首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Type 2 diabetes mellitus induces a number of cardiovascular disorders, including platelet hyperactivity and hyperaggregability, which is associated to an increased oxidant production and abnormal cytosolic Ca2+ mobilization. In the present study, we have investigated the effect of cinnamtannin B-1 obtained from bay wood on oxidants production, Ca2+ mobilization and aggregation in platelets from type 2 diabetic donors. Pretreatment of platelets with cinnamtannin B-1 reversed the enhanced oxidants production and Ca2+ mobilization, including Ca2+ entry, evoked by thapsigargin plus ionomycin or thrombin, observed in platelets from diabetic subjects, so that in the presence of cinnamtannin B-1 Ca2+ entry was similar in platelets from healthy and diabetic subjects. In addition, cinnamtannin B-1 reduced thrombin-induced aggregation in platelets from type 2 diabetic subjects. We conclude that cinnamtannin B-1 exerts an effective antioxidant action in platelets from patients with type 2 diabetes mellitus and reverses the enhanced Ca2+ mobilization and hyperaggregability.  相似文献   

2.
Aberrant apoptosis has been associated with the development and therapeutic resistance of cancer. Recent studies suggest that caspase deficiency/downregulation is frequently detected in different cancers. We have previously shown that caspase-3 reconstitution significantly sensitized MCF-7 cells to doxorubicin and etoposide. In contrast to the well established role of caspase-3 as an effector caspase, the focus of this study is to delineate caspase-3 induced feedback activation of the apical caspases-2, -8, -9 and -10A in doxorubicin and TNF-α induced apoptosis. Using cell-free systems we show that caspases-9 and 2 are the most sensitive, caspase-8 is less sensitive and caspase-10A is the least sensitive to caspase-3 mediated-cleavage. When apoptosis is induced by doxorubicin or TNF-α in an intact cell model, cleavage of caspases-8 and -9, but not caspase-2, was markedly enhanced by caspase-3. Caspase-3 mediated-feedback and activation of caspase-8 and -9 in MCF-7/C3 cells is further supported by an increase in the cleavage of caspase-8 and 9 substrates and cytochrome c release. These data indicate that, in addition to its function as an effector caspase, caspase-3 plays an important role in maximizing the activation of apical caspases and crosstalk between the two major apoptotic pathways. The significant impact of caspase-3 on both effector and apical caspases suggests that modulation of caspase-3 activity would be a useful approach to overcome drug resistance in clinical oncology. XiaoHe Yang: This work was supported in part by the Career Development Award DAMD17-99-1-9180 from Department of Defense to X.H.Y.  相似文献   

3.
Calcium ion (Ca2+) is one of the key intracellular signals, which is implicated in the regulation of cell functions such as impregnation, cell proliferation, differentiation and death. Cadmium (Cd) is a toxic environmental pollutant that can disturb cell functions and even lead to cell death. Recently, we have found that Cd induced apoptosis in gill cells of the freshwater crab Sinopotamon henanense via caspase activation. In the present study, we further investigated the role of calcium signaling in the Cd-induced apoptosis in the animals. Our data showed that Cd triggered gill cell apoptosis which is evidenced by apoptotic DNA fragmentation, activations of caspases-3, -8 and -9 and the presence of apoptotic morphological features. Moreover, Cd elevated the intracellular concentration of Ca2+, the protein concentration of calmodulin (CaM) and the activity of Ca2+-ATPase in the gill cells of the crabs. Pretreatment of the animals with ethylene glycol-bis-(b-aminoethyl ether)-N,N,N’,N’-tetraacetic acid (EGTA), Ca2+ chelator, inhibited Cd-induced activation of caspases-3, -8 and -9 as well as blocked the Cd-triggered apoptotic DNA fragmentation. The apoptotic morphological features were no longer observed in gill cells pretreated with the Ca2+ signaling inhibitors before Cd treatment. Our results indicate that Cd evokes gill cell apoptosis through activating Ca2+-CaM signaling transduction pathway.  相似文献   

