首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

2.
Blood coagulation activity in humans increases with age. We previously identified two genetic elements, age-related stability element (ASE; GAGGAAG) and age-related increase element (AIE; unique stretch of dinucleotide repeats), which were responsible for age-related stable and increasing expression patterns, respectively, and together recapitulated normal age regulation of the human factor IX (hFIX) gene. Here we report the age-regulatory mechanisms of human anticoagulant protein C (hPC), which shows an age-stable pattern of circulatory levels. The murine protein C gene showed an age-related stable expression pattern in general agreement with that of the hPC. Through longitudinal analyses of transgenic mice carrying hPC minigenes, the hPC gene was found to have a functional age-related stability element (hPC ASE; CAGGAAG) in the 5'-upstream proximal region but was found to lack any age-related increase element. Three other ASE-like sequences present in the hPC gene, GAGGAAA and (G/C)AGGATG, also bound nuclear proteins but were not active in the age regulation of the hPC gene. Functional hPC ASE and hFIX ASE were apparently generated through convergent evolution, and hFIX ASE can fully substitute for the hPC ASE in conferring age-related stable expression pattern of the hPC gene. In the presence of the hPC ASE, hFIX AIE can convert the age-stable expression pattern of the hPC gene to a hFIX-like age-related increase pattern. These results support the universality of ASE and AIE functions across different genes. Clearance of hPC protein from the circulation was not significantly affected by age. We now have established the basic mechanisms responsible for the age-related increase of blood coagulation activity.  相似文献   

3.
Middle-aged and old left ventricles (LVs) are structurally and functionally very similar. Compared to a young LV, both show increased wall thickness and increased cavity size, with preserved cardiac function. However, when a stressor such as myocardial infarction occurs, striking differences are revealed between young and old LVs and there is a marked reduction in survival rates for the old group. The objective of this study was to investigate the proteomic basis of age-related changes in the LV of male mice in order to identify proteins that are differentially expressed between middle-aged and old groups and to gain mechanistic insight into effects of aging on the unstressed heart. Young (3 months old; n = 6), middle-aged (MA; 15 months old; n = 6), and old (23 months old; n = 5) LVs were examined by echocardiography, homogenized, and separated into soluble and insoluble protein fractions using differential extraction. We found that the LV mass-to-tibia ratio increased from 6.4 +/- 0.2 mg/mm in young to 11.0 +/- 0.6 and 10.1 +/- 0.7 mg/mm in MA and old, respectively (both p < 0.05 vs young), which was caused by increases in both LV wall thickness and volume. Using two-dimensional gel electrophoresis, we detected age-related alterations in the levels of 73 proteins (all p < 0.05). Among these proteins were mortalin, peroxiredoxin 3, epoxide hydrolase, and the superoxide dismutases SOD-1 (Cu/ZnSOD) and SOD-2 (MnSOD), which have been previously associated with aging and/or cardiovascular disease. Together, these results reveal proteomic changes that occur in the LV with age. The proteins identified here may be useful markers of cardiac aging and may help in deducing mechanisms to explain the inability of the old heart to withstand challenge.  相似文献   

4.
This study investigated the onset of age-related changes in the myocardial antioxidant defense system (ADS) and the vulnerability of the myocardium to oxidative stress following exercise training. Few studies have investigated the influence of the most prevalent life-prolonging strategy physical exercise, on the age-dependent alterations in the myocardial antioxidant enzyme system of female rats at mid age and to determine whether exercise-induced ADS could attenuate lipid peroxidation. Two age groups young (3 months old) and mid age (12 months old) Wistar strain female albino rats were given chronic exercise training for a period of 12 weeks. We found a striking decrease (p < 0.01) in the activity levels of superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) in the myocardium of mid aged rats when compared to young rats by 36, 50 and 29%, respectively, suggesting the onset of age-dependent decrease in the myocardial ADS. A similar age-related decrease (p < 0.01) was observed in the reduced glutathione (GSH) content (36%). Despite the reduction in ADS, lipid peroxidation (LPO) (20%) was also decreased. In contrast, exercise training significantly elevated (p < 0.01) these antioxidant enzyme activities and the content of GSH. The increase in SOD and CAT activities were more pronounced in the mid aged rats when compared to younger rats, but increased the level of lipid peroxidation to higher levels in the mid-age group following the training regimen. The findings of the present study suggest that, although the activity levels of the myocardial antioxidant enzymes were elevated with the 12 weeks of exercise training, the changes were not sufficient enough in attenuating oxidative stress in the myocardium of female rats during this short period of exercise training.  相似文献   

