首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular analyses of an acidic transthyretin Asn 90 variant.   总被引:3,自引:0,他引:3       下载免费PDF全文
A mutation in transthyretin (TTR Asn 90) has been identified in the Portuguese and German populations. This variant has a lower pI and was found by screening analyses in 2/4,000 German subjects and in 4/1,200 Portuguese by using either double one-dimensional (D1-D) electrophoresis with isoelectric focusing (IEF) or hybrid isoelectric focusing in immobilized pH gradient (HIEF) as the final separation step. The Portuguese population sample was from the area where TTR Met 30-associated familial amyloidotic polyneuropathy (FAP) prevails, and it was divided into (a) a group of 500 individuals belonging to FAP kindreds and (b) a group of 700 collected at random. HIEF showed two particular situations: (1) one case, from an FAP kindred, was simultaneously carrier of the Met 30 substitution and the acidic variant, and (2) one individual, from the randomly selected Portuguese sample, had only the acidic monomer. Comparative peptide mapping, by HPLC, of the acidic variant carriers and of normal TTR showed the presence of an abnormal tryptic peptide, not present in the normal TTR digests, with an asparagine-for-histidine substitution at position 90 explained by a single base change of adenine for cytosine in the histidine codon. This was confirmed at the DNA level by RFLP analyses of PCR-amplified material after digestion with SphI and BsmI. In all carriers of the Asn 90 substitution, no indicators were found for an association with traits characteristic for FAP.  相似文献   

2.
Transthyretin (TTR) is a plasma protein interacting with thyroxine T4 and retinol binding protein (RBP). Several variants of TTR with single amino acid substitutions have been identified as the major components of the amyloid fibrils of familial amyloidotic polyneuropathy (FAP), a fetal, autosomal dominant genetic disease. The elucidation of the molecular nature of the variants distinct from that of the wild-type TTR is crucial for understanding the amyloidogenesis in FAP, but our understanding is very poor mainly because of the unavailability of pure variant TTRs. In the present study, we used an Escherichia coli OmpA secretion vector (Ghrayeb et al., 1984) and achieved an effective production of the variant TTRs related to FAP including Met-30, Ile-33, Ala-60, Tyr-77, Met-111, and Ile-122 types. The variant TTRs produced in this system were efficiently secreted to the culture media. The chemical analysis showed that the secreted TTR (Met-30 type) has the same N-terminus as the native one. IEF analyses also indicated that the secreted product is properly processed as assessed by its pI. Furthermore, the secreted TTR was shown to have biological activities, namely, the thyroxin binding activity and the ability to associate with retinol binding protein, indicating that the secreted TTR polypeptide is properly folded. The present work also demonstrated that the processing/secretion of the recombinant TTR molecules in E. coli was strongly affected by single amino acid substitutions.  相似文献   

3.
Patients with familial amyloid polyneuropathy (FAP) are now cured by liver transplantation, but cardiac amyloidosis would further progress even after liver transplantation in some patients. To clarify the pathological mechanism of the progress of cardiac amyloidosis in FAP, we investigated cardiac tissues obtained from 6 FAP patients with 3 different types of TTR mutations. One of them had undergone liver transplantation and one year later died of cardiac amyloidosis. We determined clinical severity of cardiac involvement of those patients and characterized amyloid fibril proteins depositing in their cardiac muscles by immunohistochemistry, mass spectrometry and isoelectric focusing. All the patients had cardiac dysfunction and increased cardiac weight. Diffuse deposition of TTR-related amyloid was seen in their myocardium on microscopic examination. Amyloid fibrils of the heart were composed of wild-type TTR as well as variant TTR at a ratio of about 1:1 in 5 patients without liver transplantation. In the patient with a transplanted liver, about 80% of the cardiac amyloid consisted of wild-type TTR. Wild-type TTR contributes greatly to the development of amyloid deposition in the heart of FAP patients regardless of the types of TTR mutations.  相似文献   