4.
Platelets express, among others, initiator caspase 9 and effector caspase 3. Upon activation by physiological agonists, calcium ionophores or under shear stress they might develop apoptotic events. Although it is well known that the cytoskeletal network plays a crucial role in apoptosis, the relationship between caspases 3 and 9 and the cytoskeleton is poorly understood. Here we demonstrate that the physiological agonist thrombin is able to induce activation of caspases 3 and 9 in human platelets and significantly increases the amount in the cytoskeleton of the active forms of both caspases and the procaspases 3 and 9. After stimulation with thrombin the amount of active caspases 3 and 9 in the cytosolic and cytoskeletal fractions were significantly reduced in Ro-31-8220-treated cells, which demonstrates that caspases activation and association with the cytoskeleton needs the contribution of PKC. Inhibition of actin polymerization by cytochalasin D inhibits translocation and activation of both caspases, suggesting that thrombin stimulates caspase 3 and 9 activation and association with the reorganizing actin cytoskeleton. Finally, our results show that inhibition of thrombin-induced caspase activation has no effect on their translocation to the cytoskeleton although impairment of thrombin-evoked caspase translocation has negative effects on caspase activity, suggesting that translocation to the cytoskeleton might be important for caspase activation by thrombin in human platelets.  相似文献   

5.
This work was designed in order to gain an insight on the mechanisms by which antioxidants prevent pancreatic disorders. We have examined the properties of cinnamtannin B-1, which belongs to the class of polyphenols, against the effect of hydrogen peroxide (H2O2) in mouse pancreatic acinar cells. We have studied Ca2+ mobilization, oxidative state, amylase secretion, and cell viability of cells treated with cinnamtannin B-1 in the presence of various concentrations of H2O2. We found that H2O2 (0.1–100 μM) increased CM-H2DCFDA-derived fluorescence, reflecting an increase in oxidation. Cinnamtannin B-1 (10 μM) reduced H2O2-induced oxidation of CM-H2DCFDA. CCK-8 induced oxidation of CM-H2DCFDA in a similar way to low micromolar concentrations of H2O2, and cinnamtannin B-1 reduced the oxidant effect of CCK-8. In addition, H2O2 induced a slow and progressive increase in intracellular free Ca2+ concentration ([Ca2+]c). Cinnamtannin B-1 reduced the effect of H2O2 on [Ca2+]c, but only at the lower concentrations of the oxidant. H2O2 inhibited amylase secretion in response to cholecystokinin, and cinnamtannin B-1 reduced the inhibitory action of H2O2 on enzyme secretion. Finally, H2O2 reduced cell viability, and the antioxidant protected acinar cells against H2O2. In conclusion, the beneficial effects of cinnamtannin B-1 appear to be mediated by reducing the intracellular Ca2+ overload and intracellular accumulation of digestive enzymes evoked by ROS, which is a common pathological precursor that mediates pancreatitis. Our results support the beneficial effect of natural antioxidants in the therapy against oxidative stress-derived deleterious effects on cellular physiology.  相似文献   

6.
In the intrinsic apoptosis pathway, mitochondrial disruption leads to the release of multiple apoptosis signaling molecules, triggering both caspase-dependent and -independent cell death. The release of cytochrome c induces the formation of the apoptosome, resulting in caspase-9 activation. Multiple caspases are activated downstream of caspase-9, however, the precise order of caspase activation downstream of caspase-9 in intact cells has not been completely resolved. To characterize the caspase-9 signaling cascade in intact cells, we employed chemically induced dimerization to activate caspase-9 specifically. Dimerization of caspase-9 led to rapid activation of effector caspases, including caspases-3, -6 and -7, as well as initiator caspases, including caspases-2, -8 and -10, in H9 and Jurkat cells. Knockdown of caspase-3 suppressed caspase-9-induced processing of the other caspases downstream of caspase-9. Silencing of caspase-6 partially inhibited caspase-9-mediated processing of caspases-2, -3 and -10, while silencing of caspase-7 partially inhibited caspase-9-induced processing of caspase-2, -3, -6 and -10. In contrast, deficiency in caspase-2, -8 or -10 did not significantly affect the caspase-9-induced caspase cascade. Our data provide novel insights into the ordering of a caspase signaling network downstream of caspase-9 in intact cells during apoptosis.  相似文献   

