首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Asymmetric stem cell division is thought to require precise orientation of the mitotic spindle. However, a recent study in Cell (Yingling et al., 2008) analyzes the role of LIS1 in the developing mouse brain and shows that spindle orientation is more important during early, symmetric progenitor cell divisions than for later asymmetric divisions.  相似文献   

2.
In the neural plate and neural tube in the trunk region of the zebrafish embryo, dividing cells are oriented parallel to the plane of the neuroepithelium, while in neural keel/rod, cells divide perpendicular to it. This change in the orientation of mitosis is brought about by a 90 degrees rotation of the mitotic spindle. As the two halves of the neural primordium in keel/rod stage are in apposition, the perpendicular orientation of mitoses in this stage determines that daughter cells become allocated to both sides of the neural tube. To assess the role played by cell junctions in controlling the orientation of dividing cells, we studied the expression of components of adherens and tight junctions in the neuroepithelial cells. We find that these proteins are distributed irregularly at the neural plate stage and become polarised apically in the cell membrane only during the keel/rod stage. The stereotypic orientation of mitoses is perturbed only weakly upon loss of function of the cell junction components ASIP and aPKClambda, suggesting that mitotic orientation depends in part on the integrity of cell junctions and the polarity of the epithelium as a whole. However, the 90-degree rotation of the spindle does not require perfectly polarised cell junctions between the neuroepithelial cells.  相似文献   

3.
4.
Cells of the fission yeast Schizosaccharomyces pombe have a checkpoint mechanism that reportedly monitors the orientation of the mitotic spindle. Astral microtubules in pre-anaphase spindles are thought to contact the contractile actin ring at the plasma membrane in order to rotate the spindle and to sense spindle orientation. Here, we show that these microtubules are actually inside the nuclear envelope.  相似文献   

5.
6.
7.
8.
Mitotic spindle orientation is essential for cell fate decisions, epithelial maintenance, and tissue morphogenesis. In most animal cell types, the dynein motor complex is anchored at the cell cortex and exerts pulling forces on astral microtubules to position the spindle. Early studies identified the evolutionarily conserved Gαi/LGN/NuMA complex as a key regulator that polarizes cortical force generators. In recent years, a combination of genetics, biochemistry, modeling, and live imaging has contributed to decipher the mechanisms of spindle orientation. Here, we highlight the dynamic nature of the assembly of this complex and discuss the molecular regulation of its localization. Remarkably, a number of LGN‐independent mechanisms were described recently, whereas NuMA remains central in most pathways involved in recruiting force generators at the cell cortex. We also describe the emerging role of the actin cortex in spindle orientation and discuss how dynamic astral microtubule formation is involved. We further give an overview on instructive external signals that control spindle orientation in tissues. Finally, we discuss the influence of cell geometry and mechanical forces on spindle orientation.  相似文献   

9.
To maintain tissue architecture, epithelial cells divide in a planar fashion, perpendicular to their main polarity axis. As the centrosome resumes an apical localization in interphase, planar spindle orientation is reset at each cell cycle. We used three-dimensional live imaging of GFP-labeled centrosomes to investigate the dynamics of spindle orientation in chick neuroepithelial cells. The mitotic spindle displays stereotypic movements during metaphase, with an active phase of planar orientation and a subsequent phase of planar maintenance before anaphase. We describe the localization of the NuMA and LGN proteins in a belt at the lateral cell cortex during spindle orientation. Finally, we show that the complex formed of LGN, NuMA, and of cortically located Gαi subunits is necessary for spindle movements and regulates the dynamics of spindle orientation. The restricted localization of LGN and NuMA in the lateral belt is instructive for the planar alignment of the mitotic spindle, and required for its planar maintenance.  相似文献   

