首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M K Mathew  C F Hui  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9222-9226
Pulsed-field gel electrophoresis is a powerful technique for the fractionation of linear DNA molecules with sizes above 50 kilobase pairs (kb). Here it is demonstrated that this technique is also effective for separating smaller DNAs including linear, circular, and supercoiled species. The mobilities of linear DNAs larger than 8 kb can be modulated by pulse times between 0.1 and 100 s. The mobility of supercoiled DNA molecules up to 16 kb is generally unaffected by these pulse times except that 10-s pulse times cause a small but distinct increase in the mobility. The general insensitivity of small supercoiled DNAs to pulse time presumably occurs because these species reorient so rapidly that they spend most of their time undergoing conventional electrophoresis. However, the mobilities of larger supercoiled DNAs are affected by pulse times of less than 1 s, and at 0.1 s the molecules are better resolved by pulsed electrophoresis than by ordinary electrophoresis. The mobility of 3-19 kb nicked and relaxed circular DNA molecules is also affected by pulse time but in a complex way.  相似文献   

2.
Amplified extrachromosomal DNAs from antifolate-resistant Leishmania are 30-75 kilobase (kb) supercoiled molecules that resolve on orthogonal-field-alternation gel electrophoresis (OFAGE) gels. These DNAs comigrate with smaller supercoiled plasmids (7-8 kb), and their mobility is not a simple function of their size. The properties of the amplified DNAs were investigated to determine if an unusual structure accounts for the observed mobility of the amplified DNAs by OFAGE; however, their topological properties were similar to those of standard Escherichia coli plasmids. The migration of a series of supercoiled plasmids ranging in size from 6 to 91 kb was analyzed by OFAGE, and a triphasic pattern was observed. The mobilities of plasmids between 20 and 60 kb increase with size, whereas the migration of plasmids between 6 and 20 and 60 and 91 kb is inversely proportional to size. Like smaller plasmids, the large supercoiled DNAs show a pulse time-independent mobility by OFAGE. The mobility of amplified DNA from Leishmania is in accord with that of the plasmid markers. Therefore, it is primarily the size of the amplified extrachromosomal DNAs from Leishmania, rather than an unusual superhelical density or topological structure, that results in the previously unexplained migration pattern.  相似文献   

3.
We describe the use of polyacrylamide gel electrophoresis to estimate chain lengths of double- and single-stranded DNA molecules in the size range 20-1000 base pairs (or nucleotides). Double-stranded DNA molecules of known length produced either by organic synthesis or by restriction endonuclease digestion of viral DNAs were used as standards. The relative electrophoretic mobilities of these standards were examined on both nondenaturing (aqueous) polyacrylamide gels and on denaturing gels containing 7 M urea or 98% formamide. Electrophoretic mobility of DNA is a linear function of the log of molecular weight if appropriate conditions are used, although exceptions are noted. Chain lengths can be conveniently estimated by using as standards bacteriophage gamma DNA restriction fragments or commercially available tracking dyes.  相似文献   

4.
Pulsed-field gel electrophoresis of circular DNA.   总被引:5,自引:0,他引:5  
Mobility of supercoiled (form I) and nicked circular (form II) plasmid DNAs was determined on two major forms of pulsed-field electrophoresis, CHEF and OFAGE. Plasmids with molecular lengths ranging from 2.30 to 17.8 kilobase pairs (kb) were used with Saccharomyces cerevisiae chromosomes as standards. Agarose gel concentrations were varied from 0.3 to 2.0 percent, with higher percentage gels resolving forms I and II of smaller plasmids. The pulsing range of 3.7 to 240 seconds resulted in quite variable Saccharomyces chromosomal mobilities on both 0.5 and 1.0 percent gels, while both form I and II of all plasmid DNAs showed relatively constant mobilities with some increase at the shortest pulse times. Using a 30 second pulse time and gel concentrations of at least 1.0 percent, the usual order of migration of plasmid forms for a 17.8 kb plasmid could be changed. We interpret this result as an increase in the relative mobility of form II in our pulsed-field gel conditions.  相似文献   

