首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The modes of action of two isozymes of human salivary alpha-amylase on phenyl alpha-maltopentaoside, phenyl alpha-maltotetraoside, and their derivatives which have an iodo or an amino or a carboxyl group at their first or penultimate glucopyranosyl residues from the non-reducing-end were examined. It is conceivable that the active site of this enzyme is composed of tandem subsites (S4,S3,S2,S1,S1',S2', and S3') geometrically complementary to several glucose residues, and that the glucosidic bonds of the substrates are split between S1 and S1'. Product analysis of each digest strongly suggested the presence of a hydrophobic amino acid residue at subsite S3 in the active site of the enzyme. No difference in the modes of action on the substrates was found between the two isozymes, indicating that the three-dimensional structures of their active site areas are, at the least, similar.  相似文献   

2.
The active site of human salivary alpha-amylase is composed of tandem subsites (S3, S2, S1, S1',S2', etc.) geometrically complementary to several glucose residues, and the glycosidic linkage of the substrate is split between S1 and S1'. As a matter of convenience, the subsites to which the non-reducing-end part (glycone) and the reducing-end part (aglycone) of the substrate being hydrolyzed are bound are named the glycone-binding site (S3, S2, S1) and the aglycone-binding site (S1', S2'), respectively. The features of the aglycone-binding site of human salivary alpha-amylase were examined by means of transglycosylation reaction using phenyl alpha-maltoside (GG phi: G-G-phi) and its derivatives (GAG phi: G-AG-phi, GCG phi: G-CG-phi, AGG phi: AG-G-phi, and CGG phi: CG-G-phi) in which one of the glucose residues (G) has been converted to 6-amino-6-deoxy-glucose (AG) or glucuronic acid (CG) residue as the acceptor. A fluorogenic derivative of maltotetraose, p-nitrophenyl O-6-deoxy-6-[(2-pyridyl)amino]-alpha-D-glucopyranosyl-(1----4)-O-alpha-D -glucopyranosyl-(1----4)-O-alpha-D-glucopyranosyl-(1----4)-alpha-D- glucopyranosyl-(1----4)-alpha-D-glucopyranoside (FG4P, FG-G-G-G-P), was used as the substrate. HSA catalyzed both hydrolysis of FG4P to FG3 (FG-G-G) and p-nitrophenyl alpha-glucoside (G-P) and transfer of the FG3 residue of FG4P to the acceptors. Transfer to GAG phi occurred more effectively than to GG phi. Transfers to GCG phi and CGG phi were less than to GG phi and very little transfer to AGG phi occurred.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
The active site of Bacillus macerans cyclodextrin glucanotransferase (CGTase) was examined by use of derivatives of phenyl alpha-maltopentaoside and phenyl alpha-glucoside as the substrates and acceptors, respectively. The active site of this enzyme is considered to be composed of tandem subsites (S4, S3, S2, S1, S1', S2', etc.) geometrically complementary to several glucose residues, and the alpha-1,4-glycosidic linkage of a substrate is split between S1 and S1'. The features of subsites S3 and S4 of the glycon binding site were estimated from the modes of the enzymatic action on phenyl alpha-maltopentaoside (G-G-G-G-G-phi; G, glucose residue; phi, phenyl residue; -, alpha-1,4-glycosidic bond) and its derivatives in which the CH2OH groups of the non-reducing-end glucose residues were converted to CH2I (IG-G-G-G-G-phi; IG, 6-deoxy-6-iodo-D-glucose residue), CH2NH2 (AG-G-G-G-G-phi; AG, 6-amino-6-deoxy-D-glucose residue), or COOH (CG-G-G-G-G-phi; CG, glucuronic acid residue). p-Nitrophenyl alpha-glucopyranoside (G-P; P, p-nitrophenyl residue) was used as an acceptor. HPLC analysis of the digests revealed that the CG residue of CG-G-G-G-G-phi was excluded from subsite S3, while it was accommodated in subsite S4. The Km and Vmax values for CG-G-G-G-G-phi were remarkably larger and smaller, respectively, than those for any other substrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The mode of action of an alpha-amylase (yHXA) which was the gene product of a newly found human alpha-amylase gene expressed in yeast on synthetic substrates was compared with those of the gene products (yHSA and yHPA) of human salivary and pancreatic alpha-amylase gene in yeast. The substrates used were phenyl alpha-maltopentaoside (G5 phi) and its derivatives in which the CH2OH groups of the non-reducing-end glucose residues were converted to CH2NH2 (AG5 phi), COOH (CG5 phi), or CH2I (IG5 phi). The digests were subjected to HPLC to determine the amounts of products. The HPLC analysis revealed that yHXA and yHSA bound G5 phi to their active sites in similar manners to give the same products, while yHPA hydrolyzed it in a different way. Modifications of the non-reducing-end glucose of G5 phi caused change of the binding mode to the active sites of the enzymes. AG5 phi and CG5 phi were hydrolyzed by the enzymes to give more phenyl alpha-glucoside (G phi) and less phenyl alpha-maltoside (G2 phi), while IG5 phi gave more G2 phi and less G phi, compared with G5 phi. The substrate binding mode of yHXA changed more extensively than that of yHSA. The results suggested that there exists an amino acid replacement between yHXA and yHSA. The amino acid residues replaced are neither acidic nor basic, are located in subsite S3, and interact with the CH2OH residue of the non-reducing-end glucose residue of G5 phi.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The nonreducing end of the substrate-binding site of human salivary alpha-amylase contains two residues Trp58 and Trp59, which belong to beta2-alpha2 loop of the catalytic (beta/alpha)(8) barrel. While Trp59 stacks onto the substrate, the exact role of Trp58 is unknown. To investigate its role in enzyme activity the residue Trp58 was mutated to Ala, Leu or Tyr. Kinetic analysis of the wild-type and mutant enzymes was carried out with starch and oligosaccharides as substrates. All three mutants exhibited a reduction in specific activity (150-180-fold lower than the wild type) with starch as substrate. With oligosaccharides as substrates, a reduction in k(cat), an increase in K(m) and distinct differences in the cleavage pattern were observed for the mutants W58A and W58L compared with the wild type. Glucose was the smallest product generated by these two mutants in the hydrolysis oligosaccharides; in contrast, wild-type enzyme generated maltose as the smallest product. The production of glucose by W58L was confirmed from both reducing and nonreducing ends of CNP-labeled oligosaccharide substrates. The mutant W58L exhibited lower binding affinity at subsites -2, -3 and +2 and showed an increase in transglycosylation activity compared with the wild type. The lowered affinity at subsites -2 and -3 due to the mutation was also inferred from the electron density at these subsites in the structure of W58A in complex with acarbose-derived pseudooligosaccharide. Collectively, these results suggest that the residue Trp58 plays a critical role in substrate binding and hydrolytic activity of human salivary alpha-amylase.  相似文献   

