首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the α-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU.  相似文献   

2.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the β-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of 14C-labeled isoproturon to 14CO2 and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

3.
Metabolism of the phenylurea herbicide isoproturon by Sphingomonas sp. strain SRS2 was significantly enhanced when the strain was grown in coculture with a soil bacterium (designated strain SRS1). Both members of this consortium were isolated from a highly enriched isoproturon-degrading culture derived from an agricultural soil previously treated regularly with the herbicide. Based on analysis of the 16S rRNA gene, strain SRS1 was assigned to the beta-subdivision of the proteobacteria and probably represents a new genus. Strain SRS1 was unable to degrade either isoproturon or its known metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, or 4-isopropyl-aniline. Pure culture studies indicate that Sphingomonas sp. SRS2 is auxotrophic and requires components supplied by association with other soil bacteria. A specific mixture of amino acids appeared to meet these requirements, and it was shown that methionine was essential for Sphingomonas sp. SRS2. This suggests that strain SRS1 supplies amino acids to Sphingomonas sp. SRS2, thereby leading to rapid metabolism of (14)C-labeled isoproturon to (14)CO(2) and corresponding growth of strain SRS2. Proliferation of strain SRS1 suggests that isoproturon metabolism by Sphingomonas sp. SRS2 provides unknown metabolites or cell debris that supports growth of strain SRS1. The role of strain SRS1 in the consortium was not ubiquitous among soil bacteria; however, the indigenous soil microflora and some strains from culture collections also stimulate isoproturon metabolism by Sphingomonas sp. strain SRS2 to a similar extent.  相似文献   

4.
A soil bacterium (designated strain SRS2) able to metabolize the phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was isolated from a previously IPU-treated agricultural soil. Based on a partial analysis of the 16S rRNA gene and the cellular fatty acids, the strain was identified as a Sphingomonas sp. within the alpha-subdivision of the proteobacteria. Strain SRS2 was able to mineralize IPU when provided as a source of carbon, nitrogen, and energy. Supplementing the medium with a mixture of amino acids considerably enhanced IPU mineralization. Mineralization of IPU was accompanied by transient accumulation of the metabolites 3-(4-isopropylphenyl)-1-methylurea, 3-(4-isopropylphenyl)-urea, and 4-isopropyl-aniline identified by high-performance liquid chromatography analysis, thus indicating a metabolic pathway initiated by two successive N-demethylations, followed by cleavage of the urea side chain and finally by mineralization of the phenyl structure. Strain SRS2 also transformed the dimethylurea-substituted herbicides diuron and chlorotoluron, giving rise to as-yet-unidentified products. In addition, no degradation of the methoxy-methylurea-substituted herbicide linuron was observed. This report is the first characterization of a pure bacterial culture able to mineralize IPU.  相似文献   

5.
Three strains of bacteria (designated as YBL1, YBL2, YBL3 respectively) capable of degrading isoproturon, 3-(4-isopropylphenyl)-1, 1-dimethylurea, were isolated from the soils of two herbicide plants. Based on the comparative analysis of the 16S rRNA gene, and phenotypic and biochemical characterization, these strains were identified as Sphingobium sp. The optimum conditions for isoproturon degradation by these strains were pH 7.0, and temperature 30°C. Mg2+ (1 mM) enhanced the isoproturon degradation rate, while Ni2+ and Cu2+ (1 mmol l−1) inhibited isoproturon degradation significantly. These three strains also showed the ability to remove the residues of other phenylurea herbicides such as chlorotoluron, diuron and fluometuron in mineral salt culture medium. The N-demethylation was the first step of degradation of dimethylurea-substituted herbicides. Strain YBL1 was found capable of degrading both dimethylurea-substituted herbicides and methoxymethylphenyl-urea herbicides i.e. linuron (3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea). Using the PCR method, partial sequences of the catechol 1,2-dioxygenase gene were obtained from these strains.  相似文献   

6.
Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N′,N′-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N′-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′,N-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N′,N′-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N′-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N′-methylurea, which is the product resulting from combined N demethylation and hydroxylation.  相似文献   