5.
Separation of chromosome-sized DNA from the parasitic protozoan Trypanosoma brucei had previously resulted in the fractionation of DNA molecules that ranged in size from 50 kb up to roughly 1.5 Mb. The number of larger chromosomes and their size, accounting for 80% of the DNA of T. brucei remained unclear. We have now size separated these larger DNA molecules by pulsed field gel electrophoresis (PFG) and resolve a total of 20 bands, accounting for roughly 120 chromosomes, ranging in size from 50 kb up to the size of the largest, 5.7 Mb chromosome of Schizosaccharomyces pombe. Three different VSG gene expression sites were located to chromosomes of 430 kb, 1.5 Mb and 3 Mb, respectively. We have not been able to identify additional, previously cryptic DNA rearrangements, that could explain the activation or inactivation of the expression sites.  相似文献   

6.
B W Birren  M I Simon    E Lai 《Nucleic acids research》1990,18(6):1481-1487
We have previously shown that asymmetric-voltage field inversion electrophoresis produces more uniform separation for fragments between 1 and 50 kilobases (kb) than other modes of pulsed field gel electrophoresis. We now report on the basis of this phenomenon. As in conventional electrophoresis, the pulsed field mobility of DNAs between 1 and 50 kb varies with voltage in a size dependent manner. The complex migration pattern obtained with asymmetric-voltage field inversion electrophoresis reflects the difference between the mobilities of each sized fragment under the conditions used for the forward and reverse fields. We have applied this technique to DNA sequencing gels and find improvement in resolution for single-stranded fragments in polyacrylamide gels.  相似文献   

7.
Circular double-stranded forms of TT virus DNA in the liver   总被引:6,自引:0,他引:6       下载免费PDF全文
TT virus (TTV) is an unenveloped, circular, and single-stranded DNA virus commonly infecting human beings worldwide. TTV DNAs in paired serum and liver tissues from three viremic individuals were separated by gel electrophoresis and characterized biophysically. TTV DNAs in sera migrated in sizes ranging from 2.0 to 2.5 kb. TTV DNAs in liver tissues, however, migrated at 2.0 to 2.5 kb as well as at 3.5 to 6.1 kb. Both faster- and slower-migrating forms of TTV DNAs in the liver were found to be circular and of the full genomic length of 3.8 kb. TTV DNAs migrating at 2.0 to 2.5 kb, from either serum or liver tissues, were sensitive to S1 nuclease but resistant to restriction endonucleases, and therefore, they were single-stranded. By contrast, TTV DNAs in liver tissues that migrated at 3.5 to 6.1 kb were resistant to S1 nuclease. They migrated at 3.7 to 4.0 kb after digestion with EcoRI, which suggests that they represent circular, double-stranded replicative intermediates of TTV. When TTV DNAs were subjected to strand-specific primer extension and then amplified by PCR with internal primers, those in serum were found to be minus-stranded DNAs while those in liver tissues were found to be a mixture of plus- and minus-stranded DNAs. These results suggest that TTV replicates in the liver via a circular double-stranded DNA.  相似文献   

8.
The dynamics of individual DNA molecules in a thin gel were studied with fluorescence microscopy. Driven by an electric field, molecules hooked around isolated obstacles and became extended. By analyzing molecular images, we identified the reptation tube and primitive chain. When the field was turned off, the molecules relaxed. The relaxation time tau1 and primitive chain length at equilibrium depend on N, the size of the molecule in base pairs, consistently with reptation theory. Using five yeast chromosomal DNAs ranging in size from 245 kb to 980 kb, we found that: These results constitute a way of sizing individual DNA molecules by imaging rather than by gel electrophoresis.  相似文献   

