首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Although pulmonary diseases account for a large number of deaths in the world, most have no treatment other than transplantation. New therapeutic methods for lung treatment include lung tissue engineering and regenerative medicine. Lung decellularization has been used to produce an appropriate scaffold for recellularization and implantation. We investigated 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS) with sodium dodecyl sulfate (SDS) and Triton X-100 detergents for effecting rat lung decellularization. We evaluated using conventional histology, immunofluorescence staining and SEM methods for removing nuclear material while leaving intact extracellular matrix proteins and three-dimensional architecture. We investigated different concentrations of CHAPS, SDS and Triton X-100 for different periods. We found that 2 mM CHAPS + 0/1% SDS for 48 h was the best among the treatments investigated. Our method can be used to produce an appropriate scaffold for recellularization by stem cells and for investigations ex vivo and in vivo.  相似文献   

4.
The survival from bronchogenic carcinoma is highly dependent upon stage at the time of treatment. This is particularly true for squamous cell carcinoma, adenocarcinoma, and large cell carcinoma, but holds true for small cell carcinoma as well. The problem presented to the medical profession has been to find a practical means of detecting lung cancer while it is still at an early stage. Three studies in progress have indicated that a larger proportion of the patients may be found to have early stage lung cancer when screened with a combination of chest X-rays and sputum cytology. However, the detection of these early stage cases has not yet been translated into an improvement in the overall mortality rate from lung cancer.  相似文献   

5.
A simple, isotropic, elastic constitutive model for the spongy tissue in lung is formulated from the theory of hypo-elasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted in the literature as indicating extensional anisotropy. In contrast, we show that this behavior arises naturally from an analysis of isotropic hypo-elastic invariants and is a result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model predictions are compared with published experimental data for dog lung.  相似文献   

6.
30–60% of cancer patients develop lung metastases, mostly from primary tumors in the colon-rectum, lung, head and neck area, breast and kidney. Nowadays, stereotactic radiotherapy (SRT ) is considered the ideal modality for treating pulmonary metastases.When lung metastases are suspected, complete disease staging includes a total body computed tomography (CT ) and/or positron emission tomography-computed tomography (PET -CT ) scan. PET -CT has higher specificity and sensitivity than a CT scan when investigating mediastinal lymph nodes, diagnosing a solitary lung lesion and detecting distant metastases. For treatment planning, a multi-detector planning CT scan of the entire chest is usually performed, with or without intravenous contrast media or esophageal lumen opacification, especially when central lesions have to be irradiated. Respiratory management is recommended in lung SRT, taking the breath cycle into account in planning and delivery. For contouring, co-registration and/or matching planning CT and diagnostic images (as provided by contrast enhanced CT or PET-CT ) are useful, particularly for central tumors. Doses and fractionation schedules are heterogeneous, ranging from 33 to 60 Gy in 3–6 fractions. Independently of fractionation schedule, a BED10 > 100 Gy is recommended for high local control rates. Single fraction SRT (ranges 15–30 Gy) is occasionally administered, particularly for small lesions. SRT provides tumor control rates of up to 91% at 3 years, with limited toxicities.The present overview focuses on technical and clinical aspects related to treatment planning, dose constraints, outcome and toxicity of SRT for lung metastases.  相似文献   

7.
8.
Lung cancer patients suffer a 15% overall survival despite advances in chemotherapy, radiation therapy, and surgery. This unacceptably low survival rate is due to the usual finding of advanced disease at diagnosis. However, multimodality strategies using conventional therapies only minimally improve survival rates even in early stages of lung cancer. Attempts to improve survival in advanced disease using various combinations of platinum-based chemotherapy have demonstrated that no regimen is superior, suggesting a therapeutic plateau and the need for novel, more specific, and less toxic therapeutic strategies. Over the past three decades, the genetic etiology of cancer has been gradually delineated, albeit not yet completely. Understanding the molecular events that occur during the multistep process of bronchogenic carcinogenesis may make these tasks more surmountable. During these same three decades, techniques have been developed which allow transfer of functional genes into mammalian cells. For example, blockade of activated tumor-promoting oncogenes or replacement of inactivated tumor-suppressing or apoptosis-promoting genes can be achieved by gene therapy. This article will discuss the therapeutic implications of these molecular changes associated with bronchogenic carcinomas and will then review the status of gene therapies for treatment of lung cancer.  相似文献   