5.
1. The ability of cell-free preparations from bovine lens to degrade fragments of alpha-crystallin has been studied. Crystallin fragments, produced by either chemical cleavage with cyanogen bromide or prolonged treatment with H2O2 and Cu2+ to produce hydroxyl radicals, were labelled with 125I and incubated with preparations obtained from lenses from animals of different age. 2. Results showed that the ability of the preparations obtained from the lens cores (the innermost part of the lens composed of enucleated non-dividing cells incapable of protein synthesis) to degrade crystallin fragments decreased with animal age. No such age-related correlation was obtained with preparations obtained from the cortex (the outer region of the lens surrounding the core). 3. The effect of incubation of the various lenticular preparations with H2O2 and Cu2+ on subsequent ability to catabolise crystallin fragments was also examined. Preparations from the oldest lenses were found to be the least resistant to free-radical attack. 4. The relative susceptibility of the crystallins and non-lenticular proteins to H2O2/Cu(2+)-mediated free-radical attack was examined. Not only were the various crystallins (alpha, beta and gamma) far more resistant to cleavage under these conditions, they also protected the non-lenticular proteins from free-radical-mediated attack. The comparative resistance of the crystallins to attack and their ability to protect other proteins appeared to be dependent on their structural integrity as prior denaturation with acid and/or cleavage with cyanogen bromide eliminated these properties. 5. It is suggested that crystallins (which show sequence homology to some heat-shock proteins) possess homeostatic functions which could protect other proteins (e.g. proteases) from certain forms of free-radical-mediated damage; crystallins may therefore be important in ageing in general where aberrant polypeptides accumulate.  相似文献   

6.
Previous work has shown that versican, decorin and a catabolic fragment of decorin, termed decorunt, are the most abundant proteoglycans in human skin. Further analysis of versican indicates that four major core protein species are present in human skin at all ages examined from fetal to adult. Two of these are identified as the V0 and V1 isoforms, with the latter predominating. The other two species are catabolic fragments of V0 and V1, which have the amino acid sequence DPEAAE as their carboxyl terminus. Although the core proteins of human skin versican show no major age-related differences, the glycosaminoglycans (GAGs) of adult skin versican are smaller in size and show differences in their sulfation pattern relative to those in fetal skin versican. In contrast to human skin versican, human skin decorin shows minimal age-related differences in its sulfation pattern, although, like versican, the GAGs of adult skin decorin are smaller than those of fetal skin decorin. Analysis of the catabolic fragments of decorin from adult skin reveals the presence of other fragments in addition to decorunt, although the core proteins of these additional decorin catabolic fragments have not been identified. Thus, versican and decorin of human skin show age-related differences, versican primarily in the size and the sulfation pattern of its GAGs and decorin in the size of its GAGs. The catabolic fragments of versican are detected at all ages examined, but appear to be in lower abundance in adult skin compared with fetal skin. In contrast, the catabolic fragments of decorin are present in adult skin, but are virtually absent from fetal skin. Taken together, these data suggest that there are age-related differences in the catabolism of proteoglycans in human skin. These age-related differences in proteoglycan patterns and catabolism may play a role in the age-related changes in the physical properties and injury response of human skin.  相似文献   

7.
The mechanisms of aging are not well understood in animals with continuous growth such as fish, reptiles, amphibians and numerous invertebrates, including mollusks. We studied the effects of age on oxidative stress, cellular defense mechanisms (including two major antioxidant enzymes, superoxide dismutase (SOD) and catalase), and molecular chaperones in two mollusks--eastern oysters Crassostrea virginica and hard clams Mercenaria mercenaria. In order to detect the age-related changes in these parameters, correction for the effects of size was performed where appropriate to account for growth-related dilution. Fluorescent age pigments accumulated with age in both species. Protein carbonyls did not change with age or size indicating that they are not a good marker of aging in mollusks possibly due to the fast turnover and degradation of oxidized proteins in growing tissues. SOD did not show a compensatory increase with aging in either species, while catalase significantly decreased with age. Mitochondrial heat shock protein (HSP60) decreased with age in mollusks suggesting an age-related decline in mitochondrial chaperone protection. In contrast, changes in cytosolic chaperones were species-specific. HSP70 increased and HSP90 declined with age in clams, whereas in oysters HSP70 expression did not change, and HSP90 increased with aging.  相似文献   

