首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volkmann A  Peters W 《Tissue & cell》1989,21(2):253-261
Fluorescent dyes were used to observe antiperistaltic movements of the midgut which cause an anteriorly directed flow which provides the caeca with midgut fluid. Aminopeptidases could be demonstrated histochemically in the cells and lumen of the caeca. This would suggest that the caeca of mosquito larvae take part in the final degradation, resorption and storage of nutrients. The caecal membrane acts as a permeability barrier. Particulate material and substances which cannot be degraded or resorbed accumulate in the caeca. Moreover, the caeca are involved in osmoregulation. Changes in the number of mitochondria present in the microvilli of ion transporting cells occur. The number of mitochondria in the microvilli depends on the salinity of the culture medium of these larvae.  相似文献   

2.
Bostrichiformia is the less known major series of Coleoptera regarding digestive physiology. The midgut of Dermestes maculatus has a cylindrical ventriculus with anterior caeca. There is no cell differentiation along the ventriculus, except for the predominance of cells undergoing apocrine secretion in the anterior region. Apocrine secretion affects a larger extension and a greater number of cells in caeca than in ventriculus. Ventricular cells putatively secrete digestive enzymes, whereas caecal cells are supposed to secrete peritrophic gel (PG) glycoproteins. Feeding larvae with dyes showed that caeca are water-absorbing, whereas the posterior ventriculus is water-secreting. Midgut dissection revealed a PG and a peritrophic membrane (PM) covering the contents in anterior and posterior ventriculus, respectively. This was confirmed by in situ chitin detection with FITC-WGA conjugates. Ion-exchange chromatography of midgut homogenates, associated with enzymatic assays with natural and synthetic substrates and specific inhibitors, showed that trypsin and chymotrypsin are the major proteinases, cysteine proteinase is absent, and aspartic proteinase probably is negligible. Amylase and trypsin occur in contents and decrease along the ventriculus; the contrary is true for cell-membrane-bound aminopeptidase. Maltase is cell-membrane-bound and predominates in anterior and middle midgut. Digestive enzyme activities in hindgut are negligible. This, together with dye data, indicates that enzymes are recovered from inside PM by a posterior-anterior flux of fluid outside PM before being excreted. The combined results suggest that protein digestion starts in anterior midgut and ends in the surface of posterior midgut cells. All glycogen digestion takes place in anterior midgut.  相似文献   

3.
4.
A survey of the size and form of the midgut caeca in relation to diet has been carried out on 173 species from 21 families and subfamilies of Acridoidea (grasshoppers). Although differences exist in the size of the anterior caecal arms relative to body length, these differences are not related to the type of food eaten. Assuming that the anterior arms have a key role in digestive and absorptive processes, this suggests that different foods make similar demands on these processes. The posterior caecal arms are smaller in graminivorous species than in species eating other types of plants as a whole or part of their diet. This is true across all the taxa, including those families and subfamilies that are predominantly forb-feeding. It is suggested that the posterior caecal arms have a special role in the detoxification of plant secondary compounds and that the requirement for this is reduced in graminivorous species because of the lower levels of toxic secondary compounds in grasses. A specialized pocket region is present in the posterior caecal arms of some forb-feeding species. Its occurrence across the taxa is spasmodic. It may be concerned with the removal of phenolic compounds.  相似文献   

5.
Certain families of plant-feeding insects in the order Hemiptera (infraorder Pentatomomorpha) have established symbiotic relationships with microbes that inhabit specific pouches (caeca) of their midgut epithelium. The placement of these caeca in a well-delineated region at the most posterior end of the midgut bordering the hindgut is conserved in these families; in situ the convoluted midgut is predictably folded so that this caecal region lies adjacent to the anterior-most region of the midgut. Depending on the hemipteran family, caeca vary in their number and configuration at a given anterior–posterior location. At the host-microbe interface, epithelial plasma membranes of midgut epithelial cells interact with nonself antigens of microbial surfaces. In the different hemipteran species examined, a continuum of interactions is observed between microbes and host membranes. Bacteria can exist as free living cells within the midgut lumen without contacting host membranes while other host cells physically interact extensively with microbial surfaces by extending numerous processes that interdigitate with microbes; and, in many instances, processes completely envelope the microbes. The host cells can embrace the foreign microbes, completely enveloping each with a single host membrane or sometimes enveloping each with the two additional host membranes of a phagosome.  相似文献   