7.
Resveratrol (RV), a natural plant polyphenol widely present in foods such as grapes, wine, and peanuts, has an ability to inhibit various stages of carcinogenesis in vitro and in vivo. In this report, we explored the roles of intrinsic and extrinsic apoptotic pathways during RV-induced apoptosis in human lung adenocarcinoma (ASTC-a-1) cells. After exposure of cells to different concentrations of RV, we found that RV induced concentration-dependent apoptosis. Fluorometric substrates assay and western blotting (WB) analysis showed that caspase-8 was not activated, which was further verified by monitoring the cleavage of Bid to tBid using fluorescence resonance energy transfer (FRET) microscopy imaging inside single living cells, indicating that extrinsic apoptotic pathway was not involved in RV-induced apoptosis. In addition, inhibition of caspases-3 or -9 but not caspase-8 using the specific inhibitors of caspases modestly but significantly attenuated RV-induced apoptosis. Moreover, flow cytometry (FCM) analysis showed that RV treatment induced time-dependent loss of mitochondrial membrane potential (?ψ(m)), in combination with the activation of caspases-3 and -9; we therefore concluded that RV-induced apoptosis involved the intrinsic apoptotic pathway. It is noteworthy that RV treatment induced translocation of AIF from mitochondria to nucleus in a time dependent manner, and that knockdown of AIF remarkably attenuated RV-induced apoptosis. Collectively, our findings demonstrate that RV induces caspase-8-independent apoptosis via AIF and to a lesser extent caspase-9-dependent mitochondrial pathway in ASTC-a-1 cells.  相似文献   

8.
In the present study, we investigated the effect of a novel 3-arylisoquinoline derivative 3-(6-ethyl-benzo[1,3]dioxol-5-yl)-7,8-dimethoxy-2-methyl-2H-isoquinolin-1-one (CWJ-081) on the induction of apoptosis and the putative molecular mechanism of its action in human leukemia cells. Treatment with CWJ-081 exhibited a characteristic feature of apoptosis including externalization of phosphatidylserine and formation of DNA fragmentation in human leukemia cell lines (HL-60, U-937, K-562). In addition, stimulation of HL-60 cells with CWJ-081 induced a series of intracellular events: (1) the activations of caspase-8, -9, and -3; (2) the cleavage of poly (ADP-ribose) polymerase-1 (PARP-1); (3) the loss of mitochondrial membrane potential (ΔΨm); (4) the release of cytochrome c; and (5) the modulation of Bcl-2 family proteins. We further demonstrated that CWJ-081 induces reactive oxygen species (ROS) production and c-Jun NH2-terminal kinase (JNK) activation. Pretreatment with the antioxidant N-acetyl-l-cysteine (NAC) markedly inhibited the CWJ-081-induced JNK activation and apoptosis. Moreover, CWJ-081-induced apoptosis was suppressed in the presence of SP600125, a specific JNK inhibitor. Taken together, these data suggest that CWJ-081 induces apoptosis via the mitochondrial apoptotic pathway in HL-60 cells, and ROS-mediated JNK activation plays a key role in the CWJ-081-induced apoptosis.  相似文献   