4.
Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant hereditary type of amyloidosis involving amino acid substitutions in transthyretin (TTR). V30M-TTR is the most frequent variant, and L55P-TTR is the variant associated with the most aggressive form of FAP. The thermal stability of the wild-type, V30M-TTR, L55P-TTR and a non-amyloidogenic variant, T119M-TTR, was studied by high-sensitivity differential scanning calorimetry (DSC). The thermal unfolding of TTR is a spontaneous reversible process involving a highly co-operative transition between folded tetramers and unfolded monomers. All variants of transthyretin are very stable to the thermal unfolding that occurs at very high temperatures, most probably because of their oligomeric structure. The data presented in this work indicated that for the homotetrameric form of the wild-type TTR and its variants, the order of stability is as follows: wild-type TTR approximately > T119M-TTR > L55P-TTR > V30M-TTR, which does not correlate with their known amyloidogenic potential.  相似文献   

5.
Type I familial amyloidotic polyneuropathy (FAP) results from the systemic deposition of a plasma transthyretin (TTR) variant with a Val----Met change at position 30. In an attempt to establish a model of this disease, we generated transgenic mice producing the variant TTR. A DNA fragment containing the mouse metallothionein-I promoter fused to the structural gene coding for the human TTR variant was microinjected into fertilized mouse eggs. Among 72 mice that developed from these eggs, ten carried the fusion gene and three of these showed significant concentrations of the variant TTR in their serum. These mice may be useful in elucidating the pathogenesis of FAP and in establishing a therapy for this intractable disorder.  相似文献   

6.
Transthyretin (TTR) is an amyloidogenic protein whose aggregation is responsible for numerous familial amyloid diseases, the exact phenotype being dependent on the sequence deposited. Many familial disease variants display decreased stability in vitro, and early onset pathology in vivo. Only subtle structural differences were observed upon crystallographic comparison of the disease-associated variants to the T119M interallelic trans-suppressor. Herein three human TTR single amino acid variant homotetramers including two familial amyloidotic polyneuropathy (FAP) causing variants (V30M and L55P), and a suppressor variant T119M (known to protect V30M carriers from disease by trans-suppression) were investigated in a residue-specific fashion by monitoring (2)H-(1)H exchange employing NMR spectroscopy. The measured protection factors for slowly exchanging amide hydrogen atoms reveal destabilization of the protein core in the FAP variants, the core consisting of strands A, B, E and G and the loop between strands A and B. The same core exhibits much slower exchange in the suppressor variant. Accelerated exchange rates were observed for residues at the subunit interfaces in L55P, but not in the T119M or V30M TTR. The correlation between destabilization of the TTR core strands and the tendency for amyloid formation supports the view that these strands are involved in amyloidogenicity, consistent with previous (2)H-(1)H exchange analysis of the WT-TTR amyloidogenic intermediate.  相似文献   

7.
BackgroundMany polyphenols have been proposed as broad-spectrum inhibitors of amyloid formation. To investigate structure–activity relationships relevant for the interaction of flavonoids with transthyretin (TTR), the protein associated with familial amyloid polyneuropathy (FAP), we compared the effects of major tea catechins and their larger polymers theaflavins, side-by-side, on TTR amyloid formation process.MethodsInteraction of flavonoids with TTR and effect on TTR stability were assessed through binding assays and isoelectric focusing in polyacrylamide gel. TTR aggregation was studied, in vitro, by dynamic light scattering (DLS), transmission electron microscopy (TEM) and in cell culture, through cytotoxicity assays.ResultsTested flavonoids bound to TTR and stabilized the TTR tetramer, with different potencies. The flavonoids also inhibited in vitro formation of TTR small oligomeric species and in cell culture inhibited pathways involving caspase-3 activation and ER stress that are induced by TTR oligomers. In all assays performed the galloyl esters presented higher potency to inhibit aggregation than the non-gallated flavonoids tested.ConclusionsOur results highlight the presence of gallate ester moiety as key structural feature of flavonoids in chemical chaperoning of TTR aggregation. Upon binding to the native tetramer, gallated flavonoids redirect the TTR amyloidogenic pathway into unstructured nontoxic aggregation assemblies more efficiently than their non-gallated forms.General significanceOur findings suggest that galloyl moieties greatly enhance flavonoid anti-amyloid chaperone activity and this should be taken into consideration in therapeutic candidate drug discovery.  相似文献   