7.
Three different isolation routes (flask enrichment/flask degradation assay, flask enrichment/microplate degradation assay, MPN assay/microplate degradation assay) were used to obtain pure cultures of bacteria which degraded isoproturon (3-(4-isopropylphenyl)-1,1-dimethylurea) as sole carbon and nitrogen source in a mineral salts medium from a field soil treated with isoproturon in the laboratory. All three isolation routes were successful, but the microplate assay of degradation was more successful than the flask assay. Characterization of 36 isolates indicated that they formed 16 distinct phenotypes (10 Gram-positive phenotypes, six Gram-negative phenotypes) which are likely to represent distinct species. Low concentrations of the degradation product 3-(4-isopropylphenyl)-1-methylurea (IPPMU) were occasionally found in the culture solutions. When provided as the sole source of carbon and nitrogen, the monomethyl degradation product was itself rapidly degraded by several of the isolates. Some isolates were also able to use the demethylated degradation product 3-(4-isopropylphenyl)-urea (IPPU) as sole source of carbon and nitrogen, although there was occasionally an extended lag-phase before rapid degradation commenced. One isolate was particularly active and degraded isoproturon, the monomethyl and demethylated degradation products of isoproturon, and demethylated the related phenylureas diuron and linuron.  相似文献   

8.
Several asco-, basidio-, and zygomycetes isolated from an agricultural field were shown to be able to hydroxylate the phenylurea herbicide isoproturon [N-(4-isopropylphenyl)-N',N'-dimethylurea] to N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea and N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Bacterial metabolism of isoproturon has previously been shown to proceed by an initial demethylation to N-(4-isopropylphenyl)-N'-methylurea. In soils, however, hydroxylated metabolites have also been detected. In this study we identified fungi as organisms that potentially play a major role in the formation of these hydroxylated metabolites in soils treated with isoproturon. Isolates of Mortierella sp. strain Gr4, Phoma cf. eupyrena Gr61, and Alternaria sp. strain Gr174 hydroxylated isoproturon at the first position of the isopropyl side chain, yielding N-(4-(2-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea, while Mucor sp. strain Gr22 hydroxylated the molecule at the second position, yielding N-(4-(1-hydroxy-1-methylethyl)phenyl)-N',N'-dimethylurea. Hydroxylation was the dominant mode of isoproturon transformation in these fungi, although some cultures also produced traces of the N-demethylated metabolite N-(4-isopropylphenyl)-N'-methylurea. A basidiomycete isolate produced a mixture of the two hydroxylated and N-demethylated metabolites at low concentrations. Clonostachys sp. strain Gr141 and putative Tetracladium sp. strain Gr57 did not hydroxylate isoproturon but N demethylated the compound to a minor extent. Mortierella sp. strain Gr4 also produced N-(4-(2-hydroxy-1-methylethyl)phenyl)-N'-methylurea, which is the product resulting from combined N demethylation and hydroxylation.  相似文献   

9.
This study was conducted to investigate the residues of isoproturon and its metabolites, 1-(4-isopropylphenyl)-3-methylurea, 1-(4-isopropylphenyl) urea, and 4-isopropylanilin in soil and mature earthworms under laboratory conditions. Mature earthworms (Aporrectodea caliginosa) were exposed for various durations (7, 15, 30, and 60 days) to soils contaminated with isoproturon concentrations (2, 4, 6, 8, and 10 mg.kg(-1) soil). The decrease in isoproturon concentration in the soil depended on initial concentration it was slower at higher concentrations. The isoproturon and its metabolites accumulated in earthworms it increased during the first 15 days and decreased thereafter. Acute toxicity of isoproturon was determined together with total soluble protein content and glycogen of worms. These parameters were related to isoproturon concentration in soil and earthworms. No lethal effect of isoproturon was observed even at the concentration 1000 mg.kg(-1) soil after 60 days of exposure. A reduction of total soluble protein was observed in all treated worms (maximum 59.54%). This study is suggesting the use of the total soluble protein content and glycogen of earthworms as biomarker of exposure to isoproturon.  相似文献   