9.
Gene therapy for lung cancer   总被引:1,自引:0,他引:1  
Lung cancer continues to be the largest killer of Americans due to cancer. Although progress has been made, with advances in chemotherapy, the majority of patients diagnosed with lung cancer ultimately succumb to the disease. A better understanding of the molecular pathogenesis of lung cancer is demonstrating how alterations in oncogenes and tumor suppressor genes control lung cancer initiation, growth, and survival. In this article, attempts to target molecular alterations in lung cancer using gene therapy techniques are reviewed. These include introducing suicide genes into tumor cells, replacement of defective tumor suppressor genes, inactivating oncogenes, and immunotherapy-based approaches using gene therapy technology. The major barrier for these techniques continues to be the inability to specifically target tumor cells while sparing normal cells. Nonetheless, these approaches are likely to yield important biologic and clinical data which will further the progress of lung cancer treatment.  相似文献   

10.
11.
12.
PurposeTo derive Normal Tissue Complication Probability (NTCP) models for severe patterns of early radiological radiation-induced lung injury (RRLI) in patients treated with radiotherapy (RT) for lung tumors. Second, derive threshold doses and optimal doses for prediction of RRLI to be used in differential diagnosis of tumor recurrence from RRLI during follow-up.Methods and materialsLyman-EUD (LEUD), Logit-EUD (LogEUD), relative seriality (RS) and critical volume (CV) NTCP models, with DVH corrected for fraction size, were used to model the presence of severe early RRLI in follow-up CTs. The models parameters, including α/β, were determined by fitting data from forty-five patients treated with IMRT for lung cancer. Models were assessed using Akaike information criterion (AIC) and area under receiver operating characteristic curve (AUC). Threshold doses for risk of RRLI and doses corresponding to the optimal point of the receiver operating characteristic (ROC) curve were determined.ResultsThe α/βs obtained with different models were 2.7–3.2 Gy. The thresholds and optimal doses curves were EUDs of 3.2–7.8 Gy and 15.2–18.1 Gy with LEUD, LogEUD and RS models, and μd of 0.013 and 0.071 with the CV model. NTCP models had AUCs significantly higher than 0.5. Occurrence and severity of RRLI were correlated with patients’ values of EUD and μd.ConclusionsThe models and dose levels derived can be used in differential diagnosis of tumor recurrence from RRLI in patients treated with RT. Cross validation is needed to prove prediction performance of the model outside the dataset from which it was derived.  相似文献   

13.
Constitutive equations for the lung tissue   总被引:2,自引:0,他引:2  
The mechanical behavior of the lung tissue (expressed by its constitutive equations) has considerable influence on the normal and pathological function of the lung. It determines the stress field in the tissue, thus affecting the impedence and energy consumption during breathing as well as the localization of certain lung diseases. The lung tissue has a complex mechanical response. It arises from the tissue's structure--a cluster of a very large number of closely packed airsacks (alveoli) and air ducts. Each of the alveoli has a shape of irregular polyhedron. It is bounded by the alveolar wall membrane. In the present study, a stochastic approach to the tissue's structure will be employed. The density distribution function of the membrane's orientation in space is considered as the predominant structural parameter. Based on this model the present theory relates the behavior of both the alveolar membrane and that of its liquid interface to the tissue's general constitutive properties. The resulting equations allow for anisotropic and visco-elastic effects. A protocol for material characterization along the present model is proposed as well. The methodology of the present theory is quite general and can be similarly used with other structural models of the lung tissue (e.g., models in which the effect of the alveolar ducts is included).  相似文献   