8.
A variant of human transthyretin(TTR, prealbumin) with methionine for valine substitution at position 30 is a major component of amyloid fibrils found in patients of familial amyloidotic polyneuropathy(FAP) type I, an autosomal dominant genetic disease. But the molecular nature of the variant TTR has been obscure, because most of plasma TTR from FAP patients is a mixture of variant and wild type TTR and no pure preparation of the variant has been available. For this reason, we constructed a system in which the variant type TTR was efficiently synthesized. In this system, the recombinant variant TTR was first synthesized as a fusion protein with E. coli outer membrane protein A (ompA) signal peptide, processed to eliminate the signal peptide and finally secreted to the culture medium. The final concentration of the recombinant variant TTR in the medium was about 5 mg/l. SDS polyacrylamide gel electrophoresis and gel filtration analysis suggested that the recombinant variant TTR can form tetramer as seen for native one. Purification of the protein was accomplished by only two steps of chromatography.  相似文献   

9.
Familial amyloidotic polyneuropathy (FAP) has a high prevalence in Portugal, and the most common form of hereditary amyloidosis is caused by an amyloidogenic variant of transthyretin (TTR) with a substitution of methionine for valine at position 30 (V30M). Until now, the available efficient therapy is liver transplantation, when performed in an early phase of the onset of the disease symptoms. However, transplanted FAP patients have a significantly higher incidence of early hepatic artery thrombosis compared with non-FAP transplanted patients. Because FAP was described as an independent risk factor for early hepatic artery thrombosis, more studies to understand the underlying mechanisms involved in this outcome are of the utmost importance. Knowing that the liver is the major site for TTR production, we investigated the biological effects of TTR proteins in the vasculature and on angiogenesis. In this study, we identified genes differentially expressed in endothelial cells exposed to the WT or V30M tetramer. We found that endothelial cells may acquire different molecular identities when exposed to these proteins, and consequently TTR could regulate angiogenesis. Moreover, we show that V30M decreases endothelial survival by inducing apoptosis, and it inhibits migration. These findings provide new knowledge that may have critical implications in the prevention of early hepatic artery thrombosis in FAP patients after liver transplantation.  相似文献   

10.
The transthyretin amyloidoses (ATTR) are devastating diseases characterized by progressive neuropathy and/or cardiomyopathy for which novel therapeutic strategies are needed. We have recently shown that curcumin (diferuloylmethane), the major bioactive polyphenol of turmeric, strongly suppresses TTR fibril formation in vitro, either by stabilization of TTR tetramer or by generating nonfibrillar small intermediates that are innocuous to cultured neuronal cells.In the present study, we aim to assess the effect of curcumin on TTR amyloidogenesis in vivo, using a well characterized mouse model for familial amyloidotic polyneuropathy (FAP). Mice were given 2% (w/w) dietary curcumin or control diet for a six week period. Curcumin supplementation resulted in micromolar steady-state levels in plasma as determined by LC/MS/MS. We show that curcumin binds selectively to the TTR thyroxine-binding sites of the tetramer over all the other plasma proteins.The effect on plasma TTR stability was determined by isoelectric focusing (IEF) and curcumin was found to significantly increase TTR tetramer resistance to dissociation. Most importantly, immunohistochemistry (IHC) analysis of mice tissues demonstrated that curcumin reduced TTR load in as much as 70% and lowered cytotoxicity associated with TTR aggregation by decreasing activation of death receptor Fas/CD95, endoplasmic reticulum (ER) chaperone BiP and 3-nitrotyrosine in tissues. Taken together, our results highlight the potential use of curcumin as a lead molecule for the prevention and treatment of TTR amyloidosis.  相似文献   