6.
The existence of alpha-amylase (HXA) encoded by alpha-amylase gene AMY2B in healthy humans was examined using a fluorogenic substrate, FG5P (FG-G-G-G-G-P: FG, 6-deoxy-6-[(2-pyridyl)amino]-D-glucose residue; G, glucose residue; P, p-nitrophenyl residue; -, alpha-1,4-glycosidic bond). Chromatofocusing of urine from a healthy human was carried out. FG5P was digested with the fractions exhibiting alpha-amylase activity and each digest at an early stage was analyzed by HPLC. FG5P was hydrolyzed to FG3 (FG-G-G) and p-nitrophenyl alpha-maltoside (G-G-P), and to FG4 (FG-G-G-G) and p-nitrophenyl alpha-glucoside (G-P). The molar ratios of FG4 to FG3 (FG4/FG3) in the digests with basic fractions were larger than those in the digests of human pancreatic alpha-amylase (HPA, 1.11) and human salivary alpha-amylase (HSA, 0.51). Considering that the value for the AMY2B gene product with yeast (yHXA) is 1.88, a value of more than 1.11 implies that HXA exists. The amount of HXA was determined after removal of HSA on an anti-human salivary alpha-amylase antibody bound column. The FG4/FG3 values for six urine samples free from HSA were 1.23-1.26. Assuming that the FG4/FG3 value for HXA is the same as that for yHXA, the ratios of HXA and HPA were estimated to be 1:5.4-4.1. The results obtained showed that the AMY2B gene is usually expressed as HXA in healthy humans.  相似文献   