9.
The migration properties of a series of supercoiled plasmids ranging in size from 4 to 16 kilobases (kb) have been analyzed by orthogonal-field-alternation gel electrophoresis (OFAGE). These circular DNAs enter the gel and are well resolved. Unlike linear DNA molecules, the relative mobilities of these plasmids are constant over a wide range of pulse times, from 10 to 120 seconds, as well as over a broad range of total running times, from 6 to 24 hours. Electrophoresis of supercoiled, relaxed, and nicked open circular forms as well as topoisomers of pBR322 shows that the extent of supercoiling has a dramatic effect on plasmid migration on OFAGE. Several practical applications for exploiting the different migration properties of circular and linear DNA molecules on OFAGE are presented.  相似文献   

10.
The arrangement of tubulin genes in the genome of the protozoan parasite Leishmania major was studied by genomic Southern blot analysis and mapping of genes to chromosomes fractionated by pulsed field gradient gel (PFG) electrophoresis. alpha-tubulin genes exist as a tandem array of 2.4 kb PstI fragments. beta-tubulin genes are found as a tandem array of 3.9 kb AvaI or PvuI fragments, but additional genes are also found on other genomic DNA fragments. Chromosome-sized DNA molecules released from promastigotes of L. major were fractionated into at least 17 chromosome bands of approximate size 400-4000 kb by PFG gel electrophoresis. Some bands may be present in non-equimolar amounts suggesting that there may be more than 17 chromosomes. All alpha-tubulin genes were localized to a single band (chromosome 7). beta-tubulin genes were localized to four bands (chromosomes 6, 10, 16 and 17). This shows that the alpha- and beta- tubulin gene families are unlinked in L. major. There is a single chromosomal locus for the alpha-tubulin tandem array whereas beta-tubulin genes exist both as a tandem array and as dispersed genes at four chromosomal loci.  相似文献   

11.
The 0.048502 megabase (Mb), primarily double-stranded DNA of bacteriophage lambda has single-stranded, complementary termini (cohesive ends) that undergo either spontaneous intramolecular joining to form open circular DNA or spontaneous intermolecular joining to form linear, end-to-end oligomeric DNAs (concatemers); concatemers also cyclize. In the present study, the effects of polyethylene glycol (PEG) on the cyclization and concatemerization of lambda DNA are determined at temperatures that, in the absence of PEG, favor dissociation of cohesive ends. Circular and linear lambda DNA, monomeric and concatemeric, are observed by use of pulsed field agarose gel (PFG) electrophoresis. During preparation of lambda DNA for these studies, hydrodynamic shear-induced, partial dissociation of joined cohesive ends is fortuitously observed. Although joined lambda cohesive ends progressively dissociate as their temperature is raised in the buffer used here (0.1 M NaCl, 0.01 M sodium phosphate, pH 7.4, 0.001 M EDTA), when PEG is added to this buffer, raising the temperature sometimes promotes joining of cohesive ends. Conditions for promotion of primarily either cyclization or concatemerization are described. Open circular DNAs as long as a 7-mer are produced and resolved. The concentration of PEG required to promote joining of cohesive ends decreases as the molecular weight of the PEG increases. The rate of cyclization is brought, the first time, to values that are high enough to be comparable to the rate observed in vivo. For double-stranded DNA bacteriophages that have a linear replicative form of DNA (bacteriophage T7, for example), a suppression, sometimes observed here, of cyclization mimics a suppression of cyclization previously observed in vivo. The PEG, temperature effects on DNA joining are explained by both the excluded volume of PEG random coils and an increase in this excluded volume that occurs when temperature increases.  相似文献   

12.
Ultraviolet (UV) radiation-induced DNA damage leading to entomopathogenic fungal inactivation is commonly measured by viability counts. Here we report the first quantification of UV-induced cyclobutane pyrimidine dimers (CPD) in DNA of the entomopathogenic fungus, Beauveria bassiana. Changes in the mobility of UV-C irradiated DNA were resolved with CPD specific bacteriophage T4 endonuclease V and alkaline agarose gel electrophoresis. The maximum number of CPD formed in B. bassiana DNA in vitro by UV-C irradiation was 28 CPD/ 10 kb after 720 J/m2 dose. The maximum number of CPDs formed in B. bassiana conidiospore DNA irradiated in vivo was 15 CPD/10 kb after 480 J/m2 dose and was quantified from conidiospores that were incubated to allow photoreactivation and nucleotide excision repair. The conidiospores incubated for photoreactivation and nucleotide excision repair showed decreased number of CPD/10 kb DNA and a higher percent survival of conidiospore populations than conidiospores not allowed to repair.  相似文献   

