首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative trait loci (QTL) analysis for androgenetic capability has been conducted on three different crosses in maize, including very high and nonresponding lines for androgenesis. The doubled haploid lines derived by anther culture from the crosses DH5 x DH7, A188 x DH7, and R6 x DH99 showed a range of 0-70%, 0-40%, and 0-50% androgenetic responding anthers, respectively. The genotypic heritability of means for this trait is close to 0.90 for A188 x DH7 and 0.78 for R6 x DH99. The QTL analysis involved in each population the mapping of more than 100 loci covering a large part of the genome with reasonably spaced markers averaging 12 cM. Different measurements describing the androgenetic process were studied: AC, percentage of responding anthers; ELS, number of androgenetic embryos produced per 100 plated anthers; PLE, number of plantlets regenerated per 100 embryos; PLA, number of plantlets per 100 plated anthers. In each cross, three to four QTLs were found for AC, explaining 30-40% of the phenotypic variation. The QTL detected for PLA was also strong QTL for AC or ELS. This agrees with the observation that these last two traits are good predictors for final plantlet yield. The QTLs found were specific, although the same line DH7 was used in two crosses and DH99 derived from DH5 and DH7 in the third cross. These results suggest that the transfer of the androgenetic capabilities in elite germplasm will still involve a phenotypic evaluation of the androgenetic performances. A backcross-assisted selection based only on the genotype at the QTL is probably possible but only within the crosses used for this QTL analysis.  相似文献   

2.
Early bolting of Chinese cabbage (Brassica rapa L.) during spring cultivation often has detrimental effects on the yield and quality of the harvested products. Breeding late bolting varieties is a major objective of Chinese cabbage breeding programs. In order to analyze the genetic basis of bolting traits, a genetic map of B. rapa was constructed based on amplified fragment-length poiymorphism (AFLP), sequence-related amplified poiymorphism (SRAP), simple sequence repeat (SSR), random amplification of polymorphic DNA (RAPD), and isozyme markers. Marker analysis was carried out on 81 double haploid (DH) lines obtained by microspore culture from F1 progeny of two homozygous parents: B. rapa L. ssp. pekinensis (BY) (an extra-early bolting Chinese cabbage line) and B. rapa L. ssp. rapifera (MM) (an extra-late bolting European turnip line). A total of 326 markers including 130 AFLPs, 123 SRAPs, 16 SSRs, 43 RAPDs and 14 isozymes were used to construct a linkage map with 10 linkage groups covering 882 cM with an average distance of 2.71 cM between loci. The bolting trait of each DH line was evaluated by the bolting index under controlled conditions. Quantitative trait loci (QTL) analysis was conducted using multiple QTL model mapping with MapQTL5.0 software. Eight QTLs controlling bolting resistance were identified. These QTLs, accounting for 14.1% to 25.2% of the phenotypic variation with positive additive effects, were distributed into three linkage groups. These results provide useful information for molecular marker-assisted selection of late bolting traits in Chinese cabbage breeding programs.  相似文献   

3.
Increasing seed oil content is one of the most important goals in breeding of rapeseed (B. napus L.). To dissect the genetic basis of oil content in B. napus, a large and new double haploid (DH) population containing 348 lines was obtained from a cross between ‘KenC-8’ and ‘N53-2’, two varieties with >10% difference in seed oil content, and this population was named the KN DH population. A genetic linkage map consisting of 403 markers was constructed, which covered a total length of 1783.9 cM with an average marker interval of 4.4 cM. The KN DH population was phenotyped in eight natural environments and subjected to quantitative trait loci (QTL) analysis for oil content. A total of 63 identified QTLs explaining 2.64–17.88% of the phenotypic variation were identified, and these QTLs were further integrated into 24 consensus QTLs located on 11 chromosomes using meta-analysis. A high-density consensus map with 1335 marker loci was constructed by combining the KN DH map with seven other published maps based on the common markers. Of the 24 consensus QTLs in the KN DH population, 14 were new QTLs including five new QTLs in A genome and nine in C genome. The analysis revealed that a larger population with significant differences in oil content gave a higher power detecting new QTLs for oil content, and the construction of the consensus map provided a new clue for comparing the QTLs detected in different populations. These findings enriched our knowledge of QTLs for oil content and should be a potential in marker-assisted breeding of B. napus.  相似文献   