8.
The Bax, cyt-c and caspase-3 proteins play an important role in regulating the myocardial apoptosis. Although very little is known about the specific signal pathways modulated by Ginkgo biloba extract (GBE), it seems advisable to suppose that GBE-induced antiapoptotic effect might be attributed to the regulation of the expression of these proteins. Our aim was to investigate whether GBE could attenuate ischemia/reperfusion-induced apoptosis in cardiac myocytes and its potential mechanisms. In the myocardium ischemia reperfusion (IR) rat model, treatment of GBE (400 mg/kg) significantly decreased the cardiomyocyte cell apoptosis and myocardium infarction. Immunohistochemical analysis showed that GBE significantly inhibited I/R-induced increase of myocardial Bax, caspase-3, and cyt-c proteins expression. Western blot analysis confirmed results of immunohistochemical analysis. It is most likely that multiple pathways are involved in IR-induced apoptosis in rat myocardium cells. Therefore, these results demonstrate that GBE exhibits significant protective effect against myocardial I/R injury in rat heart, which is related to down-regulate Bax, cyt-c and caspase-3. Bcl-2 overexpression might prevent IR-induced apoptosis by inhibiting cytochrome c release from the mitochondria and block activation of caspase-3.  相似文献   

9.
Age-related changes in DNA methylation have been implicated in cellular senescence and longevity, yet the causes and functional consequences of these variants remain unclear. To elucidate the role of age-related epigenetic changes in healthy ageing and potential longevity, we tested for association between whole-blood DNA methylation patterns in 172 female twins aged 32 to 80 with age and age-related phenotypes. Twin-based DNA methylation levels at 26,690 CpG-sites showed evidence for mean genome-wide heritability of 18%, which was supported by the identification of 1,537 CpG-sites with methylation QTLs in cis at FDR 5%. We performed genome-wide analyses to discover differentially methylated regions (DMRs) for sixteen age-related phenotypes (ap-DMRs) and chronological age (a-DMRs). Epigenome-wide association scans (EWAS) identified age-related phenotype DMRs (ap-DMRs) associated with LDL (STAT5A), lung function (WT1), and maternal longevity (ARL4A, TBX20). In contrast, EWAS for chronological age identified hundreds of predominantly hyper-methylated age DMRs (490 a-DMRs at FDR 5%), of which only one (TBX20) was also associated with an age-related phenotype. Therefore, the majority of age-related changes in DNA methylation are not associated with phenotypic measures of healthy ageing in later life. We replicated a large proportion of a-DMRs in a sample of 44 younger adult MZ twins aged 20 to 61, suggesting that a-DMRs may initiate at an earlier age. We next explored potential genetic and environmental mechanisms underlying a-DMRs and ap-DMRs. Genome-wide overlap across cis-meQTLs, genotype-phenotype associations, and EWAS ap-DMRs identified CpG-sites that had cis-meQTLs with evidence for genotype-phenotype association, where the CpG-site was also an ap-DMR for the same phenotype. Monozygotic twin methylation difference analyses identified one potential environmentally-mediated ap-DMR associated with total cholesterol and LDL (CSMD1). Our results suggest that in a small set of genes DNA methylation may be a candidate mechanism of mediating not only environmental, but also genetic effects on age-related phenotypes.  相似文献   

10.
缺血预处理减轻在体家兔心肌细胞凋亡   总被引:16,自引:2,他引:14  
Ding YF  Zhang MM  He RR 《生理学报》2000,52(3):220-224
对麻醉家兔心肌缺血-再灌注(ischemia-reperfusion,IR)模型上,观察IR和缺血预处理(ischemic preconditionign,IP)对血流动力学、心外膜电图、心肌梗塞范围、心肌细胞调亡和调亡相关调控基因蛋白(Fas、Bcl-2、Bax等)的影响。所得结果如下:⑴在IR过程中,动脉血压、心率和心肌耗氧量进行性降低;心外膜电图ST段在缺血期明显抬高(P<0.001),再灌  相似文献   