11.
Summary Familial amyloidotic polyneuropathy (FAP) is an autosomal dominant genetic disease characterized by systemic accumulation of amyloid fibrils. A major component of FAP anyloid has been identified as variant transthyretin (TTR, also called prealbumin). In particular, a variant with the substitution 30ValMet has been commonly found in FAP of various ethnic groups. To understand the origin and spread of the ValMet mutation, we analyzed DNA polymorphisms associated with the TTR gene in six Japanese FAP families and several Portuguese FAP patients. Three distinct haplotypes associated with the ValMet mutation were identified in Japanese FAP families, one of which was also found in Portuguese patients. On the other hand, it was found that the ValMet mutation can be explained by a C-T transition at the CpG dinucleotide sequence of a mutation hot spot. Thus, our findings indicate that the ValMet mutation has probably recurred in the human population, to generate FAP families of independent origin.  相似文献   

12.
A variant of transthyretin (TTR Val30Met) has been identified as the main protein precursor of the amyloid fibrils deposited in familial amyloidotic polyneuropathy (FAP). Specific removal of TTR in an extracorporeal immunoadsorption procedure is currently under investigation as a possible treatment of FAP. Immunoadsorbents were constructed by immobilizing murine anti-TTR monoclonal antibody 88.6.BA9 onto agarose gel supports via several different coupling chemistries. The influence of coupling conditions such as pH and antibody density, and of perfusion variables, such as antigen concentration and applied flow-rate, on the TTR capture efficiency, was determined. Cyanogen bromide-, carbonyldiimidazole- and aldehyde-activated (ALD) supports conjugated with antibody at optimal pH, provided immunoadsorbents with comparable TTR binding capacities. Regarding stability, leakage was lowest for the ALD based immunoadsorbents, particularly at high pH.  相似文献   

13.
Summary Familial amyloid cardiomyopathy in a Danish kindred is associated with a specific mutation (Met for Leu111) in the transthyretin (TTR) gene, causing the loss of a recognition site for the restriction enzyme DdeI in the gene. We describe a diagnostic test for the molecular detection of this mutation. A sequence of the TTR gene containing the mutation was amplified by the polymerase chain reaction from isolated genomic DNA of two affected patients and several controls. DdeI digestion of the amplified DNA from the patients revealed 3 bands by gel-electrophoresis, whereas amplified DNA of the controls showed only 2 bands, consistent with complete digestion. Thus, the assumed heterozygous TTR Met111 mutation was confirmed in the affected patients.  相似文献   

14.
Haemoglobin Polymorphism in the Rhesus Macaque   总被引:1,自引:0,他引:1  
INTRASPECIFIC polymorphism of the principal haemoglobin component is common among macaque monkeys1–3 and other non-human primates4–9, but although electrophoretically demonstrable it has not been found in populations of rhesus monkeys (M. mulatto)10,11. Using the technique of isoelectric focusing in acrylamide gel, I have found variant haemoglobins in many samples of rhesus red blood cell haemolysates. The detection of these variants is apparently a result of the greatly increased resolution of the isoelectric focusing method as compared with the older electrophoretic methods.  相似文献   

15.
Familial amyloid polyneuropathy (FAP) is an autosomal dominant disease characterized by deposition of amyloid related to the presence of mutations in the transthyretin (TTR) gene. TTR is mainly synthesized in liver, choroid plexuses of brain and pancreas and secreted to plasma and cerebrospinal fluid (CSF). Although it possesses a sequon for N‐glycosylation N‐D‐S at position 98, it is not secreted as a glycoprotein. The most common FAP‐associated mutation is TTR V30M. In a screening for monoclonal antibodies developed against an amyloidogenic TTR form, we detected a distinct TTR with slower electrophoretic mobility in Western of plasma from carriers of the V30M mutation, not present in normal plasma. Mass spectrometry analyses of this slower migrating TTR (SMT) identified both wild‐type and mutant V30M; SMT was undetectable upon N‐glycosidase F treatment. Furthermore, SMT readily disappeared in the plasma of V30M ‐ FAP patients after liver transplantation and appeared in plasma of transplanted domino individuals that received a V30M liver. SMT was also detected in plasma, but not in CSF of transgenic mice for the human V30M mutation. A hepatoma cell line transduced to express human V30M did not present the SMT modification in secretion media. Glycosylated TTR was absent in fibrils extracted from human kidney V30M autopsy tissue or in TTR aggregates extracted from the intestine of human TTR transgenic mice. Studies on the metabolism of this novel, glycosylated TTR secreted from FAP liver are warranted to provide new mechanisms in protein quality control and etiopathogenesis of the disease.  相似文献   