6.
The midgut of Rhynchosciara americana larvae consists of a cylindrical ventriculus from which protrudes two gastric caeca formed by polyhedral cells with microvilli covering their apical faces. The basal plasma membrane of these cells is infolded and displays associated mitochondria which are, nevertheless, more conspicuous in the apical cytoplasm. The anterior ventricular cells possess elaborate mitochondria-associated basal plasma membrane infoldings extending almost to the tips of the cells, and small microvilli disposed in the cell apexes. Distal posterior ventricular cells with long apical microvilli are grouped into major epithelial foldings forming multicellular crypts. In these cells the majority of the mitochondria are dispersed in the apical cytoplasm, minor amounts being associated with moderately-developed basal plasma membrane infoldings. The proximal posterior ventriculus represents a transition region between the anterior ventriculus and the distal posterior ventriculus. The resemblance between the gastric caeca and distal posterior ventricular cells is stressed by the finding that their microvilli preparations display similar alkaline phosphatase-specific activities. The results lend support to the proposal, based mainly on previous data on enzyme excretion rates, that the endo-ectoperitrophic circulation of digestive enzymes is a consequence of fluid fluxes caused by the transport of water into the first two thirds of midgut lumen, and its transference back to the haemolymph in the gastric caeca and in the distal posterior ventriculus.  相似文献   

7.
ABSTRACT. Parts of the posterior caeca of Schistocerca gregaria Forskål are complexly pocketed and the whole caecal lining including the pockets secretes a peritrophic membrane. Such pockets are not present in six other species of Acrididae examined. Preliminary experimental evidence, based on absorption of ingested dyes, suggests that the presence of pockets is related to rapid water absorption and perhaps to sequestering plant toxins ingested in a very polyphagous diet.  相似文献   

8.
Juveniles of Fasciola hepatica excysted and penetrated the intestinal wall of mice within 2 hr of infection. Approximately 70% of the administered dose was present in the abdominal cavity after 7 hr. Many large (1.3 μm in diam) secretory granules, stored in the paired caeca of the newly excysted juvenile were used up during the penetration of the intestinal wall. The caecal cells of juveniles newly arrived in the abdominal cavity 2 and 12 hr p.i. (postinfection) did not have any of the usual morphological features associated with an absorptive function and the caeca may therefore be regarded as having a role in penetration. Parasites recovered from the abdominal cavity 1 day p.i. had caecal cells which for the first time exhibited morphological features of an absorptive function; an apical plasma membrane amplified into occasional short lamellae and junctional complexes with parenchymal cells at the basal plasma membrane. These cells carried out synthesis and secretion of the large, 1.3 μm, granules throughout the parasite's migration to the liver capsule. These large granules were absent from the caecal cells of juveniles which had become established in the liver capsule. Also on arrival in the liver capsule the caecal cells transformed into an adult-like morphology in that their granular endoplasmic reticulum gained a basal-apical orientation and their apical plasma membranes were amplified into tall regular lamellae. The transformed cells synthesized and secreted small (0.5 μm in diam) granules similar in size to those produced by adult cells. Growth of the caeca occurred by mitotic division of undifferentiated cells observed in the epithelium and subsequent redifferentiation of daughter cells. Possible origins of the undifferentiated cells are discussed.  相似文献   

9.
《Insect Biochemistry》1990,20(3):267-274
Carbohydrases predominate in the crop and their pH optima agree with pH prevailing in crop contents. Major amounts are also found in caecal contents. Aminopeptidase and trypsin are active mainly in the caeca, where they predominate in cells and contents, respectively. Aminopeptidase is partly membrane-bound. Except for trehalase, salivary glands display negligible amounts of digestive enzymes. The specific activity of digestive enzymes is high in all midgut cells and the enzyme molecules do not differ among gut compartments, as judged by polyacrylamide gel electrophoresis. Thus, it is probable that digestive enzymes are synthesized and secreted by all midgut cells (mainly in caeca) and then passed forward into the crop. Digestive enzymes are found in hindgut in concentrations similar to those in ventricular contents and, since they are stable in gut contents, they are likely excreted at a rate similar to undigested food. The data support the hypothesis that carbohydrate and protein are digested mainly in crop and caecal lumina, respectively, with part of the final digestion of proteins occurring at the surface of caecal cells. The peculiar features of the digestion of A. flavolineata grasshoppers, including the lack of midgut countercurrent fluxes, are thought to be derived from putative Polyneoptera ancestors.  相似文献   