7.
We report a multifaceted study of the active site region of human pancreatic alpha-amylase. Through a series of novel kinetic analyses using malto-oligosaccharides and malto-oligosaccharyl fluorides, an overall cleavage action pattern for this enzyme has been developed. The preferred binding/cleavage mode occurs when a maltose residue serves as the leaving group (aglycone sites +1 and +2) and there are three sugars in the glycon (-1, -2, -3) sites. Overall it appears that five binding subsites span the active site, although an additional glycon subsite appears to be a significant factor in the binding of longer substrates. Kinetic parameters for the cleavage of substrates modified at the 2 and 4' ' positions also highlight the importance of these hydroxyl groups for catalysis and identify the rate-determining step. Further kinetic and structural studies pinpoint Asp197 as being the likely nucleophile in catalysis, with substitution of this residue leading to an approximately 10(6)-fold drop in catalytic activity. Structural studies show that the original pseudo-tetrasaccharide structure of acarbose is modified upon binding, presumably through a series of hydrolysis and transglycosylation reactions. The end result is a pseudo-pentasaccharide moiety that spans the active site region with its N-linked "glycosidic" bond positioned at the normal site of cleavage. Interestingly, the side chains of Glu233 and Asp300, along with a water molecule, are aligned about the inhibitor N-linked glycosidic bond in a manner suggesting that these might act individually or collectively in the role of acid/base catalyst in the reaction mechanism. Indeed, kinetic analyses show that substitution of the side chains of either Glu233 or Asp300 leads to as much as a approximately 10(3)-fold decrease in catalytic activity. Structural analyses of the Asp300Asn variant of human pancreatic alpha-amylase and its complex with acarbose clearly demonstrate the importance of Asp300 to the mode of inhibitor binding.  相似文献   

8.
Kumamolysin, a carboxyl proteinase from Bacillus novosp. MN-32, is characterized by its thermostability and insensitivity to aspartic proteinase inhibitors such as pepstatin, diazoacetyl-DL-norleucine methylester, and 1,2-epoxy-3-(p-nitro-phenoxy)propane. Here, its substrate specificity was elucidated using two series of synthetic chromogenic substrates: P(5)-P(4)-P(3)-P(2)-Phe*Nph (p-nitrophenylalanine: *cleavage site)-P(2)'-P(3)', in which the amino acid residues at the P(5)-P(2), P(2)' and P(3)' positions were systematically substituted. Among 74 substrates, kumamolysin was shown to hydrolyze Lys-Pro-Ile-Pro-Phe-Nph-Arg-Leu most effectively. The kinetic parameters of this peptide were K(m) = 41+/-5 microM, k(cat) = 176+/- 10 s(-1), and k(cat)/K(m) = 4.3+/-0.6 mM(-1) x s(-1). These systematic analyses revealed the following features: (i) Kumamolysin had a unique preference for the P(2) position. Kumamolysin preferentially hydrolyzed peptides having an Ala or Pro residue at the P(2) position; this was also observed for the pepstatin-insensitive carboxyl proteinase from Bacillus coagulans J-4 [J-4; Shibata et al. (1998) J. Biochem. 124, 642-647]. Other carboxyl proteinases, including Pseudomonas sp. 101 pepstatin-insensitive carboxyl proteinase (PCP) and Xanthomonas sp. T-22 pepstatin-insensitive carboxyl proteinase (XCP), preferred peptides having hydrophobic and bulky amino acid residue such as Leu at the P(2) position. (ii) Kumamolysin preferred such charged amino acid residues as Glu or Arg at the P(2)' position, suggesting that the S(2)' subsite of kumamolysin is occupied by hydrophilic residues, similar to that of PCP, XCP, and J-4. In general, the S(2)' subsite of pepstatin-sensitive carboxyl proteinases (aspartic proteinases) is hydrophobic in nature. Thus, the hydrophilic nature of the S(2)' subsite was confirmed to be a distinguishing feature of pepstatin-insensitive carboxyl proteinases from prokaryotes.  相似文献   