16.
Recently, a new nonpathogenic transthyretin (TTR) variant-TTR R104H (TTR H104)-has been described in heterozygotic and compound heterozygotic individuals from a Japanese family with familial amyloidotic polyneuropathy (FAP). The compound heterozygotic individual, a carrier of TTR V30M (TTR M30) and TTR R104H (TTR M30/H104) presented a very mild form of FAP with slow progression of the disease. TTR and retinol binding protein (RBP) levels were found to be increased in serum from TTR H104 carriers. These characteristics are very similar to those found in compound heterozygotic carriers of TTR V30M-T119M (TTR M30/M119). To structurally compare these variants, we performed stability and thyroxine (T(4)) binding studies. TTR M30/H104 showed an increased resistance to dissociation into monomers similar to TTR M30/M119. This suggests that the His104 substitution has the same stabilizing effect on tetrameric TTR as the Met119 substitution. Concerning T(4) binding, TTR H104 presents a T(4) binding affinity lower than that of TTR M119, but still higher than normal TTR. However, TTR from the compound heterozygotic carrier of TTR M30/H104 presented a T(4) binding affinity lower than normal. The results indicate that the His 104 substitution induces structural alterations that increase the stability of the tetramer in compound heterozygotes for TTR M30 despite a lower affinity for T(4) binding. Thus, stability of TTR and binding affinity for T(4) may not be related. More detailed characterization of these variants is needed to clarify the structural alterations responsible for their increased stability.  相似文献   

17.
The primary structure of the HLA-A2 subtype A*0204 (isoelectric focusing variant A2.A) has been determined. cDNA encoding this subtype was amplified by the polymerase chain reaction. Four independent full-lenght cDNA clones encoding A*0204 were analyzed to obtain a consensus sequence for this subtype. A*0204 differs from A*0201 by a single nucleotide change of G to T through the coding regions, resulting in an Arg to Met change at position 97. This substitution accounts for the isoelectric focusing pattern of the subtype. The same change occurs in other HLA-A specificities in association with other changes in its vicinity. The absence of additional substitutions in A*0204 suggests that it could have arisen from A*0201 by point mutation, and that recurrent mutations may take place during HLA diversification. The spatial location of this change implies that A*0204 must be a functional variant. Comparison of its sequence with other HLA-A2 subtypes reveals that much of the HLA-A2 subtype polymorphism is generated by variations in four neighboring positions, including position 97, which are located in two adjacent -strands on the floor of the peptide binding site of the molecule.The nucleotide sequence data reported in this paper have been submitted to the EMBL nucleotide sequence database and have been assigned the accession number X57954. Address correspondence and offprint requests to: J. A. López de Castro.  相似文献   