11.
Many heat shock proteins are chaperones that help refold or degrade misfolded proteins and battle apoptosis. Because of their capacity to protect against protein misfolding, they may help keep diseases of aging at bay. A few reports have examined heat shock proteins (eg. Hsp25, Hsp60, Hsp70, and heat shock cognate 70 or Hsc70) as a function of age in the striatum and nigra. In the present study, we examined the impact of aging on Hsp25, heme oxygenase 1 (HO1 or Hsp32), Hsp40, Hsp60, Hsc70, Hsc/Hsp70 interacting protein (Hip), 78 kDa glucose-regulated protein (GRP78), Hsp90, and ubiquitinated proteins in the nigra and striatum of the female rat by infrared immunoblotting. Female animals are not typically examined in aging studies, adding further to the novelty of our study. Striatal HO1 and Hsp40 were both higher in middle-aged females than in the oldest group. Hsp60 levels were also highest in middle age in the nigra, but were highest in the oldest animals in the striatum. Striatal levels of Hsc70 and the co-chaperone Hip were lower in the oldest group relative to the youngest animals. In contrast, Hsp25 rose with advancing age in both regions. Hsp25 was also colocalized with tyrosine hydroxylase in nigral neurons. Ubiquitinated proteins exhibited a trend to rise in the oldest animals in both regions, and K48 linkage-specific ubiquitin rose significantly from 4–6 to 16–19 months in the striatum. Our study reveals a complex array of age-related changes in heat shock proteins. Furthermore, the age-related rises in some proteins, such as Hsp25, may reflect endogenous adaptations to cellular stress.  相似文献   

12.
13.
We characterized senile plaques (SPs) immunohistochemically in cynomolgus monkey brains and also examined age-related biochemical changes of Alzheimer's disease (AD)-associated proteins in these brains from monkeys of various ages. In the neocortex of aged monkeys (>20 years old), we found SPs but no neurofibrillary tangles (NFTs). Antibodies against beta-amyloid precursor protein (APP) or apolipoprotein E (ApoE) stained SPs; however, the pattern of immunostaining was different for the two antigens. APP was present only in swollen neurites, but ApoE was present throughout all parts of SPs. Western blot analysis revealed that the pattern of APP expression changed with age. Although full-length APP695 protein was mainly expressed in brains from young monkeys (4-years-old), the expression of full-length APP751 protein was increased in brains from older monkeys (>20 years old). Biochemical analyses also showed that levels of various AD-associated proteins increased significantly with age in nerve ending fractions. Both SP-associated (APP) and NFT-associated proteins (tau, activated glycogen synthase kinase 3beta, cyclin dependent kinase 5, p35, and p25) accumulated in the nerve ending fraction with increasing age; however, we found no NFTs or paired helical filaments of tau in aged cynomolgus monkey brains. This age-related accumulation of these proteins in the nerve ending fraction was similar to that observed in our laboratory previously for presenilin-1 (PS-1). The accumulation of these SP-associated proteins in this fraction may be a causal event in the spontaneous formation of SPs; thus, SPs may be formed initially in nerve endings. Taken together, these results suggest that intensive investigation of age-related changes in the nerve ending and in axonal transport will contribute to a better understanding of the pathogenesis of neurodegenerative disorders such as AD.  相似文献   

14.
Age-related depletion of GSH levels and perturbations in its redox state may be especially deleterious to metabolically active tissues, such as the heart and brain. We examined the extent and the mechanisms underlying the potential age-related changes in cerebral and myocardial GSH status in young and old F344 rats and whether administration of (R)-alpha-lipoic acid (LA) can reverse these changes. Our results show that GSH/GSSG ratios in the aging heart and the brain declined by 58 and 66% relative to young controls, respectively (p < 0.001). Despite a consistent loss in GSH redox status in both tissues, only cerebral GSH levels declined with age (p < 0.001). To discern the potential mechanisms underlying this differential loss, the levels and the activities of gamma-glutamylcysteine ligase (GCL) and cysteine availability were determined. There were no significant age-related changes in substrate or enzyme levels, or GCL activity when saturating amounts of substrates were provided. However, kinetic analysis of GCL in brains of old rats displayed a significant increase (p < 0.05) in the apparent [Km] for cysteine (Km cys) vs. young rats (84.3+/-25.4 vs. 179.0+/-49.0; young and old, respectively), resulting in a 40% loss in apparent catalytic turnover of the enzyme. Thus, the age-related decline in total GSH appears to be mediated, in part, by a general decrement in GCL catalytic efficiency. Treating old rats with LA (40 mg/kg body wt; by i.p.) markedly increased tissue cysteine levels by 54% 12 h following treatment and subsequently restored the cerebral GSH levels. Moreover, LA improved the age-related changes in the tissue GSH/GSSG ratios in both heart and the brain. These results demonstrate that LA is an effective agent to restore both the age-associated decline in thiol redox ratio as well as increase cerebral GSH levels that otherwise decline with age.  相似文献   