4.
L Zhang  J Luo  M Hao  L Zhang  Z Yuan  Z Yan  Y Liu  B Zhang  B Liu  C Liu  H Zhang  Y Zheng  D Liu 《BMC genetics》2012,13(1):69-8
ABSTRACT: BACKGROUND: A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. RESULTS: Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. CONCLUSIONS: A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.  相似文献   

5.
A doubled-haploid (DH) population from an intervarietal cross between the Japanese cultivar 'Fukuho-komugi' and the Israeli wheat line 'Oligoculm' was produced by means of wheat x maize crosses. One hundred seven DH lines were genotyped to construct a simple sequence repeat (SSR) based linkage map with RFLP, RAPD, and inter-simple sequence repeat markers. Out of 570 loci genotyped, 330 were chosen based on their positions on the linkage map to create a "framework" map for quantitative trait locus (QTL) analysis. Among the 28 linkage groups identified, 25 were assigned to the 21 chromosomes of wheat. The total map length was 3948 cM, including the three unassigned linkage groups (88 cM), and the mean interval between loci was 12.0 cM. Loci with segregation distortion were clustered on chromosomes 1A, 4B, 4D, 5A, 6A, 6B, and 6D. After vernalization, the DH lines were evaluated for spike number per plant (SN) and spike length (SL) in a greenhouse under 24-h daylength to assess the "gigas" features (extremely large spikes and leaves) of 'Oligoculm'. The DH lines were also autumn-sown in the field in two seasons (1990-1991 and 1997-1998) for SN and SL evaluation. QTL analysis was performed by composite interval mapping (CIM) with the framework map to detect QTLs for SN and SL. A major QTL on 1AS, which was stable in both greenhouse and field conditions, was found to control SN. This QTL was close to the glume pubescence locus (Hg) and explained up to 62.9% of the total phenotypic variation. The 'Oligoculm' allele restricted spike number. The SSR locus Xpsp2999 was the closest locus to this QTL and is considered to be a possible marker for restricted tillering derived from 'Oligoculm'. Eight QTLs were detected for SL. The largest QTL detected on 2DS was common to the greenhouse and field environments. It explained up to 33.3% of the total phenotypic variation. The second largest QTL on 1AS was common to the greenhouse and the 1997-1998 season. The position of this QTL was close to that for the SN detected on 1AS. The association between SN and SL is discussed.  相似文献   

6.
A rye doubled haploid (DH) mapping population (Amilo × Voima) segregating for pre-harvest sprouting (PHS) was generated through anther culture of F1 plants. A linkage map was constructed using DHs, to our knowledge, for the first time in rye. The map was composed of 289 loci: amplified fragment length polymorphism (AFLP), microsatellite, random amplified polymorphic DNA (RAPD), retrotransposon-microsatellite amplified polymorphism (REMAP), inter-retrotransposon amplified polymorphism (IRAP), inter-simple sequence repeat (ISSR) and sequence-related amplified polymorphism (SRAP) markers, and extended altogether 732 cM (one locus in every 2.5 cM). All of the seven rye chromosomes and four unplaced groups were formed. Distorted segregation of markers (P ≤ 0.05) was detected on all chromosomes. One major quantitative trait locus (QTL) affecting α-amylase activity was found, which explained 16.1% of phenotypic variation. The QTL was localized on the long arm of chromosome 5R. Microsatellites SCM74, RMS1115, and SCM77, nearest to the QTL, can be used for marker-assisted selection as a part of a rye breeding program to decrease sprouting damage.  相似文献   

7.
Glucosinolates and their breakdown products have been recognized for their effects on plant defense, human health, flavor and taste of cruciferous vegetables. Despite this importance, little is known about the regulation of the biosynthesis and degradation in Brassica rapa. Here, the identification of quantitative trait loci (QTL) for glucosinolate accumulation in B. rapa leaves in two novel segregating double haploid (DH) populations is reported: DH38, derived from a cross between yellow sarson R500 and pak choi variety HK Naibaicai; and DH30, from a cross between yellow sarson R500 and Kairyou Hakata, a Japanese vegetable turnip variety. An integrated map of 1068 cM with 10 linkage groups, assigned to the international agreed nomenclature, is developed based on the two individual DH maps with the common parent using amplified fragment length polymorphism (AFLP) and single sequence repeat (SSR) markers. Eight different glucosinolate compounds were detected in parents and F(1)s of the DH populations and found to segregate quantitatively in the DH populations. QTL analysis identified 16 loci controlling aliphatic glucosinolate accumulation, three loci controlling total indolic glucosinolate concentration and three loci regulating aromatic glucosinolate concentrations. Both comparative genomic analyses based on Arabidopsis-Brassica rapa synteny and mapping of candidate orthologous genes in B. rapa allowed the selection of genes involved in the glucosinolate biosynthesis pathway that may account for the identified QTL.  相似文献   