9.
Oligosaccharide binding to barley alpha-amylase 1   总被引:1,自引:0,他引:1  
Enzymatic subsite mapping earlier predicted 10 binding subsites in the active site substrate binding cleft of barley alpha-amylase isozymes. The three-dimensional structures of the oligosaccharide complexes with barley alpha-amylase isozyme 1 (AMY1) described here give for the first time a thorough insight into the substrate binding by describing residues defining 9 subsites, namely -7 through +2. These structures support that the pseudotetrasaccharide inhibitor acarbose is hydrolyzed by the active enzymes. Moreover, sugar binding was observed to the starch granule-binding site previously determined in barley alpha-amylase isozyme 2 (AMY2), and the sugar binding modes are compared between the two isozymes. The "sugar tongs" surface binding site discovered in the AMY1-thio-DP4 complex is confirmed in the present work. A site that putatively serves as an entrance for the substrate to the active site was proposed at the glycone part of the binding cleft, and the crystal structures of the catalytic nucleophile mutant (AMY1D180A) complexed with acarbose and maltoheptaose, respectively, suggest an additional role for the nucleophile in the stabilization of the Michaelis complex. Furthermore, probable roles are outlined for the surface binding sites. Our data support a model in which the two surface sites in AMY1 can interact with amylose chains in their naturally folded form. Because of the specificities of these two sites, they may locate/orient the enzyme in order to facilitate access to the active site for polysaccharide chains. Moreover, the sugar tongs surface site could also perform the unraveling of amylose chains, with the aid of Tyr-380 acting as "molecular tweezers."  相似文献   

10.
Two closely related kallikrein-like proteinases having little activity toward the standard synthetic amide substrates of tissue kallikreins were isolated from the rat submandibular gland. They were found to be the protein products of the rKlk2 (tonin) and the rKlk9 genes by amino acid sequence analysis (nomenclature of the genes and proteins of the kallikrein family is according to the proposal of the discussion panel from the participants of the KININ '91 meeting held Sept. 8-14, 1991, in Munich, Germany). These two proteinases of similar structure also had very similar physicochemical properties. They differed from other kallikrein-related proteinases in having high pHi values of 6.20 (rK2) and 6.85 (rK9). Kallikrein rK2 was purified as a single peptide chain, whereas rK9 appeared as a two-chain protein after reduction. Their enzymatic properties were also very similar and differed significantly from those of other rat kallikrein-related proteinases. Unlike the five other kallikrein-related proteinases we have purified so far, kallikrein rK9 was not inhibited by aprotinin. rK9 also differed from rK2 by its tissue localization. The prostate gland contained only rK9 where it was the major kallikrein-like component. The amino acids preferentially accommodated by the proteinase S3 to S2' subsites were identified using synthetic amide and protein substrates. Unlike other kallikrein-related proteinases, rK2 had a prevalent chymotrypsin-like specificity, whereas rK9 had both chymotrypsin-like and trypsin-like properties. Both rK2 and rK9 preferred a prolyl residue in position P2 of the substrate and did not accommodate bulky and hydrophobic residues at that position, as did most of the other kallikrein-related proteinases. This P2-proline-directed specificity is necessary for processing the precursors of several biologically active peptides. Subsites accommodating residues COOH-terminal to the scissile bond were also important in determining the overall substrate specificity of these proteinases. rK2 and rK9 both showed a preference for hydrophobic residues in P2'. Other subsites upstream of the S3 subsite were found to intervene in substrate binding and hydrolysis. The restricted specificity of rK2 and rK9 is consistent with the presence of an extended substrate binding site, and hence with a processing enzyme function. Their P1 specificities enabled both proteinases to release angiotensin II from angiotensinogen and from angiotensinogen I, but rK9 was at least 100 times less active than rK2 on both substrates. The substrate specificities of rK2 and rK9 were correlated with key amino acids defining their substrate binding site.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
To quantitatively estimate the inhibitory effect of each substrate-binding subsite of cathepsin B (CB), a series of epoxysuccinyl derivatives with different functional groups bound to both carbon atoms of the epoxy ring were synthesized, and the relationship between their inhibitory activities and binding modes at CB subsites was evaluated by the X-ray crystal structure analyses of eight complexes. With the common reaction in which the epoxy ring of inhibitor was opened to form a covalent bond with the SgammaH group of the active center Cys29, the observed binding modes of the substituents of inhibitors at the binding subsites of CB enabled the quantitative assessment of the inhibitory effect of each subsite. Although the single blockage of S1' or S2' subsite exerts only the inhibitory effect of IC50 = approximately 24 microM (k2 = approximately 1250 M(-1) s(-1)) or approximately 15 microM (k2 = approximately 1800 M(-1) s(-1)), respectively, the synchronous block of both subsites leads to IC50 = approximately 23 nM (k2 = 153,000 - 185,000 M(-1) s(-1)), under the condition that (i) the inhibitor possesses a P1' hydrophobic residue such as Ile and a P2' hydrophobic residue such as Ala, Ile or Pro, and (ii) the C-terminal carboxyl group of a P2' residue is able to form paired hydrogen bonds with the imidazole NH of His110 and the imidazole N of His111 of CB. The inhibitor of a Pn' > or = 3' substituent was not potentiated by collision with the occluding loop. On the other hand, it was suggested that the inhibitory effects of Sn subsites are independent of those of Sn' subsites, and the simultaneous blockage of the funnel-like arrangement of S2 and S3 subsites leads to the inhibition of IC50 = approximately 40 nM (k2 = approximately 66,600 M(-1) s(-1)) regardless of the lack of Pn' substituents. Here we present a systematic X-ray structure-based evaluation of structure-inhibitory activity relationship of each binding subsite of CB, and the results provide the structural basis for designing a more potent CB-specific inhibitor.  相似文献   