10.
Summary The cells of the mesenteric caeca in the midgut of certain insects possess a labyrinth of transepithelial cisternae. Their existence can be seen in thin sections of lanthanum-incubated tissue, where the tracer enters not only the intercellular clefts but also membranous cisternae which are inpocketings from, and, in continuity with, both the lateral clefts and basal membrane. These infoldings, which are numerous, run from the basal or lateral surfaces into the perinuclear region of the cells, where they are found, laden with lanthanum, as smooth cisternae or vesicles in the peripheral cytoplasm near the plasma membrane. These can be followed in serial sections and are quite distinct from other sub-surface cisternae of the lateral borders which are studded with ribosomes on the cytoplasmic surface. Near the luminal surface, tracer-laden structures in the form of vesicles and granules become increasingly predominant over those in the form of cisternae. Freeze-fracture replicas confirm the above observations, in that the plasma membrane of the intercellular cleft can be characterized as such unequivocally, since it exhibits smooth septate junctional E face grooves and P face ridges. Lateral infoldings, cisternae and vesicles can be seen arising directly from these junction-bearing membranes. The transepithelial cisternae and vesicles may be the morphological basis of an insect transcellular transport system, comparable to the tubulocisternal endoplasmic reticulum present in the transporting secretory and absorptive epithelia of vertebrate tissues. However, in insect midgut caecal epithelia, the cisternae appear to be, albeit presumably transiently, in direct continuity with the extracellular space, forming a plasma membrane reticular system which seems not to be the case with the tubulo-cisternal endoplasmic reticulum which terminates in subsurface cisternae.  相似文献   

11.
The flow of nutrients through the digestive tract of Gryllus bimaculatus is regulated by the proventriculus, which effectively triturates the partially digested food coming from the crop and shoves the mushy nutrient mass into the space between the paired caeca. The many folds at the base of the caeca form a sieve, and only fine food particles (4-10 microm) and fluids in the mush are filtered under pressure (produced by proventricular peristalsis) into the caeca. Combined with the release of enzymes in the caeca and the influx of water, the caeca are rapidly inflated on day 1 after the terminal molt. The remaining, mostly undigested food is shoved into a tube formed by the peritrophic membrane, which is first formed at the anterior end of the ventriculus. A mucous membrane (peritrophic gel) covers the caecal epithelium, and seems to merge with the true peritrophic membrane at the beginning of the ventriculus. The Type I peritrophic membrane is dragged posteriorly through the entire ventriculus and ileum by the posterior movement of the food bolus, which is shoved posteriorly at a rate of 6 mm/h by proventricular pressure. The growth rate of the peritrophic membrane is about 3 mm/h. Peristalsis does not occur in the midgut or ileum; the muscles in these regions function solely to counteract the internal pressure produced by the proventriculus. The exo- and endoperitrophic space in newly molted animals is open and fluids can flow in both directions. The endoperitrophic space becomes filled on day 1, and leads to a great reduction of the exoperitrophic space. In the ileal pouch (exoperitrophic space) the peritrophic membrane separates the mass of bacteria from the waste bolus within the endoperitrophic space. Feathery bristles arising from the cuticular covering of the finger-like invaginations of the ileal wall hold most of the bacterial mass in place. The crop weight decreases from day 1 to day 3 as the weight of caeca, ventriculus, and ileum increases. After day 3, food uptake and the weight of the entire gut system decrease in female crickets, partly in response to space restrictions in the abdomen caused by rapid ovarial growth.  相似文献   

12.
Growth hormone transgenic coho salmon Oncorhynchus kisutch fed at the same ration level as non‐transgenic controls (Tc) had the same growth rate as non‐transgenic controls (Nt). In contrast, growth hormone transgenic coho salmon (Tf) fed ad libitum ate about twice as much and had much higher growth rates than the other two groups. The most obvious result was the significantly larger caeca in the Tf group relative to both Nt or pair‐fed Tc. The Tf fish had more caeca that were longer. The results suggested that the effect was indirect and the enlarged caeca required both the GHtransgene and hyperphagia to cause enlarged caecal capacity. A small part of the results, however, also suggested that there was a direct effect of the GHtransgene on some gut tissues, particularly the intestine.  相似文献   