8.
In the present study, we analyzed the segregation distortions of markers during in vitro androgenesis in maize. This was based on four segregating populations derived from the A188×DH7 one-way-cross. These populations consisted of very young androgenetic embryos, well-developed calluses, haploid regenerated plantlets and spontaneous diploid plantlets. These structures all represented different developmental stages, from that of microspores to the regenerated plantlets. This study complemented a previous one by Murigneux et al. 1994, where distorted segregations of RFLP markers were detected in a single-seed-descent population and in a doubled-haploid population derived from the same cross. The weakly biased SSD maize genetic map was used as a reference to locate 145 AFLP loci whose allelic segregations were also analyzed in the androgenetic segregating populations. Segregation distortions were determined based on chi-square analysis (P<0.01 and P<0.001). Regions on chromosomes 2 and 8 showed distortions from the beginning of embryo formation, with large effects throughout the process. Regions on chromosomes 3, 4, 6 and 10 could control callus formation from microspores. Other deviations of marker genotypes on chromosomes 1, 4, 6 and 10 could be associated with the regeneration phase. Moreover, the statistical method of Cheng et al. for mapping a lethal factor locus inside segments of linked distorted markers was used to estimate the position of seven partial lethal androgenetic factors on chromosomes 1, 2, 8 and 10. These factors could represent selective genes actively involved in maize androgenesis. Received: 31 July 2000 / Accepted: 2 January 2001  相似文献   

9.
A consensus map of barley was constructed based on three reference doubled haploid (DH) populations and three recombinant inbred line (RIL) populations. Several sets of microsatellites were used as bridge markers in the integration of those populations previously genotyped with RFLP or with AFLP markers. Another set of 61 genic microsatellites was mapped for the first time using a newly developed fluorescent labelling strategy, referred to as A/T labelling. The final map contains 3,258 markers spanning 1,081 centiMorgans (cM) with an average distance between two adjacent loci of 0.33 cM. This is the highest density of markers reported for a barley genetic map to date. The consensus map was divided into 210 BINs of about 5 cM each in which were placed 19 quantitative trait loci (QTL) contributing to the partial resistance to barley leaf rust (Puccinia hordei Otth) in five of the integrated populations. Each parental barley combination segregated for different sets of QTLs, with only few QTLs shared by any pair of cultivars. Defence gene homologues (DGH) were identified by tBlastx homology to known genes involved in the defence of plants against microbial pathogens. Sixty-three DGHs were located into the 210 BINs in order to identify candidate genes responsible for the QTL effects. Eight BINs were co-occupied by a QTL and DGH(s). The positional candidates identified are receptor-like kinase, WIR1 homologues and several defence response genes like peroxidases, superoxide dismutase and thaumatin. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

10.
Non-heading Chinese cabbage (Brassica carnpestris ssp. chinensis Makino) is one of the most important vegetables in eastern China. A genetic linkage map was constructed using 127 doubled haploid (DH) lines, and the DH population was derived from a commercial hybrid "Hanxiao" (lines SW-13 x L-118). Out of the 614 polyrnorphic markers, 43.49% were not assigned to any of the linkage groups (LGs). Chi-square tests showed that 42.67% markers were distorted from expected Mendelian segregation ratios, and the direction of distorted segregation was mainly toward the paternal parent L-118. After sequentially removing the markers that had an interval distance smaller than 1 cM from the upper marker, the overall quality of the linkage map was increased. Two hundred and sixty-eight molecular markers were mapped into 10 LGs, which were anchored to the corresponding chromosome of the B. rapa reference map based on com- mon simple sequence repeat (SSR) markers. The map covers 973.38 cM of the genome and the average interval distance between markers was 3.63 cM. The number of markers on each LG ranged from 18 (R08) to 64 (R07), with an average interval distance within a single LG from 1.70 cM (R07) to 6.71 cM (R06). Among these mapped markers, 169 were sequence-related amplified polymorphism (SRAP) molecular markers, 50 were SSR markers and 49 were random amplification polymorphic DNA (RAPD) markers. With further saturation to the LG9 the current map offers a genetic tool for loci analysis for important agronomic traits.  相似文献   