12.
Dipeptidylcarboxypeptidase, endopeptidase, and carboxypeptidase activities of rat liver cathepsin B were investigated using soluble denatured protein substrates, reduced and S-(3-trimethylammonio)propylated proteins and their derivatives. It was found that the soluble denatured proteins were degraded mainly by the dipeptidylcarboxypeptidase activity and in a few cases by the endopeptidase and carboxypeptidase activities. The eipeptidylcarboxypeptidase activity showed broad substrate specificity with broad pH optimum at 4-6. A peptide having the alpha-carboxyl group amidated with methylamine could also be a good substrate for this activity. These results suggest that this activity is dependent not upon the dissociated alpha-carboxyl group at the P2' site but upon the hydrogen-bonding abilities of the alpha-imino moiety and the protonated or amidated alpha-carboxyl moiety at P2'. On the other hand, the endopeptidase and carboxypeptidase activities were observed in a few cases, suggesting that special amino acid sequences in the substrates are responsible for these activities. These activities showed sharp pH optima at 6 and seemed to prefer basic amino acid residues at P1 site. Therefore, we suppose that cathepsin B has a carboxyl group with a pKa of about 5.5 at the S1 subsite which more effectively interacts with a positive charge at the P1 site of the substrate at pH 6 than at pH 5. Based on these results, a model of the binding subsites of this enzyme is proposed.  相似文献   

13.
Substrate-related potent inhibitors of brain metalloendopeptidase   总被引:10,自引:0,他引:10  
Rat brain metalloendopeptidase (EC 3.4.24.15) generates Leu- and Met-enkephalin from several larger opioid peptides and is capable of degrading a number of neuropeptides. Substrate-related N-(1-carboxy-3-phenylpropyl) peptide derivatives were synthesized and tested for enzyme inhibition. The best of these derivatives, N-[1(RS)-carboxy-3-phenylpropyl]-Ala-Ala-Tyr-p-aminobenzoate, inhibited the enzyme in a competitive manner with a Ki of 16 nM. The data indicate that the carboxyl group of the N-(1-carboxy-3-phenylpropyl) moiety coordinates with the active site zinc atom and that the remaining part of the inhibitor is necessary for interaction with the substrate recognition site of the enzyme. Replacement of the 1-carboxy-3-phenylpropyl group by a carboxymethyl group decreased the inhibitory potency by more than 3 orders of magnitude, emphasizing the importance of the hydrophobic phenyl group for inhibitor binding to a hydrophobic pocket at the S1 subsite. Replacement of the Tyr residue by an Ala residue decreased the inhibitory potency by more than 20-fold. Changes in the structure of the residue interacting with the S1' subsite could cause a more than 60-fold change in inhibition. The inhibitors were either ineffective or only weakly inhibitory against membrane-bound metalloendopeptidase ("enkephalinase", EC 3.4.24.11), an enzyme highly active in rabbit kidney but also present in brain. The data indicate the presence of an extended binding site in the enzyme with residues interacting with S1, S1', and S3' subsites largely determining inhibitor binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Kinetic analysis and modeling studies of HIV-1 and HIV-2 proteinases were carried out using the oligopeptide substrate [formula: see text] and its analogs containing single amino acid substitutions in P3-P3' positions. The two proteinases acted similarly on the substrates except those having certain hydrophobic amino acids at P2, P1, P2', and P3' positions (Ala, Leu, Met, Phe). Various amino acids seemed to be acceptable at P3 and P3' positions, while the P2 and P2' positions seemed to be more restrictive. Polar uncharged residues resulted in relatively good binding at P3 and P2 positions, while at P2' and P3' positions they gave very high Km values, indicating substantial differences in the respective S and S' subsites of the enzyme. Lys prevented substrate hydrolysis at any of the P2-P2' positions. The large differences for subsite preference at P2 and P2' positions seem to be at least partially due to the different internal interactions of P2 residue with P1', and P2' residue with P1. As expected on the basis of amino acid frequency in the naturally occurring cleavage sites, hydrophobic residues at P1 position resulted in cleavable peptides, while polar and beta-branched amino acids prevented hydrolysis. On the other hand, changing the P1' Pro to other amino acids prevented substrate hydrolysis, even if the substituted amino acid had produced a good substrate in other oligopeptides representing naturally occurring cleavage sites. The results suggest that the subsite specificity of the HIV proteinases may strongly depend on the sequence context of the substrate.  相似文献   