15.
The effect of age on the synthesis of specific proteins by hepatocytes was studied in Fischer F344 rats using two-dimensional polyacrylamide gel electrophoresis. Almost all proteins synthesized by hepatocytes from young rats were synthesized by hepatocytes isolated from old rats. Of over 500 proteins visually compared by two-dimensional polyacrylamide gel electrophoresis, only 11 proteins were observed to disappear and/or appear consistently with increasing age. The rates of synthesis of 36 randomly chosen proteins were quantified. Interestingly, the synthesis of 35 of the 36 proteins decreased between 5 and 30 months of age. The decrease in protein synthesis varied (15% to 70%) from one protein to another; i.e., a heterogeneity was observed in the age-related decrease in the synthesis of proteins. The age-related decrease in protein synthesis was statistically significant for 53% of the proteins studied. The total decrease in the rate of synthesis of all 36 proteins studied was 40% between 5 and 30 months of age, which is essentially the same as the decrease in total protein synthesis by suspension of hepatocytes isolated from 5- and 30-month-old rats. The results of this study demonstrate that the mechanism underlaying aging is different from development, which is characterized by a major change in the species of proteins synthesized by a cell.  相似文献   

16.
Qi Z  He J  Su Y  He Q  Liu J  Yu L  Al-Attas O  Hussain T  Ding S  Ji L  Qian M 《PloS one》2011,6(7):e21140
The purpose of this study was to outline the timelines of mitochondrial function, oxidative stress and cytochrome c oxidase complex (COX) biogenesis in cardiac muscle with age, and to evaluate whether and how these age-related changes were attenuated by exercise. ICR/CD-1 mice were treated with pifithrin-μ (PFTμ), sacrificed and studied at different ages; ICR/CD-1 mice at younger or older ages were randomized to endurance treadmill running and sedentary conditions. The results showed that mRNA expression of p53 and its protein levels in mitochondria increased with age in cardiac muscle, accompanied by increased mitochondrial oxidative stress, reduced expression of COX subunits and assembly proteins, and decreased expression of most markers in mitochondrial biogenesis. Most of these age-related changes including p53 activity targeting cytochrome oxidase deficient homolog 2 (SCO2), p53 translocation to mitochondria and COX biogenesis were attenuated by exercise in older mice. PFTμ, an inhibitor blocking p53 translocation to mitochondria, increased COX biogenesis in older mice, but not in young mice. Our data suggest that physical exercise attenuates age-related changes in mitochondrial COX biogenesis and p53 activity targeting SCO2 and mitochondria, and thereby induces antisenescent and protective effects in cardiac muscle.  相似文献   

17.
Insulin-like growth factor-1 (IGF-1) and insulin stimulate cardiac growth and contractility. Recent evidence suggests a relationship between essential hypertension, left ventricular hypertrophy, and circulating IGF-1 levels. Advanced age alters cardiac function in a manner similar to hypertension. The aim of this investigation was to evaluate the effects of IGF-1 and insulin on the force generating capacity of cardiac muscle in hypertension and the influence of age on this response. Contractile responses to IGF-1 and insulin were examined using papillary muscles from Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) at 10 and 25 weeks of age. Muscles were electrically stimulated at 0.5 Hz, and contractile properties, including peak tension development (PTD), time-to-peak tension, time-to-90% relaxation, and the maximal velocities of contraction and relaxation, were evaluated. PTD was similar in WKY and SHR myocardium at both age groups. At 10 weeks of age, IGF-1 (1-500 ng/ml) caused a dose-dependent increase in PTD in WKY but not SHR myocardium, whereas insulin (1-500 nM) had no effect on PTD in either group. At 25 weeks of age, the positive inotropic effect of IGF-1 was attenuated in the WKY group, and IGF-1 exerted no inotropic action in the SHR group. Pretreatment with the nitric oxide synthase inhibitor, N-omega-nitro-L-arginine methyl ester (L-NAME, 100 microM), did not alter the IGF-1-induced positive inotropic response in 10-week-old WKY myocardium, whereas it unmasked a positive inotropic action in muscles from age-matched SHR animals. At 25 weeks of age, L-NAME abolished IGF-1-induced a positive inotropic response in WKY myocardium, and did not unmask an IGF-induced inotropic response in SHR myocardium. Our results suggest that alterations in nitric oxide modulation of IGF-1-induced contraction may underlie resistance to this inotropic peptide with advancing age, and/or hypertension.  相似文献   