11.
To create a framework for genetic dissection of hexaploid triticale, six populations of doubled haploid (DH) lines were developed from pairwise hybrids of high-yielding winter triticale cultivars. The six populations comprise between 97 and 231 genotyped DH lines each, totaling 957 DH lines. A consensus genetic map spans 4593.9 cM is composed of 1576 unique DArT markers. The maps reveal several structural rearrangements in triticale genomes. In preliminary tests of the populations and maps, markers specific to wheat segments of the engineered rye chromosome 1R (RM1B) were identified. Example QTL mapping of days to heading in cv. Krakowiak revealed loci on chromosomes 2BL and 2R responsible for extended vernalization requirement, and candidate genes were identified. The material is available to all parties interested in triticale genetics.  相似文献   

12.
We report here, for the first time, the production of haploid plants of banana Musa balbisiana (BB). Callus was induced from anthers in which the majority of the microspores were at the uninucleate stage. The frequency of callus induction was 77%. Callus proliferation usually preceded embryo formation. About 8% of the anthers developed androgenic embryos. Of the 147 plantlets obtained, 41 were haploids (n=x=11). The frequency of haploid production depended on genotypes used: 18 haploid plants were produced from genotype Pisang klutuk, 12 from Pisang batu, seven from Pisang klutuk wulung and four from Tani. The frequency of regeneration was 1.1%, which was based on the total number of anthers cultured. Diploid plants (2n=2x=22) were also observed in the regenerated plants. The haploid banana plants that were developed will be important material for the improvement of banana through breeding programmes.  相似文献   

13.
A rice (Oryza sativa L. ) molecular linkage map has been constructed form over 52 random amplified polymorphic DNA (RAPD) markers with the double haploid (DH) population. It covered a total genetic distance of over 898.4 cM (centimorgan) with 17.3 cM between markers and was complemental with RFLP linkage map.  相似文献   

14.
RAPD标记构建水稻分子连锁图   总被引:50,自引:0,他引:50  
利用随机扩增多态性DNA(RAPD),在一个水稻(Oryza sativa L.)的双单倍体(DH)群体中发展分子标记,仅用52 个RAPD标记建成了一个水稻RAPD分子连锁图。该图覆盖基因组的总长度为898.4 cM (centim organ),标记间的平均间距为17.3 cM,它能与用同一群体构成的RFLP图谱互相补充  相似文献   

15.
Pretreatment with increasing concentrations of mannitol, from 0.3 to 0.7 M, was used to induce stress in cultured anthers of barley (Hordeum vulgare L.). Three cultivars with varying degrees of androgenetic ability were studied. A positive linear relationship was found between concentration of mannitol in the pretreatment medium and the number of regenerated green doubled haploid plants in all the cultivars. The pretreatment also resulted in an increasing proportion of embryos to dividing microspores, and in green to albino plantlets. The optimum length of the pretreatment seemed to be genotype dependent. When Ficoll was used as an alternative stress agent a differential genotype response was observed.Abbreviations BAP N6 benzyl-aminopurine - IAA indol acetic acid  相似文献   

16.
Low boron (B) seriously limits the growth of oilseed rape (Brassica napus L.), a high B demand species that is sensitive to low B conditions. Significant genotypic variations in response to B deficiency have been observed among B. napus cultivars. To reveal the genetic basis for B efficiency in B. napus, quantitative trait loci (QTLs) for the plant growth traits, B uptake traits and the B efficiency coefficient (BEC) were analyzed using a doubled haploid (DH) population derived from a cross between a B-efficient parent, Qingyou 10, and a B-inefficient parent, Westar 10. A high-density genetic map was constructed based on single nucleotide polymorphisms (SNPs) assayed using Brassica 60 K Infinium BeadChip Array, simple sequence repeats (SSRs) and amplified fragment length polymorphisms (AFLPs). The linkage map covered a total length of 2139.5 cM, with 19 linkage groups (LGs) and an average distance of 1.6 cM between adjacent markers. Based on hydroponic evaluation of six B efficiency traits measured in three separate repeated trials, a total of 52 QTLs were identified, accounting for 6.14–46.27% of the phenotypic variation. A major QTL for BEC, qBEC-A3a, was co-located on A3 with other QTLs for plant growth and B uptake traits under low B stress. Using a subset of substitution lines, qBEC-A3a was validated and narrowed down to the interval between CNU384 and BnGMS436. The results of this study provide a novel major locus located on A3 for B efficiency in B. napus that will be suitable for fine mapping and marker-assisted selection breeding for B efficiency in B. napus.  相似文献   

