by cell surface asialoglycoprotein receptors unique to this cell type. A plasmid, palb-CAT, containing the gene for chloramphenicol acetyltransferase (CAT) driven by mouse albumin regulatory sequences was complexed to the carrier system. Intravenous injection of palb-CAT DNA in the form of a complex resulted in the presence of CAT enzyme activity in liver homogenates 24 h after injection. The targeted gene expression, however, was transient, reaching a maximum of 10 units/g liver at 24 h but was not detectable by 96 h. However, partial hepatectomy 30 min after injection resulted in persistent high levels of hepatic CAT activity (11.3 units/g) through 11 weeks post-injection. Southern analysis of livers 11 weeks after partial hepatectomy demonstrated that some of the targeted DNA had been integrated into the host genome. We conclude that a foreign gene driven by natural mammalian regulatory elements can be delivered to hepatocytes by intravenous injection in vivo using a soluble DNA carrier system. Foreign gene expression targeted in this manner can be made to persist by stimulation of hepatocyte replication.  相似文献   

19.
The early premalignant liver provides a model in which to study metabolic alterations that may be permissive for the development of full malignancy. Although there are biochemical changes in this model, there are no detectable morphological ones when compared with a normal, fully differentiated liver. The maintenance of cholesterol homeostasis, essential for proper functioning of mammalian cells, is known to be altered in malignancy. We used the ethionine-induced premalignant liver model to study the effects of the premalignant state on cellular parameters involved in the maintenance of hepatic cholesterol homeostasis. Cholesterol synthesis was elevated about twofold in the livers of rats treated with ethionine as was the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, its rate limiting enzyme. There was no change in reductase activation state. Acyl coenzyme A:cholesterol acyl-transferase (ACAT) was decreased about 30%, and cholesterol 7 alpha-hydroxylase, about 50%. There was no significant change in neutral cholesteryl ester hydrolase activity, but acid hydrolase activity was decreased. There was little change in low density lipoprotein receptor protein as determined by immunoblotting. Biliary lipid secretion was in the normal range when expressed per gram liver; however, bile flow was doubled. The ethionine-fed animals were mildly hypocholesterolemic and had an altered serum lipoprotein pattern. Cholesterol synthesis and HMG-CoA reductase activity exhibited decreased sensitivities to inhibition by dietary cholesterol when compared to control livers. However, sensitivity to intragastrically administered mevalonolactone was not altered. Although ACAT activity was increased by mevalonolactone administration to levels similar to those in untreated animals, it was not increased in the ethionine-fed animals by feeding cholesterol. The ethionine-induced premalignant liver responded to ethinyl estradiol treatment in a manner similar to that of the control, i.e., profound hypolipidemia, increased low density lipoprotein receptors, decreased reductase activity, and increased cholesterol esterification. Thus, these livers retained their estrogen responsiveness. Taken together, the data demonstrate that the major elements involved in maintaining hepatic cholesterol homeostasis are present in the premalignant liver, although in some cases at levels that are different from the control. However, the susceptibility to regulation was altered in these livers to suggest markedly decreased availability of cholesterol of exogenous origin to the regulatory compartment(s). Further, coupling of the different elements involved in maintenance of hepatic cholesterol homeostasis appeared to have been changed.  相似文献   

20.
1. Subcellular fractionation of rat, guinea pig and human livers showed that aldehyde dehydrogenase metabolizing gamma-aminobutyraldehyde was exclusively localized in the cytoplasmic fraction in all three mammalian species. 2. Total gamma-aminobutyraldehyde activity of aldehyde dehydrogenase was found to be ca 0.41, 0.3 and 0.24 mumol NADH min-1 g-1 tissue, respectively in rat, guinea pig and human liver, with more than 95% of activity in the cytoplasm. 3. Partially purified cytoplasmic isozyme from rat liver showed similar chromatographic behavior and kinetic properties to the E3 isozyme isolated from human liver. 4. The rat isozyme was insensitive to disulfiram (40 microM) and to magnesium (160 microM) and had Km values of 5 microM (pH 7.4) for gamma-aminobutyraldehyde, 7.5 microM (pH 9.0) for propionaldehyde and 4 microM (pH 7.4) for NAD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号