18.
Transthyretin (TTR) is a homotetrameric plasma protein with amyloidogenic properties that has been linked to the development of familial amyloidotic polyneuropathy (FAP), familial amyloidotic cardiomyopathy, and senile systemic amyloidosis. The in vivo role of TTR is associated with transport of thyroxine hormone T4 and retinol-binding protein. Loss of the tetrameric integrity of TTR is a rate-limiting step in the process of TTR amyloid formation, and ligands with the ability to bind within the thyroxin binding site (TBS) can stabilize the tetramer, a feature that is currently used as a therapeutic approach for FAP. Several different flavonoids have recently been identified that impair amyloid formation. The flavonoid luteolin shows therapeutic potential with low incidence of unwanted side effects. In this work, we show that luteolin effectively attenuates the cytotoxic response to TTR in cultured neuronal cells and rescues the phenotype of a Drosophila melanogaster model of FAP. The plant-derived luteolin analogue cynaroside has a glucoside group in position 7 of the flavone A-ring and as opposed to luteolin is unable to stabilize TTR tetramers and thus prevents a cytotoxic effect. We generated high-resolution crystal-structures of both TTR wild type and the amyloidogenic mutant V30M in complex with luteolin. The results show that the A-ring of luteolin, in contrast to what was previously suggested, is buried within the TBS, consequently explaining the lack of activity from cynaroside. The flavonoids represent an interesting group of drug candidates for TTR amyloidosis. The present investigation shows the potential of luteolin as a stabilizer of TTR in vivo. We also show an alternative orientation of luteolin within the TBS which could represent a general mode of binding of flavonoids to TTR and is of importance concerning the future design of tetramer stabilizing drugs.  相似文献   

19.

Background

Familial amyloidotic polyneuropathy (FAP) is a neurodegenerative disease caused by the extracellular deposition of mutant transthyretin (TTR), with special involvement of the peripheral nervous system (PNS). Currently, hepatic transplantation is considered the most efficient therapy to halt the progression of clinical symptoms in FAP since more than 95% of TTR is produced by the liver. However, less invasive and more reliable therapeutic approaches have been proposed for FAP therapy, namely based on drugs acting as inhibitors of amyloid formation or as amyloid disruptors. We have recently reported that epigallocatechin-3-gallate (EGCG), the most abundant catechin in green tea, is able to inhibit TTR aggregation and fibril formation, “in vitro” and in a cellular system, and is also able to disrupt pre-formed amyloid fibrils “in vitro”.

Methodology and Principal Findings

In the present study, we assessed the effect of EGCG subchronic administration on TTR amyloidogenesis “in vivo”, using well characterized animal models for FAP. Semiquantitative immunohistochemistry (SQ-IHC) and Western blot analysis of mice tissues after treatment demonstrated that EGCG inhibits TTR toxic aggregates deposition in about 50% along the gastrointestinal tract (GI) and peripheral nervous system (PNS). Moreover EGCG treatment considerably lowered levels of several biomarkers associated with non-fibrillar TTR deposition, namely endoplasmic reticulum (ER)-stress, protein oxidation and apoptosis markers. Treatment of old FAP mice with EGCG resulted not only in the decrease of non-fibrillar TTR deposition but also in disaggregation of amyloid deposits. Consistently, matrix metalloproteinase (MMP)-9 and serum amyloid P component (SAP), both markers of amyloid deposition, were also found reduced in treated old FAP mice.

Conclusions and Significance

The dual effect of EGCG both as TTR aggregation inhibitor and amyloid fibril disruptor together with the high tolerability and low toxicity of EGCG in humans, point towards the potential use of this compound, or optimized derivatives, in the treatment of TTR-related amyloidoses.  相似文献   

20.
Familial adenomatous polyposis (FAP) is a premalignant disease inherited as an autosomal dominant trait, characterized by hundreds to thousands of polyps in the colorectal tract. Recently, the syndrome has been shown to be caused by mutations in the APC (adenomatous polyposis coli) gene located on chromosome 5q21. We studied two families that both presented a phenotype different than that of the classical form of FAP. The most important findings observed in these two kindreds are (a) low and variable number of colonic polyps (from 5 to 100) and (b) a slower evolution of the disease, with colon cancer occurring at a more advanced age than in FAP in spite of the early onset of intestinal manifestations. To determine whether mutations of the APC gene are also responsible for this variant syndrome, linkage studies were performed by using a series of markers both intragenic and tightly linked to the APC gene. The results provide evidence for exclusion of the APC gene as the cause of the variant form of polyposis present in the two families described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号