9.
The induction of apoptosis in keratinocytes by ultraviolet (UV)-irradiation is considered to be a protective function against skin cancer. UV-induced DNA damage is a crucial event in UVB- and UVC-mediated apoptosis. However, the differences between the UVB- and UVC-induced apoptotic pathways remain unclear. Here we examine the differential mechanisms by which UVB and UVC irradiations induce keratinocyte apoptosis using human keratinocyte HaCaT cells. Differences in the production of (6-4)photoproducts ((6-4)PPs) and cyclobutane pyrimidine dimers (CPDs) were measured following irradiation with UVB and UVC at doses causing the same extent of apoptotic cell death. In addition, main apoptotic features, such as caspase activation and its regulation, were compared between UVB- and UVC-induced apoptosis. Exposures of 500 J/m2 UVB and 100 J/m2 UVC resulted in apoptosis to almost the same extent. At these apoptotic doses, the amounts of both (6-4)PPs and CPDs were significantly larger in the case of UVC irradiation than UVB irradiation; in parallel, the release of cytochrome c and Smac/DIABLO and the activation of caspases-9 following UVC irradiation were greater than after UVB irradiation. Importantly, caspase-8 activation occurred only in UVB-irradiated cells. Furthermore, the activation of caspase-8 was not inhibited by caspases-9 and -3 specific tetrapeptide inhibitors, indicating that the caspase-8 cleavage is not due to feedback from activation of caspases-9 and -3. Thus, these results clearly suggest that the reason apoptosis is induced to the same extent by UVB irradiation as by UVC irradiation, despite the lower production of photoproducts in DNA by UVB irradiation, is attributable to the additional activation of the caspase-8 pathway. Thus, UVB irradiation induces apoptosis through both mitochondrial (intrinsic) and caspase-8 activation (extrinsic) pathways, while UVC induces apoptosis only via the intrinsic pathway.  相似文献   

10.
Artonin E is a prenylated flavonoid isolated from the stem bark of Artocarpus elasticus Reinw.(Moraceae). This study aimed to investigate the apoptotic mechanisms induced by artonin E in a metastatic human ovarian cancer cell line SKOV-3 in vitro. MTT assay, clonogenic assay, acridine orange and propidium iodide double staining, cell cycle and annexin V analyses were performed to explore the mode of artonin E-induced cell death at different time points. DNA laddering, activation of caspases-3, -8, and -9, multi-parametric cytotoxicity-3analysis by high-content screening, measurement of reactive oxygen species generation, and Western blot were employed to study the pathways involved in the apoptosis. MTT results showed that artonin E inhibited the growth of SKOV-3 cells, with IC50 values of 6.5±0.5μg/mL after 72 h treatment, and showed less toxicity toward a normal human ovarian cell lineT1074, with IC50 value of 32.5±0.5μg/mL. Results showed that artonin E induced apoptosis and cell cycle arrest at the S phase. This compound also promoted the activation of caspases-3, -8, and -9. Further investigation into the depletion of mitochondrial membrane potential and release of cytochrome c revealed that artonin E treatment induced apoptosis via regulation of the expression of pro-survival and pro-apoptotic Bcl-2 family members. The expression levels of survivin and HSP70 proteins were also down regulated in SKOV-3 cells treated with artonin E. We propose that artonin E induced an antiproliferative effect that led to S phase cell cycle arrest and apoptosis through dysregulation of mitochondrial pathways, particularly the pro- and anti-apoptosis signaling pathways.  相似文献   

11.
(1) Exposure of phospholipids at the outer surface of activated and control platelets was studied by incubation with a mixture of phospholipase A2 from Naja naja and bee venom, solely or in combination with sphingomyelinase from Staphylococcus aureus, using conditions under which cell lysis remained below 10%. (2) Incubation with phospholipase A2 alone revealed a markedly increased susceptibility of the phospholipids in platelets activated by a mixture of collagen plus thrombin, by the SH-oxydizing compound diamide, or by calcium ionophore A23187, as compared to control platelets or platelets activated separately by collagen or thrombin. (3) Collagen plus thrombin, diamide, and ionophore treated platelets revealed an increased exposure of phosphatidylserine at the outer surface accompanied by a decreased exposure of sphingomyelin, as could be concluded from incubations with a combination of phospholipase A2 and sphingomyelinase. These alterations were much less apparent in platelets activated either by thrombin or by collagen alone. (4) The increased exposure of phosphatidylserine in activated platelets is accompanied by an increased ability of the platelets to enhance the conversion of prothrombin to thrombin by coagulation factor Xa, in the presence of factor Va and calcium. (5) It is concluded that the altered orientation of the phospholipids in the plasma membrane of platelets activated by collagen plus thrombin, by diamide, or by calcium ionophore, is the result of a transbilayer movement. Moreover, the increased exposure of phosphatidylserine in platelets stimulated by the combined action of collagen and thrombin might be of considerable importance for the hemostatic process.  相似文献   

12.