13.
A novel technique, which we call secondary pulsed field gel electrophoresis (SPFG) has been developed. In SPFG, short pulses are applied in the direction of net migration of the DNA in addition to the reorienting pulses used in conventional pulsed field electrophoresis (PFG). Experimental results show that SPFG extends and improves the electrophoretic resolution of DNA for molecules from 0.5 megabase pairs to over 10 megabase pairs in size. This improved resolution is obtained with dramatically shorter run times. Thus SPFG appears to circumvent a number of the key limitations in previous PFG protocols.  相似文献   

14.
Using the method of orthogonal-field-alternation gel electrophoresis, we have resolved the macronuclear DNA of Tetrahymena thermophila into a series of distinct bands. Using electrode switching intervals ranging from 10 to 70 seconds we have resolved DNA bands ranging in size from about 21 kb up to and beyond the size of yeast chromosomes VII and XV. Hybridization of Southern blots from these gels to both unique and repetitive DNA sequences shows that the macronuclear genome of T. thermophila has a precise organization. The unique sequences tested each hybridize to only one band of macronuclear DNA and the hybridization patterns seem to be identical in several inbred strains examined.  相似文献   

15.
Quantitative measurement of DNA migration in gel electrophoresis requires precisely controlled homogeneous electric fields. A new electrophoresis system has allowed us to explore several parameters governing DNA migration during homogeneous field pulsed field gel (PFG) electrophoresis. Migration was measured at different switch times, temperatures, agarose concentrations, and voltage gradients. Conditions which increase DNA velocities permit separation over a wider size range, but reduce resolution. We have also varied the angle between the alternating electric fields. Reorientation angles between 105 degrees and 165 degrees give equivalent resolution, despite significant differences in DNA velocity. Separation of DNA fragments from 50 to greater than 7000 kilobases (Kb) can easily be optimized for speed and resolution based on conditions we describe.  相似文献   

16.
Pulsed-field capillary electrophoresis represents a new tool for rapid and highly efficient separations of large biopolymers. The method has been utilized here to study dependencies of the electrophoretic mobility upon the frequency and pulse shape of applied voltage for large, double-stranded DNA molecules (5-100 kb) migrating in neutral polymer solutions. Two different shapes of alternating electric field (sine- and square-wave impulses) were examined with the frequency values ranging from 1 to 30 Hz. The linear dependence between duration of the forward pulse (at which the DNA molecule experiences a minimum mobility) and the product N.In(N) (where N is the number of base pairs) was experienced in field-inversion gel electrophoresis, while exponential dependence was found with the sinusoidal electric field. The mobility minima were lower in field-inversion electrophoresis than with the biased sinusoidal-field technique. The DNA (5 kb concatamers) was adequately separated using a ramp of frequency in the square-wave electric field, in approximately 1 h. The migration order of DNA fragments was referenced through adding a monodisperse DNA (48.5 kb) into the sample. The band inversion phenomena were not observed under any experimental conditions used in this work.  相似文献   

17.
M K Mathew  C L Smith  C R Cantor 《Biochemistry》1988,27(26):9210-9216
Bacteriophage DNAs annealed into linear oligomeric concatemers were used to examine the quantitative pulsed-field gel electrophoretic behavior of different-sized DNAs as a function of electrical field strength and pulse time. Three zones of resolution are observed for increasingly larger DNAs. In the first two zones, the electrophoretic mobility decreases linearly with increasing DNA size. The separation in zone 2 is roughly twice that in zone 1. The largest DNA molecules do not resolve at all and migrate in a compression zone. Mobility in zone 1 increases linearly with the electric field strength and decreases with the inverse of the pulse time. The behavior of DNA in zone 2 is qualitatively similar. However, the effect of field strength and pulse time on the separations in each zone is quite different. The results for zone 1 are generally consistent with the predictions of several existing physical models of pulsed-field gel electrophoresis, but no model accounts for all of the observed behavior in the three zones.  相似文献   