10.
The widespread application of isoproturon (IPU) can cause serious pollution to the environment and threaten ecological functions. In this study, the IPU bacterial N-demethylase gene pdmAB was transferred and expressed in the chloroplast of soybean (Glycine max L. ‘Zhonghuang13’). The transgenic soybeans exhibited significant tolerance to IPU and demethylated IPU to a less phytotoxic metabolite 3-(4-isopropylphenyl)-1-methylurea (MDIPU) in vivo. The transgenic soybeans removed 98% and 84% IPU from water and soil within 5 and 14 days, respectively, while accumulating less IPU in plant tissues compared with the wild-type (WT). Under IPU stress, transgenic soybeans showed a higher symbiotic nitrogen fixation performance (with higher total nodule biomass and nitrogenase activity) and a more stable rhizosphere bacterial community than the WT. This study developed a transgenic (TS) soybean capable of efficiently removing IPU from its growing environment and recovering a high-symbiotic nitrogen fixation capacity under IPU stress, and provides new insights into the interactions between rhizosphere microorganisms and TS legumes under herbicide stress.  相似文献   

11.
The phenylurea herbicide isoproturon, 3-(4-isopropylphenyl)-1,1-dimethylurea (IPU), was found to be rapidly mineralized in an agricultural soil in France that had been periodically exposed to IPU. Enrichment cultures from samples of this soil isolated a bacterial strain able to mineralize IPU. 16S rRNA sequence analysis showed that this strain belonged to the phylogeny of the genus Sphingomonas (96% similarity with Sphingomonas sp. JEM-14, AB219361) and was designated Sphingomonas sp. strain SH. From this strain, a partial sequence of a 1,2-dioxygenase (catA) gene coding for an enzyme degrading catechol putatively formed during IPU mineralization was amplified. Phylogenetic analysis revealed that the catA sequence was related to Sphingomonas spp. and showed a lack of congruence between the catA and 16S rRNA based phylogenies, implying horizontal gene transfer of the catA gene cluster between soil microbiota. The IPU degrading ability of strain SH was strongly influenced by pH with maximum degradation taking place at pH 7.5. SH was only able to mineralize IPU and its known metabolites including 4-isopropylaniline and it could not degrade other structurally related phenylurea herbicides such as diuron, linuron, monolinuron and chlorotoluron or their aniline derivatives. These observations suggest that the catabolic abilities of the strain SH are highly specific to the metabolism of IPU.  相似文献   

12.
A new glycoside was isolated as a minor metabolite in excised cotton leaves treated with either [carbonyl-14C] or [ring-14C] 3-(4-chlorophenyl)-1-methylurea and 4-chlorophenylurea. The aglycone from β-glucosidase or hesperidinase hydrolysis was identified as 4-chloro-2-hydroxyphenylurea by TLC, radioisotope dilution and MS.  相似文献   

13.
Linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea] induces the formation of an enzyme (acylamidase) responsible for the degradation of a large variety of different herbicides and fungicides of the acylanilide and phenylurea type. The former type is degraded at a rate at least 10 times higher than the latter.  相似文献   

14.
A series of (E)-1-(substituted benzylidene)-4-(3-isopropylphenyl)thiosemicarbazone derivatives were synthesized and characterized by FT-IR spectrum, elemental analysis, NMR spectrum, HR-MS spectrum, and X-ray single crystal diffraction technology. The crystal structures and packing of (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone and (E)-1-(3-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone were maintained through the intramolecular hydrogen bond (N3-H6⋅⋅⋅N1) and intermolecular hydrogen bonds (N2-H4⋅⋅⋅S1, C14-H14⋅⋅⋅F1 and C7-H7⋅⋅⋅S1). The results obtained by employing the DPPH free radicals scavenging assay indicated that (E)-1-(4-methoxylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had a more significant antioxidant activity compared with other compounds. The results measured by adopting the disc diffusion method elucidated that (E)-1-(4-trifluoromethylbenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone possessed a more prominent antifungal activity than other compounds. Molecular docking showed that (E)-1-(4-chlorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the highest affinity with receptor protein (1NMT). Moreover, the drug-likeness characteristic, physicochemical properties, pharmacokinetic profiles, and bioactivity scores of all the compounds were predicted through in silico studies. The results illustrated that (E)-1-(4-fluorobenzylidene)-4-(3-isopropylphenyl)thiosemicarbazone had the drug-likeness characteristic and all the compounds were considered as moderately biological active molecules.  相似文献   