Background

The transbilayer movement of phosphatidylserine mediates the platelet procoagulant activity during collagen stimulation. The Rho-associated coiled-coil kinase (ROCK) inhibitor Y-27632 inhibits senescence induced but not activation induced phosphatidylserine exposure. To investigate further the specific mechanisms, we now utilized mice with genetic deletion of the ROCK1 isoform.

Methods and Results

ROCK1-deficient mouse platelets expose significantly more phosphatidylserine and generate more thrombin upon activation with collagen compared to wild-type platelets. There were no significant defects in platelet shape change, aggregation, or calcium response compared to wild-type platelets. Collagen-stimulated ROCK1-deficient platelets also displayed decreased phosphorylation levels of Lim Kinase-1 and cofilin-1. However, there was no reduction in phosphorylation levels of myosin phosphatase subunit-1 (MYPT1) or myosin light chain (MLC). In an in vivo light/dye-induced endothelial injury/thrombosis model, ROCK1-deficient mice presented a shorter occlusion time in cremasteric venules when compared to wild-type littermates (3.16 ± 1.33 min versus 6.6 ± 2.6 min; p = 0.01).

Conclusions

These studies define ROCK1 as a new regulator for collagen-induced phosphatidylserine exposure in platelets with functional consequences on thrombosis. This effect was downstream of calcium signaling and was mediated by Lim Kinase-1 / cofilin-1-induced cytoskeletal changes.  相似文献   

13.
Cadmium, a well-known environmental hazard, has caused serious health problems in humans and animals. Accumulating evidence suggests the cadmium toxicity is mediated by oxidative stress-induced cell death. However, the molecular signaling underlying cadmium-induced apoptosis remains unclear. In this study, we demonstrate here that cadmium induced mixed types of cell death including primary apoptosis (early apoptosis), secondary necrosis (late apoptosis), and necrosis in normal human lung cells, MRC-5, as revealed by chromatin condensation, phosphatidylserine (PS) externalization, and hypodiploid DNA content. The total apoptotic cells reached a plateau of around 40.0% after 24 h exposure of 100 microM cadmium. Pretreatment with Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk), a broad spectrum of caspase inhibitor, could not rescue apoptotic cells from cadmium toxicity. Coincidently, we failed to detect the activation of pro-caspase-3 and cleavage of PARP by immunoblot, which implies the apoptogenic activity of cadmium in MRC-5 cells is caspase-independent. JC-1 staining also indicated that mitochondrial depolarization is a prelude to cadmium-induced apoptosis, which was accompanied by a translocation of caspase-independent pro-apoptotic factor apoptosis-inducing factor (AIF) into the nucleus as revealed by the immunofluorescence assay. In summary, this study demonstrated for the first time that cadmium induced a caspase-independent apoptotic pathway through mitochondria-mediated AIF translocation into the nucleus.  相似文献   

14.
López JJ  Jardín I  Salido GM  Rosado JA 《Life sciences》2008,82(19-20):977-982
Cinnamtannin B-1 is a naturally occurring trimeric A-type proanthocyanidin, present in a limited number of plants, which exhibits a large number of cellular actions mostly derived from its antioxidant properties. Cinnamtannin B-1 modulates several biological processes such as changes in cytosolic free Ca(2+) concentration, endogenous reactive oxygen species generation, protein tyrosine phosphorylation and platelet aggregation. Proanthocyanidins, such as cinnamtannin B-1, have been reported to exert antitumoral activity mediated by a selective proapoptotic action in a number of tumoral cell lines associated with antiapoptotic activity in normal cells. The opposite effects of proanthocyanidins in normal and tumoral cells suggest that these compounds might be the base for therapeutic strategies directed selectively against tumoral cells. In addition, cinnamtannin B-1 shows antithrombotic actions through inhibition, in platelets, of endogenous ROS generation, Ca(2+) mobilization and, subsequently, aggregation. This has been reported to be especially relevant in platelets from diabetic patients, where cinnamtannin B-1 reverses both platelet hypersensitivity and hyperactivity. Considering the large number of cellular effects of cinnamtannin B-1 the development of therapeutic strategies for thrombotic disorders or certain types of cancer deserves further studies. This review summarizes the current knowledge on the actions and relevance of the signalling pathways modulated by cinnamtannin B-1.  相似文献   