18.
A vertical gel electrophoresis apparatus is described which can distinguish DNA fragments differing by single base pair substitutions. The system employs a homogenous polyacrylamide gel containing urea-formamide and a temperature gradient which runs either perpendicular or parallel to the direction of electrophoresis. The temperature-gradient system simplifies several features of the denaturant-gradient system (1) and is relatively inexpensive to construct. Eight homologous 373 bp DNAs differing by one, two, or nine base pair substitutions were examined. DNA electrophoretic mobility changed abruptly with the temperature induced unwinding of DNA domains. GC to AT substitutions at different locations within the first melting domain, as well as an AT to TA transversion were separated with temperature gradients parallel to the electrophoretic direction. The relative stabilities of the DNAs observed in the gels were compared to predictions of DNA melting theory. General agreement was observed however complete correspondence was not obtained.  相似文献   

19.
Multiple DNA-dependent enzyme activities have been detected in highly purified preparations of a single-strand-specific nuclease from vaccinia virus. These enzyme preparations were extensively purified and characterized by using superhelical DNAs as substrates. In particular, the nuclease activity was monitored by the extent of conversion of supercoiled closed duplex DNA (DNA I) to nicked circular DNA (DNA II), which could subsequently be converted to duplex linear DNA (DNA III) by prolonged incubation with the enzyme. DNA species which were not substrates for the enzyme included relaxed closed duplex DNA, DNA II which had been prepared by nuclease S1 treatment or by photochemical nicking of DNA I, and DNA III. With plasmid pSM1 DNA as substrate, the extent of cleavage of DNA I to DNA II was found to increase with superhelix density above a threshold value of about -0.06. The linear reaction products were examined by gel electrophoresis after restriction enzyme digestion of the DNAs from plasmids pSM1 and pBR322 and of the viral DNAs from bacteriophage phi X174 (replicative form) and simian virus 40, and the map coordinate locations of the scissions were determined. These products were further examined by electron microscopy and by gel electrophoresis under denaturing conditions. Electron micrographs taken under partially denaturing conditions revealed molecules with terminal loops or hairpins such as would result from the introduction of cross-links at the cutting sites. These species exhibited snapback renaturation. The denaturing gel electrophoresis experiments revealed the appearance of new bands at locations consistent with terminal cross-linking. With pSM1 and pBR322 DNAs, this band was shown to contain DNA that was approximately twice the length of a linear single strand. The terminal regions of the cross-linked linear duplex reaction products were sensitive to nuclease S1 but insensitive to proteinase K, suggesting that the structure is a hairpin loop not maintained by a protein linker. A similar structure is found in mature vaccinia virus DNA.  相似文献   

20.
Electrophoresis of long DNA molecules in linear polyacrylamide solutions   总被引:1,自引:0,他引:1  
Electrophoresis of long DNA (T4 DNA; 166 kb, S. pombe chromosomal DNA; 3-6 Mb) in linear polyacrylamide solutions was investigated by fluorescence microscopy and capillary electrophoresis. In the past studies on electrophoresis of long DNA in a polymer solution, it was reported that DNA migrates in 'U-shape conformation'. We found that at higher polymer concentrations, the shape of the migrating DNA changes from U shape to linear shape ('I-shape conformation'). In the migration mode with the I-shape conformation, the DNA moves with almost constant velocity and constant shape. However, the migration velocity does depend on the DNA size, and it is possible to separate DNAs under this I-shape motion. Actually, Mb-sized DNAs are well separated within 5 min in the region for the I-shape motion by means of capillary electrophoresis with a DC field. Considering that it takes 20 h to separate Mb-sized DNAs by standard pulsed-field gel electrophoresis (PFGE), this results will be useful for the separation of giant DNAs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号