15.
Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.  相似文献   

16.
In a mesophilic (37°C) triculture at a high ammonium concentration and pH8, methanogenesis from acetate occurred via syntrophic acetate oxidation. Studies with 14C-labelled substrates showed that the amount of labelled methane formed from 1-14C-labelled acetate was equal to that formed from 2-14C-labelled acetate. Labelled methane was also formed from H14CO3 -. These results clearly showed that both the methyl and carboxyl groups of acetate were oxidized to CO2 and that CO2 was reduced to CH4 through hydrogenotrophic methanogenesis. During growth of the triculture, a significant isotopic exchange between the carboxyl group of acetate and bicarbonate occurred. As a result, there was a decrease in the specific activity of 1-14C-acetate, and the production of 14CO2 was slightly higher from 1-14C- than from 2-14C-acetate. For each mole acetate degraded, 0.94 mol methane was formed; 9.2 mmol acetate was metabolized during the 294 days of incubation.  相似文献   

17.
[Carbonyl-14C] methabenzthiazuron (MBT) was applied to an arid region soil at a rate of 5mg kg−1 soil to give a14C content of 2400 KB kg−1 soil. After 15 weeks of incubation at 22°C and 50% of the maximum water holding capacity of the soil, 7.2% of the applied14C was mineralized to14CO2. Where the soil was amended with wheat straw, total mineralization increased to 17.3%. Soil disturbance caused a significant increase while chloroform fumigation caused a significant decrease in the rate of14CO2 production, both from amended and unamended soils. These results suggest that MBT is degraded mainly through microbial co-metabolism. Wheat straw amendment resulted in increased transformation of MBT into soil humus. In unamended soil, a major portion of14C was recovered in fulvic acid and in fractions extracted with organic solvents. Recovery of14C in non-extractable bound residues (humins) increased as incubation progressed and seemed to be derived from the fulvic acid fraction, which showed a concomitant decrease. More than 99% of the residual14C in unamended soil consisted of unaltered MBT; the remainder occurred as 1-methyl-1 (benzthiazolyl) urea. In amended soil, a relatively higher percentage of the extractable14C was found in the metabolite. Small amounts of three unidentified14C-labelled compounds were also observed. In amended soil, disturbance caused a decrease in extractable-14C whereas fumigation caused a significant increase, as compared to the untreated control. The effects were more pronounced when the soils were reated at an early stage of incubation. In general, soil disturbance increased the availability of MBT for further transformations while chloroform fumigation decreased the process.  相似文献   

18.
Catabolism of a (14)C-labelled volatile monoterpene compound (geraniol) to (14)CO(2) was investigated in soils taken from the rhizosphere at distances up to 200 cm from the trunks of three small Populus tremula trees growing at different sites in Slovenia. Emissions of limonene of up to 18 microg m(-2) h(-1) were detected from the soil surface at each site. Evolution of (14)C-labelled CO(2) was measured as a product of catabolism of (14)C-labelled geraniol introduced into the soil samples. Indigenous soil microorganisms degraded the geraniol rapidly. There was a significant difference in relative lag times and rates of catabolism along the gradient from the tree trunks, with relatively longer lag times and lower rates occurring in soil samples from the farthest point from the tree.  相似文献   