13.
Gut-tract morphology differed between benthivorous and zooplanktivorous Arctic charr Salvelinus alpinus caught in the littoral and pelagic zones of a sub-Arctic lake. The differences were related to trophic niche and infection with the cestodes Cyathocephalus truncatus and Eubothrium salvelini . Measurements that were unrelated to cestode infection, including intestinal length, numbers of pyloric caeca and posterior pyloric caeca morphology, differed between S. alpinus that had consumed different prey types, suggesting an adaptive response to divergent trophic niches. The anterior pyloric caeca of S. alpinus with high numbers of cestodes were significantly wider and shorter than those in fish with lower levels of infection. The differences were strongly associated with infection by C. truncatus , which was site-selective and attached to the anterior caeca with a large scolex. Differences in caecal measurements were probably the result of mechanical damage caused by scolex attachment and host responses to infection with C. truncatus . The differences in anterior caeca were also an indirect indicator of trophic specialization. Benthivorous S. alpinus were more exposed to, and more heavily infected with C. truncatus than were pelagic zooplanktivorous fish, because this cestode had Gammarus lacustris as its intermediate host. Nevertheless, care should be exercized when using gut measurements for making inferences about the trophic ecology of fish because a history of infection with cestodes may have profound effects on caecal morphology.  相似文献   

14.
A calcite canopy, which is permeated by the fine tubules of the caecal brush, covers the distal end of each punctum in living Terebratulida. At a very early stage in the growth of the caecum, the tubules comprising the brush probably accommodated the microvillous ends of core cells which normally hang within the caecal head. The perforate canopies, if considered as moulds of part of the core cells, reflect some of the morphological detail of the fleshy caeca.
Perforate calcite canopies have been discovered in the fossil terebratellacean Lobothiris punctata (Sowerby), and in the late spiriferinacean Spiriferina walcotti (Sowerby), both found in the Lower Liassic rocks of Somerset, England. The significance of such discoveries is discussed.  相似文献   

15.
We investigated the involvement of the enzyme, carbonic anhydrase, in the calcification-decalcification processes occurring in the posterior caeca of the midgut of the terrestrial crustacean, Orchestia cavimana, before and after exuviation. This enzyme was ultrahistochemically localized throughout the membranes of the caecal epithelium as well as extracellularly, i.e., within pre-exuvial calcareous concretions and postexuvial calcified spherules. During the molt cycle, the pattern of carbonic anhydrase activity in the posterior caeca was correlated with the calcium content at this level. Acetazolamide treatment in vivo inhibited about 50% of the calcium uptake during both pre-exuvial secretion and postexuvial reabsorption. The role of carbonic anhydrase in this mineralizing-demineralizing epithelium is discussed and compared with that of other mechanisms involved in this calcium turnover.  相似文献   

16.
Summary We investigated the involvement of the enzyme, carbonic anhydrase, in the calcification-decalcification processes occurring in the posterior caeca of the midgut of the terrestrial crustacean, Orchestia cavimana, before and after exuviation. This enzyme was ultrahistochemically localized throughout the membranes of the caecal epithelium as well as extracellularly, i.e., within pre-exuvial calcareous concretions and postexuvial calcified spherules. During the molt cycle, the pattern of carbonic anhydrase activity in the posterior caeca was correlated with the calcium content at this level. Acetazolamide treatment in vivo inhibited about 50% of the calcium uptake during both pre-exuvial secretion and postexuvial reabsorption. The role of carbonic anhydrase in this mineralizing-demineralizing epithelium is discussed and compared with that of other mechanisms involved in this calcium turnover.  相似文献   