15.
Propioxatins A and B are inhibitors of enkephalinase B, which hydrolyzes enkephalin at the Gly-Gly bond. In order to clarify the structure-activity relationships of propioxatin, several compounds were synthesized and their inhibitory activity for not only enkephalinase B but also enkephalinase A was examined. The hydroxamic acid group in propioxatin was primarily essential for coordinating the metal ion in the active site of the enzyme. Among devalyl propioxatin A derivatives, the proline-containing compounds inhibited enkephalinase B and others inhibited both enzymes. An alteration of the character of the P3' amino acid valine in propioxatin A, e.g. amidation of carboxylic acid or replacement of the side chain, caused a 2 to 400-fold decrease of the inhibitory activity for enkephalinase B or an appearance of enkephalinase A inhibition with Ki values in the micromolar range. Substitution of the proline by alanine also resulted in a 1,000-fold loss of inhibitory activity for enkephalinase B. Propioxatin A was the most potent and specific inhibitor of enkephalinase B among the synthesized compounds. These potent and specific inhibitory effects were caused by the P2' proline residue, the P3' valine side chain and its free carboxylic acid. Each of the S1', S2', and S3' subsites in an enkephalinase B active site has a large and hydrophobic pocket, but the arrangement might be unique. The results could explain why enkephalinase B does not hydrolyze longer peptides.  相似文献   

16.
H Gr?n  M Meldal  K Breddam 《Biochemistry》1992,31(26):6011-6018
Subtilisins are serine endopeptidases with an extended binding cleft comprising at least eight binding subsites. Interestingly, subsites distant from the scissile bond play a dominant role in determining the specificity of the enzymes. The development of internally quenched fluorogenic substrates, which allow polypeptides of more than 11 amino acids to be inserted between the donor and the acceptor, has rendered it possible to perform a highly systematic mapping of the individual subsites of the active sites of subtilisin BPN' from Bacillus amyloliquefaciens and Savinase from Bacillus lentus. For each enzyme, the eight positions S5-S'3 were characterized by determination of kcat/KM values for the hydrolysis of substrates in which the amino acids were systematically varied. The results emphasize that in both subtilisin BPN' and Savinase interactions between substrate and S4 and S1 are very important. However, it is apparent that interactions between other subsites and the substrate exert a significant influence on the substrate preference. The results are rationalized on the basis of the structural data available for the two enzymes.  相似文献   

17.
The biological functions of human neutrophil protease 3 (Pr3) differ from those of neutrophil elastase despite their close structural and functional resemblance. Although both proteases are strongly cationic, their sequences differ mainly in the distribution of charged residues. We have used these differences in electrostatic surface potential in the vicinity of their active site to produce fluorescence resonance energy transfer (FRET) peptide substrates for investigating individual Pr3 subsites. The specificities of subsites S5 to S3' were investigated both kinetically and by molecular dynamic simulations. Subsites S2, S1', and S2' were the main definers of Pr3 specificity. Combinations of results for each subsite were used to deduce a consensus sequence that was complementary to the extended Pr3 active site and was not recognized by elastase. Similar sequences were identified in natural protein substrates such as NFkappaB and p21 that are specifically cleaved by Pr3. FRET peptides derived from these natural sequences were specifically hydrolyzed by Pr3 with specificity constants k(cat)/K(m) in the 10(6) m(-1) s(-1) range. The consensus Pr3 sequence may also be used to predict cleavage sites within putative protein targets like the proform of interleukin-18, or to develop specific Pr3 peptide-derived inhibitors, because none is available for further studies on the physiopathological function of this protease.  相似文献   