15.
Substances that enhance the migration of mesenchymal stem cells to damaged sites have the potential to improve the effectiveness of tissue repair. We previously found that ethanol extracts of Mallotus philippinensis bark promoted migration of mesenchymal stem cells and improved wound healing in a mouse model. We also demonstrated that bark extracts contain cinnamtannin B-1, a flavonoid with in vitro migratory activity against mesenchymal stem cells. However, the in vivo effects of cinnamtannin B-1 on the migration of mesenchymal stem cells and underlying mechanism of this action remain unknown. Therefore, we examined the effects of cinnamtannin B-1 on in vivo migration of mesenchymal stem cells and wound healing in mice. In addition, we characterized cinnamtannin B-1-induced migration of mesenchymal stem cells pharmacologically and structurally. The mobilization of endogenous mesenchymal stem cells into the blood circulation was enhanced in cinnamtannin B-1-treated mice as shown by flow cytometric analysis of peripheral blood cells. Whole animal imaging analysis using luciferase-expressing mesenchymal stem cells as a tracer revealed that cinnamtannin B-1 increased the homing of mesenchymal stem cells to wounds and accelerated healing in a diabetic mouse model. Additionally, the cinnamtannin B-1-induced migration of mesenchymal stem cells was pharmacologically susceptible to inhibitors of phosphatidylinositol 3-kinase, phospholipase C, lipoxygenase, and purines. Furthermore, biflavonoids with similar structural features to cinnamtannin B-1 also augmented the migration of mesenchymal stem cells by similar pharmacological mechanisms. These results demonstrate that cinnamtannin B-1 promoted mesenchymal stem cell migration in vivo and improved wound healing in mice. Furthermore, the results reveal that cinnamtannin B-1-induced migration of mesenchymal stem cells may be mediated by specific signaling pathways, and the flavonoid skeleton may be relevant to its effects on mesenchymal stem cell migration.  相似文献   

16.
This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway.  相似文献   

17.
In this study, we investigated whether there is a signalling interaction between calpain and caspase-3 during apoptosis in Jurkat T cells by Entamoeba histolytica. When Jurkat cells were co-incubated with E. histolytica, phosphatidylserine externalisation and DNA fragmentation markedly increased compared with results for cells incubated with medium alone. In addition, E. histolytica strongly induced cleavage of caspases-3, -6, -7 and poly(ADP-ribose) polymerase. A rise in intracellular calcium levels and activation of calpain were seen in Jurkat cells after exposure to E. histolytica. Pretreatment of Jurkat cells with calpain inhibitor calpeptin effectively blocked E. histolytica-triggered cleavage of caspase-3 as well as calpain. In contrast, pan-caspase inhibitor did not affect E. histolytica-induced calpain activation. In addition, incubation with E. histolytica resulted in multiple fragmented bands of calpastatin, which is an endogenous inhibitor of calpain, in Jurkat T cells. Moreover, Entamoeba-induced calpastatin degradation was dramatically suppressed by pretreatment with calpeptin, but not by z-VAD-fmk. Entamoeba-induced DNA fragmentation was strongly retarded by z-VAD-fmk, but not calpeptin. Our results suggest that calpain-mediated calpastatin degradation plays a crucial role in regulation of caspase-3 activation during apoptosis of Jurkat T cells by E. histolytica.  相似文献   