10.
The orientation of the mitotic spindle (MS) is tightly regulated, but the molecular mechanisms are incompletely understood. Here we report a novel role for the multifunctional adaptor protein ALG‐2‐interacting protein X (ALIX) in regulating MS orientation in addition to its well‐established role in cytokinesis. We show that ALIX is recruited to the pericentriolar material (PCM) of the centrosomes and promotes correct orientation of the MS in asymmetrically dividing Drosophila stem cells and epithelial cells, and symmetrically dividing Drosophila and human epithelial cells. ALIX‐deprived cells display defective formation of astral microtubules (MTs), which results in abnormal MS orientation. Specifically, ALIX is recruited to the PCM via Drosophila Spindle defective 2 (DSpd‐2)/Cep192, where ALIX promotes accumulation of γ‐tubulin and thus facilitates efficient nucleation of astral MTs. In addition, ALIX promotes MT stability by recruiting microtubule‐associated protein 1S (MAP1S), which stabilizes newly formed MTs. Altogether, our results demonstrate a novel evolutionarily conserved role of ALIX in providing robustness to the orientation of the MS by promoting astral MT formation during asymmetric and symmetric cell division.  相似文献   

11.
The proper orientation of the mitotic spindle is essential for mitosis; however, how these events unfold at the molecular level is not well understood. AMP-activated protein kinase (AMPK) regulates energy homeostasis in eukaryotes, and AMPK-null Drosophila mutants have spindle defects. We show that threonine(172) phosphorylated AMPK localizes to the mitotic spindle poles and increases when cells enter mitosis. AMPK depletion causes a mitotic delay with misoriented spindles relative to the normal division plane and a reduced number and length of astral microtubules. AMPK-depleted cells contain mitotic actin bundles, which prevent astral microtubule-actin cortex attachments. Since myosin regulatory light chain (MRLC) is an AMPK downstream target and mediates actin function, we investigated whether AMPK signals through MRLC to control spindle orientation. Mitotic levels of serine(19) phosphorylated MRLC (pMRLC(ser19)) and spindle pole-associated pMRLC(ser19) are abolished when AMPK function is compromised, indicating that AMPK is essential for pMRLC(ser19) spindle pole activity. Phosphorylation of AMPK and MRLC in the mitotic spindle is dependent upon calcium/calmodulin-dependent protein kinase kinase (CamKK) activity in LKB1-deficient cells, suggesting that CamKK regulates this pathway when LKB1 function is compromised. Taken together, these data indicate that AMPK mediates spindle pole-associated pMRLC(ser19) to control spindle orientation via regulation of actin cortex-astral microtubule attachments.  相似文献   

12.
Cdc42 plays an evolutionarily conserved role in promoting cell polarity and is indispensable during epithelial morphogenesis. To further investigate the role of Cdc42, we have used a three-dimensional matrigel model, in which single Caco-2 cells develop to form polarized cysts. Using this system, we previously reported that Cdc42 controls mitotic spindle orientation during cell division to correctly position the apical surface in a growing epithelial structure. In the present study, we have investigated the specific downstream effectors through which Cdc42 controls this process. Here, we report that Par6B and its binding partner, atypical protein kinase C (aPKC), are required to regulate Caco-2 morphogenesis. Depletion or inhibition of Par6B or aPKC phenocopies the loss of Cdc42, inducing misorientation of the mitotic spindle, mispositioning of the nascent apical surface, and ultimately, the formation of aberrant cysts with multiple lumens. Mechanistically, Par6B and aPKC function interdependently in this context. Par6B localizes to the apical surface of Caco-2 cysts and is required to recruit aPKC to this compartment. Conversely, aPKC protects Par6B from proteasomal degradation, in a kinase-independent manner. In addition, we report that depletion or inhibition of aPKC induces robust apoptotic cell death in Caco-2 cells, significantly reducing both cyst size and number. Cell survival and apical positioning depend upon different thresholds of aPKC expression, suggesting that they are controlled by distinct downstream pathways. We conclude that Par6B and aPKC control mitotic spindle orientation in polarized epithelia and, furthermore, that aPKC coordinately regulates multiple processes to promote morphogenesis.  相似文献   