17.
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.  相似文献   

18.
A set of 90 doubled haploid (DH) lines derived from F(1) plants that originated from a cross between × Triticosecale Wittm. 'Saka3006' and ×Triticosecale Wittm. 'Modus', via wide crossing with maize, were used to create a genetic linkage map of triticale. The map has 21 linkage groups assigned to the A, B, and R genomes including 155 simple sequence repeat (SSR), 1385 diversity array technology (DArT), and 28 amplified fragment length polymorphism (AFLP) markers covering 2397 cM with a mean distance between two markers of 4.1 cM. Comparative analysis with wheat consensus maps revealed that triticale chromosomes of the A and B genomes were represented by 15 chromosomes, including combinations of 2AS.2AL#, 2AL#2BL, 6AS.6AL#, and 2BS.6AL# instead of 2A, 2B, and 6A. In respect to published maps of rye, substantial rearrangements were found also for chromosomes 1R, 2R, and 3R of the rye genome. Chromosomes 1R and 2R were truncated and the latter was linked with 3R. A nonhomogeneous distribution of markers across the triticale genome was observed with evident bias (48%) towards the rye genome. This genetic map may serve as a reference linkage map of triticale for efficient studies of structural rearrangements, gene mapping, and marker-assisted selection.  相似文献   

19.
A doubled haploid (DH) population derived from a cross between the Japanese cultivar 'Fukuho-kumogi' and the Israeli wheat line 'Oligoculm' was used to map genome regions involved in the expression of grain yield, yield components, and spike features in wheat (Triticum aestivum L). A total of 371 markers (RAPD, SSR, RFLP, AFLP, and two morphological traits) were used to construct the linkage map that covered 4190 cM of wheat genome including 28 linkage groups. The results of composite interval mapping for all studied traits showed that some of the quantitative trait loci (QTL) were stable over experiments conducted in 2004 and 2005. The major QTL located in the Hair-Xpsp2999 interval on chromosome 1A controlled the expression of grains/spike (R(2) = 12.9% in 2004 and 22.4% in 2005), grain weight/spike (R(2) = 21.4% in 2004 and 15.8% in 2005), and spike number (R(2) = 15.6% in 2004 and 5.4% in 2005). The QTL for grain yield located on chromosomes 6A, 6B, and 6D totally accounted for 27.2% and 31.7% of total variation in this trait in 2004 and 2005, respectively. Alleles inherited from 'Oligoculm' increased the length of spikes and had decreasing effects on spike number. According to the data obtained in 2005, locus Xgwm261 was associated with a highly significant spike length QTL (R(2) = 42.33%) and also the major QTL for spikelet compactness (R(2) = 26.1%).  相似文献   

20.
Genetic mapping provides a powerful tool for the analysis of quantitative trait loci (QTLs) at the genomic level.Herein,we report a new genetic linkage map developed from an F1-derived doubled haploid (DH) population of 168 lines,which was generated from the cross between two elite Chinese common wheat (Triticum aestivum L.) varieties,Huapei 3 and Yumai 57.The map contained 305 loci,represented by 283 simple sequence repeat (SSR) and 22 expressed sequence tag (EST)-SSR markers,which covered a total length of 2141.7 cM with an average distance of 7.02 cM between adjacent markers on the map.The chromosomal locations and map positions of 22 new SSR markers were determined,and were found to distribute on 14 linkage groups.Twenty SSR loci showed different chromosomal locations from those reported in other maps.Therefore,this map offers new information on the SSR markers of wheat.This genetic map provides new opportunities to detect and map QTLs controlling agronomically important traits.The unique features of this map are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号