18.
TNFalpha-related apoptosis inducing ligand (TRAIL) has been shown to induce apoptosis in prostate cancer cells. However, some prostate cancer cells, such as LNCaP are resistant to TRAIL. In addition to the involvement of several pathways in the TRAIL-resistance of LNCaP, it has been shown that mitochondrial response to TRIAL is low in these cells. Therefore, in this study, using in vitro cell free and reconstitution models, we have demonstrated that mitochondria from these cells are capable of responding to apoptotic stimuli. Furthermore, experiments to determine the influence of cytochrome c on apoptotic response noted that incubation of cytosol with exogenous cytochrome c induced truncation of Bid. We have demonstrated that truncation of Bid by exogenous cytochrome c is mediated through the activation of caspases-9 and -3. Incubation of cytosol with recombinant caspases-9 and -3 in the absence or presence of inhibitors showed that activation of caspase-9, leading to the activation of caspase-3 was necessary for the truncation of Bid. Published results indicate that in apoptotic cells cytochrome c is released from the mitochondria in two installments, an early small amount and a late larger amount. Our results suggest that the initial release of cytochrome generates tBid that is capable of translocation into the mitochondria causing further release of cytochrome c. Thus, in addition to providing functional explanation for the biphasic release of cytochrome c from mitochondria, we demonstrate the presence of a feedback amplification of mitochondrial apoptotic signal.  相似文献   

19.
Induction of yeast apoptosis by an antimicrobial peptide, Papiliocin   总被引:1,自引:0,他引:1  
Papiliocin is a 37-residue peptide isolated from the swallowtail butterfly Papilio xuthus. In this study, we found that Papiliocin induced the accumulation of reactive oxygen species (ROS) and hydroxyl radicals known to be important regulators of apoptosis in Candida albicans. To examine the relationship between the accumulation of ROS and the induction of apoptosis, we investigated the apoptotic effects of Papiliocin using apoptotic markers. Cells treated with Papiliocin showed a series of cellular changes normally seen in cells undergoing apoptosis: plasma membrane translocation of phosphatidylserine from the inner to the outer membrane leaflet, measured by Annexin V staining, dissipation of the mitochondrial membrane potential, observed by DiOC6(3) staining; and the presence of active metacaspases, measured using the CaspACE FITC-VAD-FMK, as early apoptotic events. In addition, DNA condensation and fragmentation, which is important marker of late stage apoptosis, was seen by DAPI and TUNEL assay. Therefore, these results suggest that Papiliocin leads to apoptosis in C. albicans via ROS accumulation.  相似文献   

20.
We investigated the mechanism by which TxA2 mimetic, U46619, activates proMMP-2 in bovine pulmonary artery smooth muscle cells. Our study showed that treatment of the cells with U46619 caused an increase in the expression and subsequently activation of proMMP-2 in the cells. Pretreatment with p38MAPK inhibitor, SB203580; and NF-κB inhibitor, Bay11-7082 inhibited the expression and activation of proMMP-2 induced by U46619. U46619 also induced increase in MT1-MMP expression, which was inhibited upon pretreatment with SB203580 and Bay11-7082. U46619 treatment to the cells stimulated p38MAPK activity as well as NF-κB activation by IκB-α phosphorylation, translocation of NF-κBp65 subunit from cytosol to nucleus and subsequently, by increasing its DNA-binding activity. Induction of NF-κB activation seems to be mediated through IKK, as transfection of cells with either IKKα or IKKβ siRNA prevented U46619-induced phosphorylation of IκB-α and NF-κBp65 DNA-binding activity. U46619 treatment to the cells also downregulated the TIMP-2 level. Pretreatment of the cells with SB203580 and Bay11-7082 did not show any discernible change in TIMP-2 level by U46619. Overall, U46619-induced activation of proMMP-2 is mediated via involvement of p38MAPK-NFκB-MT1MMP signaling pathway with concomitant downregulation of TIMP-2 expression in bovine pulmonary artery smooth muscle cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号