13.
Establishing the correct orientation of the mitotic spindle is an essential step in epithelial cell division in order to ensure that epithelial tubules form correctly during organ development and regeneration. While recent findings have identified some of the molecular mechanisms that underlie spindle orientation, many aspects of this process remain poorly understood. Here, we have used the 3D‐MDCK model system to demonstrate a key role for a newly identified protein complex formed by IQGAP1 and the epithelial growth factor receptor (EGFR) in controlling the orientation of the mitotic spindle. IQGAP1 is a scaffolding protein that regulates many cellular pathways, from cell‐cell adhesion to microtubule organization, and its localization in the basolateral membrane ensures correct spindle orientation. Through its IQ motifs, IQGAP1 binds to EGFR, which is responsible for maintaining IQGAP1 in the basolateral membrane domain. Silencing IQGAP1, or disrupting the basolateral localization of either IQGAP1 or EGFR, results in a non‐polarized distribution of NuMA, mitotic spindle misorientation and defects in single lumen formation.  相似文献   

14.
Cell polarity is an essential feature of many animal cells. It is critical for epithelial formation and function, for correct partitioning of fate-determining molecules, and for individual cells to chemotax or grow in a defined direction. For some of these processes, the position and orientation of the mitotic spindle must be coupled to cell polarity for correct positioning of daughter cells and inheritance of localised molecules. Recent work in several different systems has led to the realisation that similar mechanisms dictate the establishment of polarity and subsequent spindle positioning in many animal cells. Microtubules and conserved PAR proteins are essential mediators of cell polarity, and mitotic spindle positioning depends on heterotrimeric G protein signalling and the microtubule motor protein dynein.  相似文献   

15.
16.
JNM1, a novel gene on chromosome XIII in the yeast Saccharomyces cerevisiae, is required for proper nuclear migration. jnm1 null mutants have a temperature-dependent defect in nuclear migration and an accompanying alteration in astral microtubules. At 30 degrees C, a significant proportion of the mitotic spindles is not properly located at the neck between the mother cell and the bud. This defect is more severe at low temperature. At 11 degrees C, 60% of the cells accumulate with large buds, most of which have two DAPI staining regions in the mother cell. Although mitosis is delayed and nuclear migration is defective in jnm1 mutant, we rarely observe more than two nuclei in a cell, nor do we frequently observe anuclear cells. No loss of viability is observed at 11 degrees C and cells continue to grow exponentially with increased doubling time. At low temperature the large budded cells of jnm1 mutants exhibit extremely long astral microtubules that often wind around the periphery of the cell. jnm1 mutants are not defective in chromosome segregation during mitosis, as assayed by the rate of chromosome loss, or nuclear migration during conjugation, as assayed by the rate of mating and cytoduction. The phenotype of a jnm1 mutant is strikingly similar to that for mutants in the dynein heavy chain gene (Eshel, D., L. A. Urrestarazu, S. Vissers, J.-C. Jauniaux, J. C. van Vliet-Reedijk, R. J. Plants, and I. R. Gibbons. 1993. Proc. Natl. Acad. Sci. USA. 90:11172-11176; Li, Y. Y., E. Yeh, T. Hays, and K. Bloom. 1993. Proc. Natl. Acad. Sci. USA. 90:10096-10100). The JNM1 gene product is predicted to encode a 44-kD protein containing three coiled coil domains. A JNM1:lacZ gene fusion is able to complement the cold sensitivity and microtubule phenotype of a jnm1 deletion strain. This hybrid protein localizes to a single spot in the cell, most often near the spindle pole body in unbudded cells and in the bud in large budded cells. Together these results point to a specific role for Jnm1p in spindle migration, possibly as a subunit or accessory protein for yeast dynein.  相似文献   

17.
Peter W. Barlow 《Planta》1970,91(2):169-172
Summary Mitotic spindles in the root meristem of the Zea mays are smallest in the quiescent centre and increase in size the further they are from this region. the volume of mitotic cells follows a similar pattern. These findings are the result of differences in the metabolic activity of cells within the meristem. Observations also suggest that there may be fewer microtubules in the spindle of quiescent centre cells than in cells elsewhere, thus supporting the suggestion that this may be so made by Juniper and Barlow (1969).  相似文献   

18.
19.
Motor function in the mitotic spindle   总被引:8,自引:0,他引:8  
Heald R 《Cell》2000,102(4):399-402
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号