17.
Determinations of carbohydrases, proteases, carboxylesterases and phosphatases in the midgut cells and in the luminal spaces outside and inside the peritrophic membrane of Rhynchosciara americana larvae have been carried out. The data show that alpha-amylase, cellulase and proteinases are present in cells, ecto- and endoperitrophic spaces; aminopeptidases and trehalase in cells and ectoperitrophic space; and finally disaccharidases (except trehalase), carboxypeptidases, dipeptidases, carboxylesterases and phosphatases only in cells. The results support the conclusion that digestion takes place in three spatially organized steps. The first one occurs inside the peritrophic membrane and comprises the dispersion and/or decrease in molecular weight of the food molecules. The second is the hydrolysis of the polymeric food molecules in the ectoperitrophic space to dimers and/or small oligomers. Finally, terminal digestion occurs in the midgut caeca and posterior ventriculus cells by enzymes presumed to be plasma membrane bound. The existence of two extracellular sites for digestion in R. americana is considered to be an adaptation to conserve secreted enzymes, since only those penetrating the endoperitrophic space are lost quickly in the faeces.  相似文献   

18.
Myzostoma cirriferum feeds by diverting food particles carried by the ambulacral grooves of its comatulid host Antedon bifida. When searching for food, the myzostome uses its protrusible introvert to fulfil two major functions: sensory perception and the capture of food particles. The digestive system is composed of four parts, viz. a pharynx, that is contained within the introvert, a stomach, a series of paired caeca and an intestine that lie in the myzostome's trunk. The pharynx is supplied with a thick muscle which, thanks to peristaltic movements, carries food particles from the mouth to the stomach. Both stomach and caecal cells are able to absorb dissolved nutriments and to store lipids, whereas intestinal cells are only capable of absorption. Due to the beating of their cilia, stomach cells also carry food particles into the caecal lumen, where they are subjected to endocytosis and intracellular digestion by caecal cells. Undigested food fragments eventually gather in a very large, apical vacuole, and the cell apices containing vacuoles are eliminated into the caecal lumen by an apocrinal process. Detached cell apices reach the stomach, where they are embedded in a matrix, together forming a spindle-shaped faecal mass that is expelled through the postero-ventral anus. The observed digestive process—entailing the regular elimination of the apical part of the caecal digestive cells—appears to be unique among the Spiralia.  相似文献   

19.
J C Meyran  F Graf 《Histochemistry》1986,85(4):313-320
Periodical changes in Na+-K+-ATPase, Ca2+-ATPase and non-specific alkaline-phosphatase activity were observed using cytochemical techniques in the posterior caeca of the crustacean amphipod, Orchestia cavimana, during the moult cycle. These changes were considered in relation to the calcium transport mechanisms in the posterior caecal epithelium. For both ATPases as well as alkaline phosphatase, the specific reaction products were most intense during the pre-exuvial period, i.e. when calcium is slowly transported against a concentration gradient: the localization of Na+-K+-ATPase activity in microvilli and the upper extracellular channels strongly supports the hypothesis that this enzyme is involved in an indirect, sodium-dependent mechanism for the transport of calcium. The detection of Ca2+-ATPase activity in microvilli would seem to indicate that this enzyme plays a role in the direct, active extrusion of Ca2+ at this level. Although the role of alkaline phosphatase in the transport of calcium remains unclear, the histochemical detection of this enzymatic activity throughout the apical part of the caecal epithelium suggests that this enzyme may be involved in calcium secretion. In post-exuvial period, we found only weak specific reaction products, thus indicating a reduced active calcium transport as these ions are rapidly reabsorbed down the concentration gradient.  相似文献   

20.
The response of the digestive proteases to abrupt salinity change was studied in juvenile gilthead sea bream (Sparus aurata) for 15 days after transfer from 33 per thousand to 21 per thousand. Salinity decrease affected significantly neither the activity of total acid proteases in stomach, nor the activities of total alkaline proteases and major serine proteases--trypsin and chymotrypsin--in the alkaline part of the intestine. The activity of the major proteases was significantly different between the alkaline segments of the intestine, with the posterior intestine presenting the highest activities followed by the pyloric caeca. This distribution pattern remained unaffected by salinity decrease. Notably, salinity change led to significant alterations in elastase and carboxypeptidase activity. The changes were more prominent in the upper part of the intestine (pyloric caeca and anterior intestine) than in the posterior intestine. In pyloric caeca significant alteration of carboxypeptidase A and B activities was observed, elastase changes were confined to anterior intestine together with alterations in carboxypeptidase B activity, while in posterior intestine the changes were restricted to carboxypeptidase A activity. The results are discussed in relation to the osmoregulatory action of the intestinal segments and dietary protein digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号