18.
The action pattern of human salivary amylase (HSA) was examined by utilising as model substrates 2-chloro-4-nitrophenyl (CNP) beta-glycosides of maltooligosaccharides of dp 4-8 and some 4-nitrophenyl (NP) derivatives modified at the nonreducing end with a 4,6-O-benzylidene (Bnl) group. The product pattern and cleavage frequency were investigated by product analysis using HPLC. The results revealed that the binding region in HSA is longer than five subsites usually considered in the literature and suggested the presence of at least six subsites; four glycone binding sites (-4, -3, -2, -1) and two aglycone binding sites (+1, +2). In the ideal arrangement, the six subsites are filled by a glucosyl unit and the release of maltotetraose (G4) from the nonreducing end is dominant. The benzylidene group was also recognisable by subsites (-3) and (-4). The binding modes of the benzylidene derivatives indicated a favourable interaction between the Bnl group and subsite (-3) and an unfavourable one with subsite (-4). Thus, subsite (-4) must be more hydrophylic than hydrophobic. As compared with the action of porcine pancreatic alpha-amylase (PPA) on the same substrates, the results showed differences in the three-dimensional structure of active sites of HSA and PPA.  相似文献   

19.
The action of three class I (beta, gamma, and eta) and three class II (delta, epsilon, and zeta) collagenases from Clostridium histolyticum on two series of peptides with collagen-like sequences has been examined. The peptides in the first series all contain 4-nitrophenylalanyl-Gly-Pro-Ala in subsites P1 through P3', but each is successively lengthened in the N-terminal direction by addition of an appropriate residue until subsite P5 is occupied. The second group of peptides all have cinnamoyl-Leu in subsites P2 and P1, respectively, but each is successively lengthened in the C-terminal direction by partial additions of the Gly-Pro-Leu triplet until subsite P6' is occupied. N-Terminal elongation causes the kcat/KM values to rise markedly and to level off after occupancy of subsite P6 for the class I enzymes and subsite P3 for the class II enzymes. C-Terminal elongation produces the best substrates for both classes of enzymes when subsites P3' or P4' are occupied by amino acids with free carboxyl groups. The kcat/KM values for the hydrolysis of both Leu-Gly bonds of cinnamoyl-Leu-Gly-Pro-Leu-Gly-Pro-Leu have been measured for both classes of enzymes. Both rates are large, but both classes preferentially hydrolyze the Leu-Gly bond of the C-terminal triplet. Thus, both classes of enzymes exhibit both endopeptidase and tripeptidylcarboxypeptidase activities.  相似文献   

20.
Human pancreatic alpha-amylase (HPA) is a member of the alpha-amylase family involved in the degradation of starch. Some members of this family, including HPA, require chloride for maximal activity. To determine the mechanism of chloride activation, a series of mutants (R195A, R195Q, N298S, R337A, and R337Q) were made in which residues in the chloride ion binding site were replaced. Mutations in this binding site were found to severely affect the ability of HPA to bind chloride ions with no binding detected for the R195 and R337 mutant enzymes. X-ray crystallographic analysis revealed that these mutations did not result in significant structural changes. However, the introduction of these mutations did alter the kinetic properties of the enzyme. Mutations to residue R195 resulted in a 20-450-fold decrease in the activity of the enzyme toward starch and shifted the pH optimum to a more basic pH. Interestingly, replacement of R337 with a nonbasic amino acid resulted in an alpha-amylase that no longer required chloride for catalysis and has a pH profile similar to that of wild-type HPA. In contrast, a mutation at residue N298 resulted in an enzyme that had much lower binding affinity for chloride but still required chloride for maximal activity. We propose that the chloride is required to increase the pK(a) of the acid/base catalyst, E233, which would otherwise be lower due to the presence of R337, a positively charged residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号