14.
Gas chromatography-mass spectrometric identification of partially methylated aminosugars has been developed: (a) various kinds of O-methylated 2-deoxy-2-(N-methyl)-acetamidohexitols were prepared from partially O-(1-methoxy)-ethylated 2-deoxy-2-acetamidohexoses, and their gas chromatography-mass spectrometric patterns were determined; (b) permethylated glycolipids gave a satisfactory yield of 2-deoxy-2-N-methyl-amidohexoses by acetolysis with 0.5 n sulfuric acid in 95% acetic acid, followed by aqueous hydrolysis; (c) the resulting partially methylated aminosugars and neutral sugars were analyzed after borohydride reduction and acetylation according to the procedure of Lindberg and associates (Björndal, Lindberg and Svennson, 1967; Björndal, Hellerqvist, Lindberg and Svensson, 1970).This method was successfully applied to analysis of aminosugar linkages in blood group B-active ceramide pentasaccharide from rabbit erythrocytes and in Forssman antigen of equine spleen. The structure of blood group B-active glycolipid of rabbit erythrocyte was found to be Galα1 → 3Galβ1 → 4G1cNAcβ1 → 3Ga11 → 4Glc → Cer, and that of Forssman antigen to be GaNAcα1 → 3GalNAcβ1 → 3Galα1 → 4Ga11 → 4Glc → Cer.  相似文献   

15.
Lung cancer continues to be the most common cause of cancer-related mortality worldwide. Recent advances in molecular diagnostics and immunotherapeutics have propelled the rapid development of novel treatment agents across all cancer subtypes, including lung cancer. Additionally, more pharmaceutical therapies for lung cancer have been approved by the US Food and Drug Administration in the last 5 years than in previous two decades. These drugs have ushered in a new era of lung cancer managements that have promising efficacy and safety and also provide treatment opportunities to patients who otherwise would have no conventional chemotherapy available. In this review, we summarize recent advances in lung cancer therapeutics with a specific focus on first in-human or early-phase I/II clinical trials. These drugs either offer better alternatives to drugs in their class or are a completely new class of drugs with novel mechanisms of action. We have divided our discussion into targeted agents, immunotherapies, and antibody drug conjugates for small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). We briefly review the emerging agents and ongoing clinical studies. We have attempted to provide the most current review on emerging therapeutic agents on horizon for lung cancer.  相似文献   

16.
17.
18.
Emphysema is a chronic lung disease characterized by alveolar enlargement and tissue loss. Tissue engineering represents an attractive potential for regeneration of several organ systems. The complex three-dimensional architectural structure of lung parenchyma requiring connections of alveolar units to airways and the pulmonary circulation makes this strategy less optimistic. In the present study, we used Gelfoam sponge as a scaffold material, supplemented with fetal rat lung cells as progenitors, to explore the potential application of cell-based tissue engineering for lung regeneration in adult rats. After injection into lung parenchyma, the sponge showed porous structures similar to alveolar units. It did not induce severe local inflammatory response. Fetal lung cells in the sponge were able to survive in the adult lung for at least 35 days, determined by CMTMR [5-(and-6)-{[(4-chloromethyl)benzoyl]amino}tetramethylrhodamine] labeling. Proliferation of cells within the sponge was demonstrated in vivo by bromodeoxyuridine (BrdU) labeling. Cells formed "alveolar-like structures" at the border between the sponge and the surrounding lung tissue with positive immunohistochemical staining for epithelial and endothelial cells. Neovascularization of the sponge was demonstrated with India ink perfusion. The sponge degraded after several months. This study suggests that cell-based tissue engineering possesses the potential to regenerate alveolar-like structures, an important step towards our ultimate goal of lung regeneration.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号