19.
A study was conducted to determine the diversity of 2-, 3-, and 4-chlorobenzoate (CB) degraders in two pristine soils with similar physical and chemical characteristics. Surface soils were collected from forested sites and amended with 500 g of 2-, 3-, or 4-CB g–1 soil. The CB levels and degrader numbers were monitored throughout the study. Degraders were isolated, grouped by DNA fingerprints, identified via 16S rDNA sequences, and screened for plasmids. The CB genes in selected degraders were isolated and/or sequenced. In the Madera soil, 2-CB and 4-CB degraded within 11 and 42 d, respectively, but 3-CB did not degrade. In contrast, 3-CB and 4-CB degraded in the Oversite soil within 14 and 28 d, respectively, while 2-CB did not degrade. Approximately 107 CFU g–1 of degraders were detected in the Madera soil with 2-CB, and the Oversite soil with 3- and 4-CB. No degraders were detected in the Madera soil with 4-CB even though the 4-CB degraded. Nearly all of the 2-CB degraders isolated from the Madera soil were identified as a Burkholderia sp. containing chromosomally encoded degradative genes. In contrast, several different 3- and 4-CB degraders were isolated from the Oversite soil, and their populations changed as CB degradation progressed. Most of these 3-CB degraders were identified as Burkholderia spp. while the majority of 4-CB degraders were identified as Bradyrhizobium spp. Several of the 3-CB degraders contained the degradative genes on large plasmids, and there was variation between the plasmids in different isolates. When a fresh sample of Madera soil was amended with 50, 100, or 200 g 3-CB g–1, 3-CB degradation occurred, suggesting that 500 g 3-CB g–1 was toxic to the degraders. Also, different 3-CB degraders were isolated from the Madera soil at each of the three lower levels of 3-CB. No 2-CB degradation was detected in the Oversite soil even at lower 2-CB levels. These results indicate that the development of 2-, 3-, and 4-CB degrader populations is site-specific and that 2-, 3-, and 4-CB are degraded by different bacterial populations in pristine soils. These results also imply that the microbial ecology of two soils that develop under similar biotic and abiotic environments can be quite different.  相似文献   

20.
We examined the purine alkaloid content and purine metabolism in cacao (Theobroma cacao L.) plant leaves at various ages: young small leaves (stage I), developing intermediate size leaves (stage II), fully developed leaves (stage III) from flush shoots, and aged leaves (stage IV) from 1-year-old shoots. The major purine alkaloid in stage I leaves was theobromine (4.5 μmol g–1 fresh weight), followed by caffeine (0.75 μmol g–1 fresh weight). More than 75% of purine alkaloids disappeared with subsequent leaf development (stages II–IV). In stage I leaves, 14C-labelled adenine, adenosine, guanine, guanosine, hypoxanthine and inosine were converted to salvage products (nucleotides and nucleic acids), to degradation products (ureides and CO2) and to purine alkaloids (3- and 7-methylxanthine, 7-methylxanthosine and theobromine). In contrast, 14C-labelled xanthine and xanthosine were not used for nucleotide synthesis. They were completely degraded, but nearly 20% of [8-14C]Xanthosine was converted in stage I leaves to purine alkaloids. These observations are consistent with the following biosynthetic pathways for theobromine: (a) AMP → IMP → 5′-xanthosine monophosphate → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (b) GMP → guanosine → xanthosine → 7-methylxanthosine → 7-methylxanthine → theobromine; (c) xanthine → 3-methylxanthine → theobromine. Although no caffeine biosynthesis from 14C-labelled purine bases and nucleosides was observed during 18 h incubations, exogenously supplied [8-14C]Theobromine was converted to caffeine in young leaves. Conversion of theobromine to caffeine may, therefore, be slow in cacao leaves. No purine alkaloid synthesis was observed in the subsequent growth stages (stages II–IV). Significant degradation of purine alkaloids was found in leaves of stages II and III, in which [8-14C]Theobromine was degraded to CO2 via 3-methylxanthine, xanthine and allantoic acid. [8-14C]Caffeine was catabolised to CO2 via theophylline (1,3-dimethylxanthine) or theobromine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号