18.
The functional characteristics of cardiac muscle depend on the composition of protein isoforms in the cardiomyocyte contractile machinery. In the ventricular myocardium of mammals, several isoforms of contractile and regulatory proteins are expressed–two isoforms of myosin (V1 and V3) and three isoforms of tropomyosin chains (α, β, and κ). Expression of protein isoforms depends on the animal species, its age and hormonal status, and this can change with pathologies of the myocardium. Mutations in these proteins can lead to cardiomyopathies. The functional significance of the protein isoform composition has been studied mainly on intact hearts or on isolated preparations of myocardium, which could not provide a clear comprehension of the role of each particular isoform. Present-day experimental techniques such as an optical trap and in vitro motility assay make it possible to investigate the phenomena of interactions of contractile and regulatory proteins on the molecular level, thus avoiding effects associated with properties of a whole muscle or muscle tissue. These methods enable free combining of the isoforms to test the molecular mechanisms of their participation in the actin–myosin interaction. Using the optical trap and the in vitro motility assay, we have studied functional characteristics of the cardiac myosin isoforms, molecular mechanisms of the calcium-dependent regulation of actin–myosin interaction, and the role of myosin and tropomyosin isoforms in the cooperativity mechanisms in myocardium. The knowledge of molecular mechanisms underlying myocardial contractility and its regulation is necessary for comprehension of cardiac muscle functioning, its disorders in pathologies, and for development of approaches for their correction.  相似文献   

19.
Lipofuscin accumulates with age in the retinal pigment epithelium (RPE) in discrete granular organelles and may contribute to age-related macular degeneration. Because previous studies suggest that lipofuscin contains protein that may impact pathogenic mechanisms, we pursued proteomics analysis of lipofuscin. The composition of RPE lipofuscin and its mechanisms of pathogenesis are poorly understood in part because of the heterogeneity of isolated preparations. We purified RPE lipofuscin granules by treatment with proteinase K or SDS and showed by light, confocal, and transmission electron microscopy that the purified granules are free of extragranular material and associated membranes. Crude and purified lipofuscin preparations were quantitatively compared by (i) LC MS/MS proteomics analyses, (ii) immunoanalyses of oxidative protein modifications, (iii) amino acid analysis, (iv) HPLC of bisretinoids, and (v) assaying phototoxicity to RPE cells. From crude lipofuscin preparations 186 proteins were identified, many of which appeared to be modified. In contrast, very little protein ( approximately 2% (w/w) by amino acid analysis) and no identifiable protein were found in the purified granules, which retained full phototoxicity to cultured RPE cells. Our analyses showed that granules in purified and crude lipofuscin preparations exhibit no statistically significant differences in diameter or circularity or in the content of the bisretinoids A2E, isoA2E, and all-trans-retinal dimer-phosphatidylethanolamine. The finding that the purified granules contain minimal protein yet retain phototoxic activity suggests that RPE lipofuscin pathogenesis is largely independent of associated protein. The purified granules also exhibited oxidative protein modifications, including nitrotyrosine generated from reactive nitrogen oxide species and carboxyethylpyrrole and iso[4]levuglandin E(2) adducts generated from reactive lipid fragments. This finding is consistent with previous studies demonstrating RPE lipofuscin to be a potent generator of reactive oxygen species and supports the hypothesis that such species, including reactive fragments from lipids and retinoids, contribute to the mechanisms of RPE lipofuscin pathogenesis.  相似文献   

20.
In this study, we surveyed the profiles of mouse circulating proteins by 2-dimensional SDS-PAGE in different strains, sexes and ages. Among visible protein spots on 2-D gels with silver-staining, we identified a unique set of 7 seemingly-related proteins whose levels were consistently elevated in older C57BL/6 female mice. This set of 7 proteins was absent in C57BL/6 males or in BALB/c mice of either sex of any age. When C57BL/6 female mice were crossed with BALB/c males, the age-related increase of these proteins became sporadic and not linear in the F1 offspring. All 7 spots of this protein group were picked and subjected to identification by mass spectrometric analysis after tryptic digestion. The results showed that all 7 spots were different isoforms of alpha(1)B-glycoprotein with different degrees of post-translational modifications, such as phosphorylation. These results suggest that alpha(1)B-glycoprotein changes in mice in a sex and age dependent manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号